

1 Article

2

NiFe alloy reduced on graphene oxide for 3 electrochemical non-enzymatic glucose sensing

4 Zhe-Peng Deng^{1,2}, Yu Sun³, Yong-Cheng Wang^{1,*} and Jian-De Gao⁴5 ¹College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China;
6 dengzp516@163.com (Z.D.); ycwang@163.com (Y.W.)7 ²Gansu Computing Center, Lanzhou 730030, P. R. China; dengzp516@163.com8 ³Experiment Center of Northwest University for Nationalities, Lanzhou 730030, P. R. China;
9 sunyu794@163.com10 ⁴Gansu University of Chinses Medicine, Lanzhou 730000, P. R. China; 13919124704@163.com11 *Correspondence: ycwang@163.com; Tel.: +86-931-7971989

12

13

14 **Abstract:** NiFe alloy nanoparticles/graphene oxide hybrid (NiFe/GO) was prepared for
15 electrochemical glucose sensing. The as-prepared NiFe/GO hybrid was characterized by
16 transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that
17 NiFe alloy nanoparticles can be successfully deposited on GO. The electrochemical glucose sensing
18 performance of the as-prepared NiFe/GO was studied by cyclic voltammetry and amperometric
19 measurement. Results showed that NiFe/GO modified glassy carbon electrode had sensitivity of
20 173 μ A mM⁻¹cm⁻² for glucose sensing with a linear range up to 5 mM, which was superior to
21 commonly used Ni nanoparticles. Furthermore, high selectivity for glucose detection can be
22 achieved by NiFe/GO. All the results demonstrated that NiFe/GO hybrid was promising for using
23 in electrochemical glucose sensing.24 **Keywords:** NiFe alloy; graphene oxide; glucose; non-enzymatic sensor

25

26

1. Introduction

27 Glucose sensing is important in many fields, such as medical diagnostics and food industry [1].
28 The earliest glucose sensing is reported by Clark and Lyons in 1962 using biological enzyme [2].
29 Since then, biological enzymes such as glucose oxidase and glucose dehydrogenase have been
30 widely used for glucose sensing. However, the biological enzymes are susceptible to external
31 condition such as temperature, humidity, pH, and so on, which lead to instability of biological
32 enzymes [3–5]. The expensive price and complicated mobilizing methods of biological enzymes also
33 restrict its application [6]. Therefore, to address these problems, the research focus has been
34 transferred to develop electrochemical non-enzymatic glucose sensors.35 Due to its high stability and sensitivity, non-enzymatic electrochemical technology is a good
36 choice for glucose sensing [7]. Various nanoparticles have been reported for constructing
37 electrochemical non-enzymatic biosensors, such as noble metal Pt nanoparticles (Pt NPs) [3,8,9], Au
38 NPs [10,11], Pd NPs [12,13], etc. However, the expensive price of these noble metals restricts their
39 practical application. Furthermore, noble metals constructed electrochemical glucose sensors are
40 usually poisoned by chloride ion containing widely in body's blood [14]. In order to exploit cheap
41 electrochemical non-enzymatic glucose biosensors, considerable attention has been focusing on
42 non-noble metal materials, such as Ni NPs [15–17], Co(OH)₂ nanotubes [18], Cu NPs [19,20], etc.
43 Recent studies reveal that bimetallic materials [21], especially bimetal alloys, exhibit better catalytic
44 performance than that of monometallic counterparts [22]. Xu et al. and Chen et al. both found that
45 Pt-Ni alloy exhibited enhanced sensitivity for glucose sensing [23,24]. Besides, PtRu alloy [25], PtAu
46 alloy [26], PtCo alloy [27], CoCu alloy [28], and NiCo alloy [29] have been used in glucose sensing.

47 A support material is also important in electrochemical glucose sensor [30]. Carbon based
48 materials (especially carbon nanotube and graphene) have extensively used to load the
49 electrochemical catalyst due to its excellent conductivity, such as loading cupric oxide [31] or
50 growing copper nanoparticles [32] on carbon nanotubes (CNTs) for electrochemical glucose sensing.
51 Graphene and its oxide (graphene oxide, GO) have triggered researchers' interest since 2004 because
52 of their good electrical conductivity and large specific surface area. Due to these exceptional
53 properties, Graphene and GO have been chosen as supporting material in electrochemistry [33]. GO
54 loaded with NiS [34], NiCo alloy [29] and CuS NPs [35] have been applied for electrochemical
55 glucose sensing.

56 Based on the above considerations, we tried to study the alloying of commonly used Ni NPs in
57 the scope of glucose detection with Fe element on GO, because NiFe alloy shows high
58 electrochemical performance in various processes [36–39]. To the best of our knowledge, the NiFe
59 alloy nanoparticles/graphene oxide hybrid (NiFe/GO) has never been reported for electrochemical
60 glucose sensing. The NiFe/GO reveals better electrocatalytic performance towards glucose oxidation
61 than the commonly used Ni NPs. High performance of NiFe alloy nanoparticles and superior
62 conductivity of GO endow the NiFe/GO biosensor to electrochemically sensing glucose in wide
63 concentration range.

64 2. Materials and Methods

65 2.1. Chemicals and reagents

66 All reagents used in experiments were analytical grade. Graphite powder was purchased from
67 Alfa Aesar. Nickel sulfate hexahydrate, iron sulfate heptahydrate, hydrazine hydrate (80 wt%) and
68 glucose are procured from Sinopharm Chemical Reagent Co., Ltd. Ascorbic acid (AA), uric acid
69 (UA), and dopamine (DA) were purchased from ACROS. Deionized water (18.2 MΩ·cm) was used
70 in all experiments.

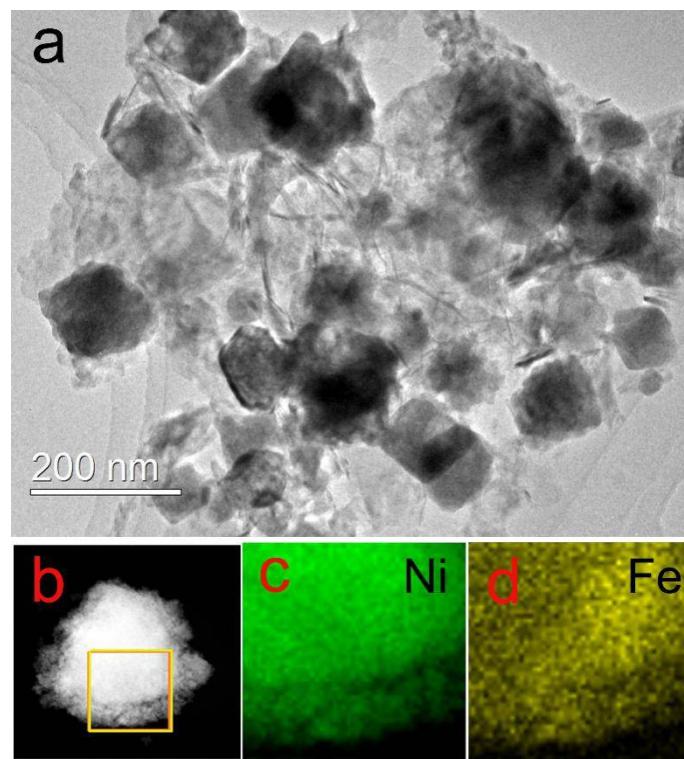
71 2.2. Preparation of GO

72 GO was prepared by modified Hummers method [40]. 2 g Graphite and 1 g NaNO₃ were mixed
73 with 50 mL H₂SO₄ (95%) in a 250 mL flask within an ice bath to keep a low temperature (Caution: ice
74 bath is important and necessary). Then, 6 g KMnO₄ was added slowly into the above suspension
75 with vigorous stirring. In this adding process, the reaction temperature should be kept lower than 20
76 °C. After that, the mixture was stirred at room temperature overnight. At the end, 60 mL H₂O was
77 added slowly with vigorous agitation. The reaction temperature was increased rapidly up to 95 °C,
78 and the color of suspension changed to yellow. Then, 10 mL of 30% H₂O₂ was added to the mixture.
79 Finally, the obtained product was washed by rinsing with 5% HCl and then deionized water for
80 several times until the pH of filtrate reached 7. After dry in vacuum dryer, gray powder GO was
81 obtained.

82 2.3. Preparation of NiFe/GO composites

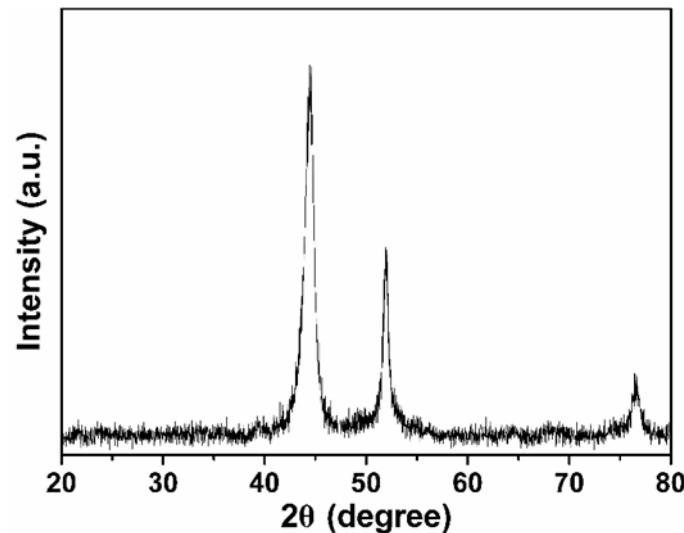
83 For the preparation of NiFe/GO composite (for example, the ratio of Ni to Fe is 1:1, denoted as
84 NiFe/GO), 0.1 g of the as-prepared GO, 278.1 mg FeSO₄·7H₂O (1 mmol) and 262.9 mg NiSO₄·6H₂O (1
85 mmol) were added to 10 mL deionized water. The mixture was sonicated for 30 min to get an evenly
86 dispersed solution. Then, 15 mL hydrazine hydrate was dropped slowly into the above solution
87 followed by refluxing at 100 °C for 3 h under N₂ atmosphere. After reaction, the obtained NiFe/GO
88 composite was washed using deionized water for several times. Finally, the washed NiFe/GO
89 composite was dried in vacuum for further use. Other composites (different Ni to Fe mass ratios,
90 such as Ni₁Fe₄/GO, Ni₄Fe₁/GO, Ni/GO and Fe/GO) were prepared by adjusting the ratio of Ni and Fe.
91 NiFe alloy NPs were also prepared for comparison using the same method without adding GO.

93 *2.4. Preparation of the NiFe/GO hybrid modified electrode*


94 5 mg NiFe/GO hybrid was dispersed in 1 mL solution that containing 0.5 mL ethyl alcohol and
95 0.5 mL deionized water. The above solution was sonicated for 30 minutes to get an evenly dispersed
96 mixture. After sonicating, a certain amount of the mixture was dropped onto bare glassy carbon
97 electrode (GCE) followed by adding 2 μ L Nafion solution (0.5%) to entrap the NiFe/GO. The
98 prepared electrode was denoted as NiFe/GO/GCE. For comparing, Ni/GO/GCE, Fe/GO/GCE and
99 NiFe/GCE were fabricated similarly.

100 *2.5. Apparatus and measurements*

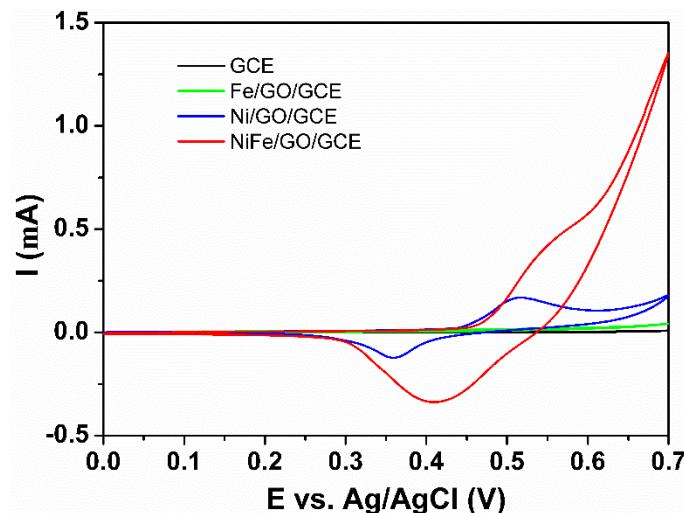
101 The morphologies of NiFe/GO composite were collected with a Tecnai G²F³⁰ electron
102 microscope. XRD data were conducted on a Rigaku D/max-2400 diffractometer operating at a
103 voltage of 40 kV and a current of 40 mA using Cu-K radiation as the X-ray source. Electrochemical
104 characterization was performed on a CHI 660C electrochemical workstation with the modified GCE
105 as working electrode, Pt wire as counter electrode and Ag/AgCl (3 M KCl) as reference electrode. All
106 voltages used in the manuscript were versus to Ag/AgCl (3 M KCl) electrode.


107 **3. Results and discussion**108 *3.1. Structural characterization*

109 The TEM image of the NiFe/GO is displayed in Figure 1. As shown in Figure 1a that NiFe alloys
110 with diameter of about 100 nm are loaded on GO. Figure 1b-d show the element mapping of NiFe
111 alloy. It can be seen clearly that Ni and Fe element are evenly distributed in NiFe alloy. This prove
112 the successful preparation of NiFe alloy. Figure 3 shows the XRD pattern of NiFe/GO to further
113 investigate the crystalline structure. The diffraction patterns located 44.5°, 51.9° and 76.4° can be
114 ascribed to the diffraction of (111), (200), and (220) crystal planes of the NiFe alloy, respectively [41].
115 No peaks of GO can be found due to its small amount.

116

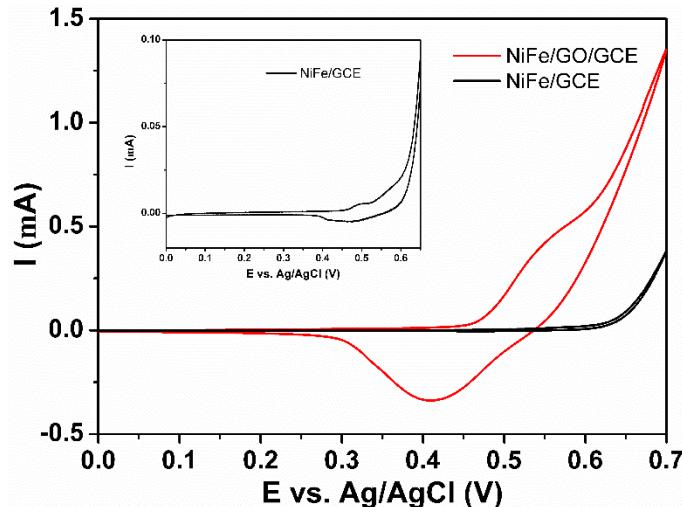
117 Figure 1. (a) TEM image of the NiFe/GO and (b, c d) element mapping of NiFe alloy.



118

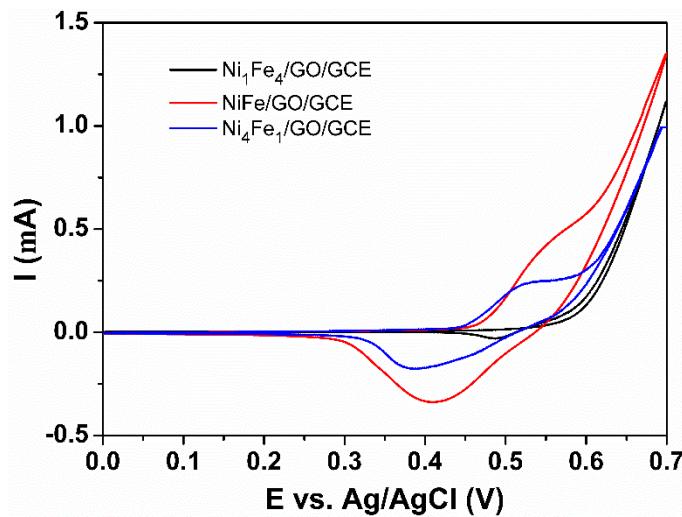
119 Figure 2. XRD pattern of NiFe/GO.

120 *3.2. Electrochemical measurements*


121 Figure 3 shows the typical cyclic voltammograms of the as-prepared GCE, Fe/GO/GCE,
122 Ni/GO/GCE and NiFe/GO/GCE in 0.1 M NaOH solution in the presence of 1.0 mM glucose. It can be
123 seen from Figure 3 that GCE and Fe/GO/GCE show very small current in the whole voltage range.
124 Oxidation peaks between 0.50 to 0.55 V can be observed for Ni/GO/GCE and NiFe/GO/GCE, which
125 can be ascribed to the oxidation of Ni^{2+} to Ni^{3+} . The Ni^{3+} accounts for the oxidation of glucose [15].
126 When Fe was added to Ni to form NiFe alloy, the current increases obviously. This indicates that
127 NiFe alloy have higher performance for electrochemical glucose detection.

128

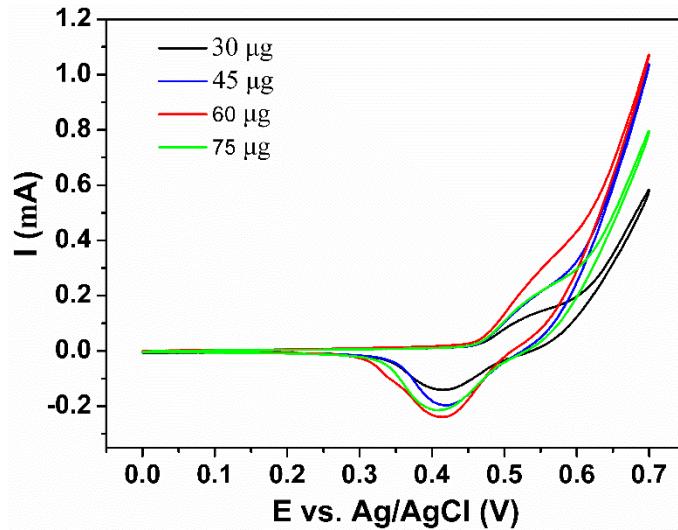
129 Figure 3. CVs of GCE, Fe/GO/GCE, Ni/GO/GCE and NiFe/GO/GCE in 0.1 M NaOH solution in the
130 presence of 1.0 mM glucose at a scan rate of 10 mV/s.


131 To illustrate the effect of GO, the performance of NiFe/GCE and NiFe/GO/GCE were
132 investigated. As shown in Figure 4, NiFe/GCE has only negligible current and the redox peaks can
133 be seen in the inset figure. NiFe/GO/GCE shows much larger current than that of NiFe/GCE,
134 indicating GO is important in the composite electrode. The GO not only acts as support to load NiFe
135 alloy from aggregation, but also plays an important role for electronic transmission.

136

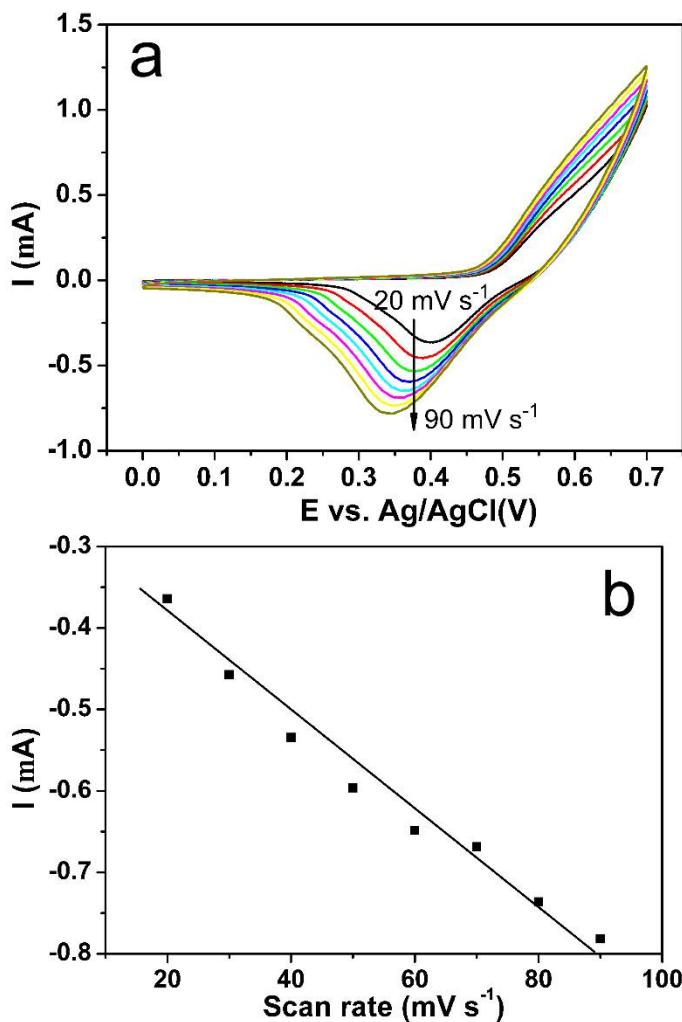
137 Figure 4. CVs of NiFe/GCE and NiFe/GO/GCE in 0.1 M NaOH solution in the presence of 1.0 mM
 138 glucose at a scan rate of 10 mV/s. Inset: CV of NiFe/GCE.

139 Furthermore, the effect of the ratio between Ni and Fe elements were investigated. As shown
 140 in Figure 5, $\text{Ni}_1\text{Fe}_4/\text{GO}/\text{GCE}$ shows the smallest current. With the increase of Ni amount,
 141 NiFe/GO/GCE shows the biggest current. More Ni amount, instead, decrease the current as
 142 $\text{Ni}_4\text{Fe}_1/\text{GO}/\text{GCE}$ shows. So, NiFe/GO/GCE was used for further research.


143

144 Figure 5. CVs of $\text{Ni}_1\text{Fe}_4/\text{GO}/\text{GCE}$, NiFe/GO/GCE and $\text{Ni}_4\text{Fe}_1/\text{GO}/\text{GCE}$ in 0.1 M NaOH solution in the
 145 presence of 1.0 mM glucose at a scan rate of 10 mV/s.

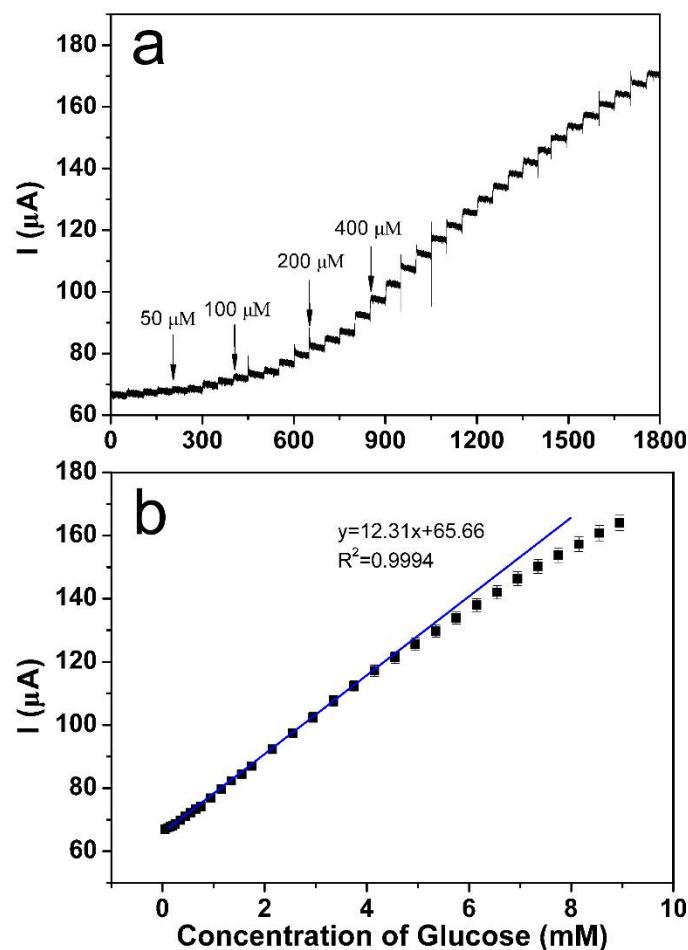
146 In order to improve the electrocatalytic performance of NiFe/GO/GCE, the loading amount of
 147 NiFe/GO were studied. Figure 6 shows CV curves of NiFe/GO/GCE with different amount of
 148 NiFe/GO loading on GCE. It can be seen that the current increases gradually from the loading
 149 amount of 30 to 60 μg NiFe/GO. When the loading amount exceeding 60 μg , the current decreases.
 150 So, 60 μg is the optima loading amount and used in the later experiments. This phenomenon can be
 151 explained by the change of catalytic sites. At first, increasing loading amount of the NiFe alloy
 152 increased catalytic sites. However, overmuch loading amount limited mass transfer process,
 153 leading to the decrease of current [19].


154 Cyclic voltammetric measurements were performed at increased scan rates to better
 155 understand the electrocatalytic properties of the NiFe/GO/GCE for glucose oxidation. As
 156 demonstrated in Figure 7a, cathodic peak currents of NiFe/GO/GCE increased with the increasing
 157 scan rate. Figure 7b give the relationship between cathodic peak current and scan rate. It can be
 158 seen that cathodic peak currents increases linearly with the used scan rates. This result manifested

159 the rate determining step was surface reaction control rather than diffusion control, which is
 160 favorable for quantitative analysis.

161

162 Figure 6. The effect of modification amount on the performance of electrode.

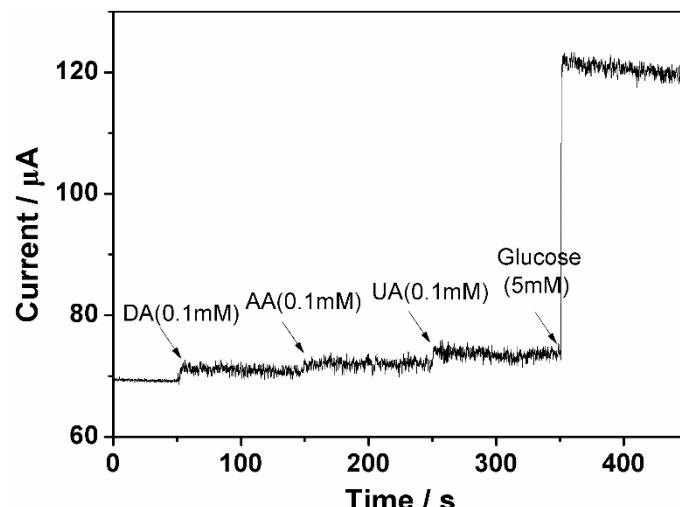


163

164 Figure 7. (a) Cyclic voltammograms of NiFe/GO/GCE at different scan rates from 20 to 90 mV/s in 0.1
 165 M NaOH with 1.0 mM glucose. (b) Plot of cathode current vs the scan rate.

166 3.3. Amperometric response towards glucose sensing

167 Amperometric measurement was carried out to show the current response of the NiFe/GO/GCE
 168 towards continuously adding of various concentrations of glucose, which was carried out in
 169 vigorous stirred electrolyte. As shown in figure 8a, the NiFe/GO/GCE generates fast current
 170 response upon the addition of glucose from 50 to 400 μ M everytime. According to the amperometric
 171 current, the corresponding calibration curve was plotted in Figure 8b. It can be seen that the
 172 NiFe/GO/GCE sensor showed a wide linear sensing range from 0 to 5 mM ($R^2 = 0.9994$), and a
 173 sensitivity of 173 μ A $\text{mM}^{-1}\text{cm}^{-2}$. The high sensitivity can be ascribed to the high electrocatalytic
 174 activity of NiFe alloy and excellent electronic transmission performance of GO.
 175



176

177 Figure 8. (a) Amperometric currents measured with continuous addition of glucose from 50 to 400
 178 μ M at 0.55 V for NiFe/GO/GCE. (b) The corresponding calibration curve.

179 3.4. Specificity and reproducibility of the NiFe/GO/GCE

180 DA, AA and UA are co-exist in human blood, which will influence the electrochemical
 181 non-enzymatic glucose sensing. To investigate the effect of DA, AA and UA on the glucose sensing,
 182 amperometric response test was carried out. Figure 9 shows the amperometric response current with
 183 addition of DA, AA, UA and glucose. It can be seen that the current generated by DA, AA and UA in
 184 normal physiological concentration are only 4.1%, 1.9% and 2.6% compared to that of glucose,
 185 respectively. This research demonstrates that the NiFe/GO/GCE possesses specificity for glucose
 186 sensing and can be used in reality sensing.

187

188

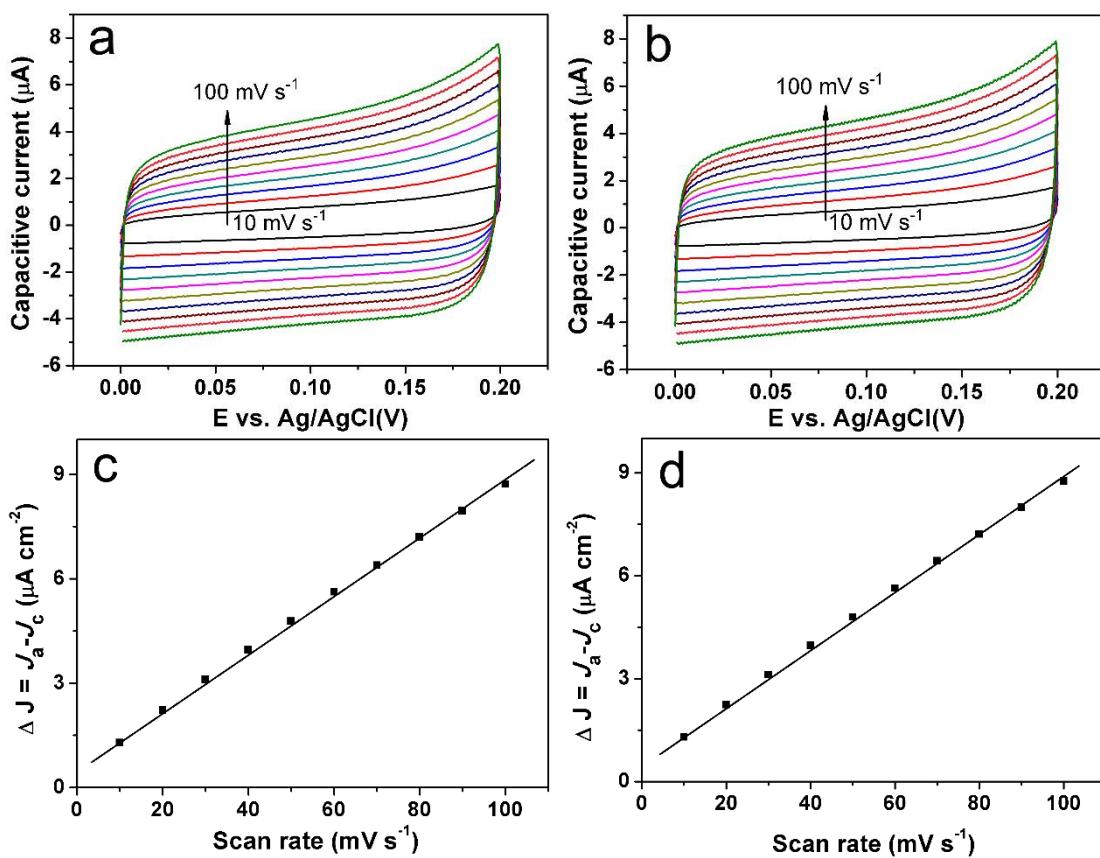
Figure 9. Amperometric response of NiFe/GO/GCE to interferents at physiological concentration.

189

190 To check the reproducibility of our manufacturing operation, we fabricate two electrodes in
 191 same condition and test their double layer capacitance (Cdl). Cyclic voltammograms were carried
 192 out in 0.1 M NaOH solution at scan rate from 10 to 100 mV s⁻¹ (Figure 10a and b). Then the
 193 electrochemical active surface area was estimated by testing capacitive current at non-faraday region
 194 at different scan rates, from which double-layer charging (Cdl) was determined by plotting the $\Delta J =$
 195 $(J_a - J_c)$ at 0.10 V vs. Ag/AgCl against the scan rate as shown in Figure 10c and d. The linear slope is
 196 equivalent to twice of the Cdl, which can be used to represent the electrochemical active surface area
 197 [42]. From Figure 10c and d, it can be seen that the two fabricated electrodes have almost the same
 198 linear slope, revealing the same electrochemical active surface area of the two electrodes fabricated
 199 at same condition. That is, our fabrication process is reliable.

199

3.5. Practical applications


200
201
202
203
204
205

For practical analysis, the NiFe/GO/GCE was used to detect glucose concentration in human serum by amperometric measurement. Briefly, 20 μ L serum was injected into 15 mL of 0.1 M NaOH solution, then the current response at +0.55 V on NiFe/GO/GCE was recorded. The recovery value was confirmed by standard injection of glucose with known concentration to the above sample, then record current at +0.55 V. As listed in Table 1, the recovery values of all three samples are close to 100%, indicating good practical application prospect of NiFe/GO/GCE electrode.

206

Table 1 Amperometric detection of glucose in serum

Sample	Concentration (mmol L ⁻¹)	RSD (%)	Added (mmol L ⁻¹)	Found (mmol L ⁻¹)	Recovery (%)
1	9.3	3.5	1	10.1	98
2	5.8	3.1	1	6.7	99
3	7.1	3.4	1	8.0	99

207

208 Figure 10. Cyclic voltammograms with different scan rates in potential range of 0.0 V to 0.2 V vs.
 209 Ag/AgCl where no Faradaic processes occur for first (A) and second fabrication (B) of electrode.
 210 Charging current density differences first (C) and second fabrication (D) of electrode plotted against
 211 scan rates.

212 **4. Conclusions**

213 In summary, a NiFe/GO/GCE electrochemical glucose sensor have successfully fabricated. The
 214 addition of Fe element into Ni nanoparticle to form NiFe alloy nanoparticle improved the
 215 electrochemical performance of glucose sensor. In addition, the GO not only acts as support to load
 216 NiFe alloy from aggregation, but also play an important role for electronic transmission. The
 217 NiFe/GO/GCE electrode exhibited excellent sensitivity ($173 \mu\text{A mM}^{-1}\text{cm}^{-2}$) and wide detection linear
 218 range (up to 5 mM). In addition, NiFe/GO/GCE electrode shows high selectivity for glucose
 219 detection and can be applied to glucose detection in human serum. All results demonstrate that
 220 NiFe/GO/GCE electrode is a promising candidate in the development of cheap, stable and sensitive
 221 non-enzymatic glucose sensors.
 222

223 **Author Contributions:** Data curation, Z.D.; Formal analysis, Z.D., Y.S. and J.D.; Investigation, Z.D., Y.S. and
 224 J.D.; Resources, Y.W.; Writing-Original Draft Preparation, Y.W. and Z.D.; Writing-review and editing, Z.D., Y.S.
 225 and Y.W.; Project Administration, Y.W.; Funding acquisition, J.D. All the authors discussed the results and
 226 commented on the manuscript.

227 **Funding:** This research was funded by the National Natural Science Foundation of China, grant number
 228 21263023, Natural Science Foundation of Gansu Province, grant number 1606RJZA209, Central Universities
 229 Fundamental Research Foundation, grant number 31920160055, Youth Science Foundation of Gansu Province,
 230 grant number 17JR5RA282. The APC was funded by the Natural Science Foundation of Gansu Province,
 231 grant number 17JR5RA172.

232 **Acknowledgments:** The authors will thank all the reviewers and editors for their great help and useful
 233 suggestions. Thank Jingwei Huang for his help for polishing the English writing.

234 **Conflicts of Interest:** The authors declare no conflict of interest.

235 **References**

1. Scognamiglio, V. Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. *Biosens. Bioelectron.*, **2013**, *47C*, 12-25.
2. Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. *Ann. Ny. Acad. Sci.*, **1962**, *102*, 29-45.
3. Niu, X.H.; Shi, L.B.; Zhao, H.L.; Lan, M.B. Advanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: a minireview. *Anal. Methods*, **2016**, *8*, 1755-1764.
4. Gnana kumar, G.; Amala, G.; Gowtham, S.M. Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms, *Rsc Adv.*, **2017**, *7*, 36949-36976.
5. Xie, J.D.; Gu, S.; Zhang, H. Microwave deposition of palladium catalysts on graphite spheres and reduced graphene oxide sheets for electrochemical glucose Sensing. *Sensors*, **2017**, *17*, 2163.
6. Yang, M.H.; Yang, Y.H.; Liu, Y.L.; Shen, G.L.; Yu, R.Q. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. *Biosens. Bioelectron.*, **2006**, *21*, 1125-1131.
7. Niu, X.; Li, X.; Pan, J.; He, Y.; Qiu, F.; Yan, Y. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. *Rsc Adv.*, **2016**, *6*, 84893-84905.
8. Ma, L.; Wang, X.; Zhang, Q.; Tong, X.; Zhang, Y.; Li, Z. Pt catalyzed formation of a Ni@Pt/reduced graphene oxide nanocomposite: preparation and electrochemical sensing application for glucose detection. *Anal. Methods*, **2018**, *10*, 3845-3850.
9. Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. *Acs Appl. Mater. Interfaces*, **2017**, *9*, 10027-10033.
10. Jiang, L.; Xue, Q.; Jiao, C.; Liu, H.; Zhou, Y.; Ma, H.; Yang, Q. A non-enzymatic nanoceria electrode for non-invasive glucose monitoring. *Anal. Methods*, **2018**, *10*, 2151-2159.
11. Zhao, W.; Zhang, R.; Xu, S.; Cai, J.; Zhu, X.; Zhu, Y.; Wei, W.; Liu, X.; Luo, J. Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection. *Biosens. Bioelectron.*, **2018**, *100*, 497-503.
12. Xiao, X.Y.; Montano, G.A.; Edwards, T.L.; Washburn, C.M.; Brozik, S.M.; Wheeler, D.R.; Burkel, D.B.; Polksky, R. Lithographically defined 3D nanoporous nonenzymatic glucose sensors. *Biosens. Bioelectron.*, **2011**, *26*, 3641-3646.
13. Wang, Q.; Wang, Q.; Qi, K.; Xue, T.; Liu, C.; Zheng, W.; Cui, X. In situ preparation of porous Pd nanotubes on a GCE for non-enzymatic electrochemical glucose sensors. *Anal. Methods*, **2015**, *7*, 8605-8610.
14. J. Wang. Electrochemical glucose biosensors. *Chem. Rev.*, **2008**, *108*, 814-825.
15. Huang, J.; He, Y.; Jin, J.; Li, Y.; Dong, Z.; Li, R. A novel glucose sensor based on MoS₂ nanosheet functionalized with Ni nanoparticles. *Electrochim. Acta*, **2014**, *136*, 41-46.
16. Shu, Y.; Yan, Y.; Chen, J.; Xu, Q.; Pang, H.; Hu, X. Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum. *Acs Appl. Mater. Interfaces*, **2017**, *9*, 22342-22349.
17. Mao, Y.; Tian, S.; Gong, S.; Qin, Y.; Han, J.; Deng, S. A broad-spectrum sweet taste sensor based on Ni(OH)₂/Ni electrode. *Sensors*, **2018**, *18*, 2758.
18. Huang, M.; Luo, X.; He, D.; Jiang, P. Hierarchical Co(OH)₂ nanotube arrays grown on carbon cloth for use in non-enzymatic glucose sensing. *Anal. Methods*, **2017**, *9*, 5903-5909.
19. Huang, J.; Dong, Z.; Li, Y.; Li, J.; Wang, J.; Yang, H.; Li, S.; Guo, S.; Jin, J.; Li, R. High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study. *Sensor Actuat. B: chem.*, **2013**, *182*, 618-624.
20. Ma, J.; Wang, J.; Wang, M.; Zhang, G.; Peng, W.; Li, Y.; Fan, X.; Zhang, F. Preparation of cuprous oxide mesoporous spheres with different pore sizes for non-enzymatic glucose detection. *Nanomaterials*, **2018**, *8*, 73.

285 21. Huang, J.; Hu, G.; Ding, Y.; Pang, M.; Ma, B. Mn-doping and NiFe layered double hydroxide coating:
286 Effective approaches to enhancing the performance of α -Fe₂O₃ in photoelectrochemical water oxidation. *J.*
287 *Catal.*, **2016**, *340*, 261-269.

288 22. Yeh, T.H.; Liu, C.W.; Chen, H.S.; Wang, K.W. Preparation of carbon-supported PtM (M = Au, Pd, or Cu)
289 nanorods and their application in oxygen reduction reaction. *Electrochim. Commun.*, **2013**, *31*, 125-128.

290 23. Sun, Y.; Yang, H.; Yu, X.; Meng, H.; Xu, X. A novel non-enzymatic amperometric glucose sensor based on
291 a hollow Pt-Ni alloy nanotube array electrode with enhanced sensitivity. *Rsc Adv.*, **2015**, *5*, 70387-70394.

292 24. Chen, C.C.; Chen, L.C.; Synthesis and characterization of Pd-Ni core-shell nanocatalysts for alkaline
293 glucose electrooxidation. *Rsc Adv.*, **2015**, *5*, 53333-53339.

294 25. Yang, J.; Liang, X.; Cui, L.; Liu, H.; Xie, J.; Liu, W. A novel non-enzymatic glucose sensor based on Pt₃Ru
295 alloy nanoparticles with high density of surface defects. *Biosens. Bioelectron.*, **2016**, *80*, 171-174.

296 26. He, W.; Sun, Y.; Xi, J.; Abdurhman, A.A.M.; Ren, J.; Duan, H. Printing graphene-carbon nanotube-ionic
297 liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy
298 nanoparticles for electrochemical sensing of blood glucose. *Anal. Chim. Acta*, **2016**, *903*, 61-68.

299 27. Zhao, A.; Zhang, Z.; Zhang, P.; Xiao, S.; Wang, L.; Dong, Y.; Yuan, H.; Li, P.; Sun, Y.; Jiang, X.; Xiao, F. 3D
300 nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high
301 loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing. *Anal. Chim. Acta*, **2016**,
302 938, 63-71.

303 28. Suneesh, P.V.; Sara Vargis, V.; Ramachandran, T.; Nair, B.G.; Satheesh Babu, T.G. Co-Cu alloy
304 nanoparticles decorated TiO₂ nanotube arrays for highly sensitive and selective nonenzymatic sensing of
305 glucose. *Sensor Actuat. B: chem.*, **2015**, *215*, 337-344.

306 29. Sheng, Q.; Liu, D.; Zheng, J. NiCo alloy nanoparticles anchored on polypyrrole/reduced graphene oxide
307 nanocomposites for nonenzymatic glucose sensing. *New J. Chem.*, **2016**, *40*, 6658-6665.

308 30. Han, B.; Pan, M.; Zhou, J.; Wang, Y.; Wang, Z.; Jiao, J.; Zhang, C.; Chen, Q. Facile synthesis of
309 β -Lactoglobulin-Functionalized reduced graphene oxide and trimetallic PtAuPd nanocomposite for
310 electrochemical sensing. *Nanomaterials*, **2018**, *8*, 724.

311 31. Jiang, L.C.; Zhang, W.D. A highly sensitive nonenzymatic glucose sensor based on CuO
312 nanoparticles-modified carbon nanotube electrode. *Biosens. Bioelectron.*, **2010**, *25*, 1402-1407.

313 32. Wu, H.X.; Cao, W.M.; Li, Y.; Liu, G.; Wen, Y.; Yang, H.F.; Yang, S.P. In situ growth of copper
314 nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor
315 materials. *Electrochim. Acta*, **2010**, *55*, 3734-3740.

316 33. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov,
317 A.A. Electric field effect in atomically thin carbon films. *Science*, **2004**, *306*, 666-669.

318 34. Radhakrishnan, S.; Kim, S.J. Facile fabrication of NiS and a reduced graphene oxide hybrid film for
319 nonenzymatic detection of glucose. *Rsc Adv.*, **2015**, *5*, 44346-44352.

320 35. Yan, X.; Gu, Y.; Li, C.; Zheng, B.; Li, Y.; Zhang, T.; Zhang, Z.; Yang, M. A non-enzymatic glucose sensor
321 based on the CuS nanoflakes-reduced graphene oxide nanocomposite, *Anal. Methods*, **2018**, *10*, 381-388.

322 36. Yu, X.; Yang, P.; Chen, S.; Zhang, M.; Shi, G. NiFe alloy protected silicon photoanode for efficient water
323 splitting. *Adv. Energy Mater.*, **2017**, *7*, 1601805.

324 37. Bin, D.; Yang, B.; Li, C.; Liu, Y.; Zhang, X.; Wang, Y.; Xia, Y. In situ growth of NiFe alloy nanoparticles
325 embedded into N-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-Air
326 batteries. *Acs Appl. Mater. Interfaces*, **2018**, *10*, 26178-26187.

327 38. Wang, G.; Zheng, D.; Liu, D.; Harris, J.; Si, J.; Ding, T.; Qu, D. Highly efficient Ni-Fe based oxygen
328 evolution catalyst prepared by a novel pulse electrochemical approach. *Electrochim. Acta*, **2017**, *247*,
329 722-729.

330 39. Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyazadeh, M.H.; Rouhaghdam, A.S.
331 Electrodeposition of Ni-Fe alloys, composites, and nano coatings-a review. *J. Alloy. Compd.*, **2017**, *691*,
332 841-859.

333 40. Hummers Jr, W.S.; Offeman, R.E. Preparation of graphitic oxide. *J. Am. Chem. Soc.*, **1958**, *80*, 1339-1339.

334 41. Li, J.; Tang, W.; Huang, J.; Jin, J.; Ma, J. Polyethyleneimine decorated graphene oxide-supported Ni_{1-x}Fe_x
335 bimetallic nanoparticles as efficient and robust electrocatalysts for hydrazine fuel cells. *Catal. Sci. Technol.*,
336 **2013**, *3*, 3155-3162.

337 42. Song, F.; Hu, X. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution
338 catalyst. *J. Am. Chem. Soc.*, **2014**, *136*, 16481-16484.