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Abstract: Evolution of cooperation has traditionally been studied by assuming that individuals1

adopt either of two pure strategies, to cooperate or defect. Recent work have considered continuous2

cooperative investments, turning full cooperation and full defection into two opposing ends of a3

spectrum and sometimes allowing for the emergence of the traditionally-studied pure strategies4

through evolutionary diversification. These studies have typically assumed a well-mixed population5

in which individuals are encountered with equal probability, Here, we allow for the possibility of6

assortative interactions by assuming that, with specified probabilities, an individual interacts with7

one or more other individuals of the same strategy. A closely related assumption has previously been8

made in evolutionary game theory and has been interpreted in terms of relatedness. We systematically9

study the effect of relatedness and find, among other conclusions, that the scope for evolutionary10

branching is reduced by either higher average degree of, or higher uncertainty in, relatedness with11

interaction partners. We also determine how different types of non-linear dependencies of benefits12

and costs constrain the types of evolutionary outcomes that can occur. While our results overall13

corroborate the conclusions of earlier studies, that higher relatedness promotes the evolution of14

cooperation, our investigation gives a comprehensive picture of how relatedness affects the evolution15

of cooperation with continuous investments.16

Keywords: adaptive dynamics; evolution; cooperation17

1. Introduction18

Cooperation, and in particular the willingness to cooperate with relatives, is regularly observed in19

many species. Observed forms of cooperation include egg trading, cooperative foraging, and predator20

inspection among fishes; defensive coalitions, cooperative hunting, food sharing, and alarm calls21

among birds; grooming behaviour, alarm signals, coalitions, alloparenting, and cooperative hunting22

among various mammals; bloodsharing among vampire bats; care-giving behaviour in dolphins;23

foraging, anti-predator behaviour, and hive thermoregulation in honeybee colonies; and “social24

contracts” among paper wasps [1]. Social insects such as ants and bees also cooperate frequently (e.g.,25

[2,3]) and cooperation is observed even among microbes (e.g. [4]). Finally, human societies are striking26

examples of cooperation.27

Since cooperation often involves a cost to the individual without conveying a commensurate28

immediate benefit, one would naively suspect that cooperation cannot evolve to any higher degree.29

This, however, is not the case, and several mechanisms capable of promoting and supporting30

cooperation has been proposed and explored [5,6]. An influential explanation of cooperation between31

related individuals is kin selection, which states that there can be positive selection for a gene conveying32

cooperative behavior if the beneficiaries of that behavior are likely to share the same gene. This is33

typically the case when interactions occurs between relatives, but the principle applies more generally34

and assortative interaction between individuals can arise for a range of other reasons such as spatial35
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structure or social dynamics. In certain settings, the principle of kin selection can be formulated36

quantitatively in a form that is now known as Hamilton’s rule: a cooperative gene is selected for if and37

only if rb > c, where r is the average degree of relatedness, b is the average benefit to the recipients of38

the cooperative act, and c is the average cost to the individual actor [7].39

Cooperation has often been studied in the setting of evolutionary game theory based on the40

prisoner’s dilemma or its many-player generalization, the public-goods game (see e.g, [8,9]). Although41

the latter game in principle allows for continuous investment, it is often assumed that individuals adopt42

either of two pure strategies corresponding to cooperation and defection. The evolutionary dynamics43

are studied with the so-called replicator equations in which strategies with a higher payoff than44

average in the population increase in frequency. To allow for the possibility of assortative interactions45

in this framework, Grafen [10] introduced the assumption that a fraction of an individual’s interaction46

are with individuals of the same type with the remaining interactions occurring with partners drawn47

at random from the population. This approach and related approaches has since been used to address48

a range of evolutionary questions [11–17].49

Recently, several studies have moved beyond the traditional cooperative games by considering50

continuous cooperative investments as well as non-linearity of benefits and costs [4,18–23]. With this51

setting, additional evolutionary outcomes become possible, including evolutionary branching in the52

cooperative trait under consideration and the emergence of two or more different coexisting strategies.53

In a landmark study, Doebeli et al. [18] considered a setting in which individuals interact in pairs and54

each make a cooperative investment for their common good. Their joint benefit is given by a non-linear55

function of their joint investment and their costs are given by a non-linear function of their respective56

investments. Finally, their payoffs are determined as the difference of the benefit and their respective57

costs. By assuming that the benefit and cost function were given by quadrative polynomials, they58

classified all possible evolutionary outcomes. Building on this framework, Cornforth et al. [4] showed59

how interaction assortment, interpreted as relatedness, can be incorporated. Though developed60

independently, the idea is similar to Grafen [10]. Cornforth et al. investigated how assortment61

affects the evolution of cooperation for three different benefit functions and under the assumption of62

proportional costs.63

Here, we extend the previous results by Cornforth et al. and systematically study the effects64

of relatedness on the evolution of cooperation in non-linear public-goods games with continuous65

investment. In Section 2, we present the general model. We consider both quadratic cost and benefit66

functions and general, increasing, cost and benefit functions. In Section 3, we analyze the dynamics67

of quadratic cost and benefit functions, and then derive results for general cost and benefit functions.68

Finally, in Section 4, we recapitulate and discuss our main results and identify important challenges69

for future research.70

2. Model description71

2.1. Demographical dynamics72

We consider a model based upon [18] and [4]. We assume an infinite population in which the ith73

individual has trait value xi representing cooperative investment, with 0 ≤ xi ≤ 1. At each generation,74

N random individuals with respective trait values x1, . . . , xN are chosen for an interaction, in which75

the payoff to the ith individual, with 1 ≤ i ≤ N, is given by76

B(x1 + . . . + xN)

N
− C(xi), (1)77

where B : [0, N] → R+ ∪ {0} and C : [0, 1] → R+ ∪ {0} are two increasing functions such that78

B(0) = C(0) = 0. B(x1 + . . . + xN) is the collective benefit of the cooperative investment of the entire79

group, and C(xi) is the cost of the individual’s own investment. The collective benefit is assumed to be80

divided equally among the members of the group, yielding a per capita benefit of B(x1 + . . . + xN)/N.81
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Each individual is assumed to be identical by descent (i.b.d.) to a random number of individuals82

in the group including itself. We define Pr(k) to be the probability for an individual to be i.b.d. to83

exactly k individuals in the group including itself. Just like in Cornforth et al. [4], the expected payoff to84

a rare mutant with trait value m in a monomorphic population of residents with trait value r becomes85

P(m, r) =
N

∑
k=1

Pr(k)B(km + (N − k)r)
N

− C(m). (2)86

We assume that the population dynamics follows the replicator equation [8], i.e., that successful87

strategies increase in frequency at a rate proportional to the difference with the average population-level88

payoff.89

We first carry out a comprehensive analysis of quadratic benefit and cost functions B(x) =90

b2x2 + b1x, C(x) = c2x2 + c1x that typically look like in Figure 1. We restrict the range of possibilities91

by requiring that B(x1 + . . .+ xN) and C(xi) should be increasing, i.e., that b1 > 0, c1 > 0, b1 ≥ −2Nb2,92

and c1 ≥ −2c2. The signs of b2 and c2 will depend on whether the functions are accelerating or93

decelerating. As a second step, we derive results for general increasing benefit and cost functions.94

2.2. Evolutionary dynamics95

We base our analysis of the evolutionary dynamics on adaptive-dynamics techniques [24–26].96

Readers not famililar with these methods may want to refer to an introductory text such as Brännström97

et al. [27]. In brief, we consider the initial growth rate of a rare strategy m in an environment dominated98

by a resident strategy r. This growth rate is called the invasion fitness and written Sr(m). The sign99

of the invasion fitness determines whether the rare strategy can grow in numbers and invade. From100

the invasion fitness we obtain the selectiong gradient S′r(r). Strategies at which selection ceases,101

S′r(r) = 0 are called evolutionary singular. They can be evolutionary attractors, in which case they102

are called convergence stable. Once established, the subsequent evolutionary dynamics depends on103

whether the singular strategy is evolutionarily stable or an evolutionary branching point. In the former104

case, evolution comes to a halt while in the latter case, the population diversifies and two coexisting105

strategies emerges.106

From the replicator equation (see Appendix A.1) we obtain the following expression for the107

invasion fitness108

Sr(m) = P(m, r)− P(r, r) =
N

∑
k=1

Pr(k)B(km + (N − k)r)
N

− C(m)−
[

N

∑
k=1

Pr(k)B(Nr)
N

− C(r)

]
. (3)109

Differentiating with respect to the mutant trait value and evalutating at m = r yields the selection110

gradient111

S′r(r) =
N

∑
k=1

k Pr(k)B′(Nr)
N

− C′(r) = µB′(Nr)− C′(r), (4)112

where µ is the average whole-group relatedness, defined as the expected value of fraction of the group113

that is i.b.d. to the focal individual (including the focal individual itself), i.e.114

µ =
N

∑
k=1

kPr(k)
N

. (5)115

Given this selection gradient, we obtain the condition for convergence stability of an evolutionarily116

singular strategy117

NB′′(Nr∗)µ− C′′(r∗) < 0, (6)118

and the condition for evolutionary stability119
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Figure 1. Examples of cost and benefit functions. Parameters used are for decelerating benefit b2 =

−1, b1 = 20; for accelerating benefit b2 = 0.5, b1 = 1; for decelerating cost c2 = −2.75, c1 = 6; and for
accelerating cost c2 = 2, c1 = 1. In choosing the horizontal range for the plots of the benefit functions,
we have assumed N = 10.

NB′′(Nr∗)[µ2 + σ2]− C′′(r∗) < 0, (7)120

where σ2 = Var [K/N], with K being the random variable with probability density function Pr(k). For121

a derivation of these conditions, see the appendix of Cornforth et al. [4], as well as Appendix A.2.122

3. Results123

We first carry out a comprehensive analysis of the effect of assortment on the evolution of124

cooperation with quadratic benefit and cost functions and then derive results for general cost and125

benefit functions. Our key findings are illustrated by Figure 2 and 3. These show the effects of increased126

average relatedness and increased variance in relatedness on the direction of selection and evolutionary127

stability of the cooperative investment. Note, in particular, that a singular strategy increases with128

increased relatedness if and only if it is convergence stable, and that increased relatedness as well as129

how increased uncertainty in relatedness can change the evolutionary stability of singular strategies.130

Finally we corroborate selected results using numerical simulations.131

3.1. Quadratic benefit and cost functions132

Recall that we assume benefit and cost functions, B and C, that are increasing, satisfy B(0) =133

C(0) = 0, and are given by quadratic polynomials, as shown in Figure 1. For these functions, we134

completely classify the evolutionary dynamics and its dependence on on the mean and variance of135

relatedness. Our conclusions are corroborated by numerical investigations (Fig. 4).136

With quadratic polynomials, the selection gradient, Eq. 2.2, is given by137
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S′r(r) = µB′(Nr)− C′(r) = µ(2Nb2r + b1)− 2c2r− c1. (8)138

Recalling from Sect. 2.1 that that we must have b1 ≥ −2Nb2 for B to be increasing, we have 2Nb2r +139

b1 > 0 and it follows as expected that increased relatedness always alters selection pressures in the140

direction of higher cooperative investments.141

From the selection gradient, Eq. 8, we solve for the singular strategies, i.e., the values of r at which142

the selection gradient vanishes, and find that for each µ, there is at most one interior evolutionarily143

singular strategy in the allowed range of cooperative investments. It is given by144

r∗(µ) =
c1 − b1µ

2(Nb2µ− c2)
, (9)145

whenever this value lies between 0 and 1.146

Momentarily leaving aside the constraints on µ and r∗ imposed by their biological interpretation,147

we note that the graph of r∗(µ) crosses zero at µ0 = c1/b1, has a vertical asymptote at µV = c2/(Nb2)148

and a horizontal asymptote at rH = −b1/(2Nb2). The graph consists of two curves that are located149

above and below the horizontal asymptote, respectively. Recalling from Sect. 2.1 that we must have150

b1 ≥ −2Nb2 for B to be increasing, we see that the horizontal asymptote is located outside of the range151

0 ≤ r < 1. Specifically, for accelerating benefits we have rH > 1 and for decelerating benefits we have152

rH < −1. It follows that only one of the curves can be biologically relevant and this is the curve that153

crosses zero at µ0 = c1/b1.154

The evolutionary dynamics now depends on whether the horizontal asymptote is located above155

or below the allowed trait range and on whether the graph of r∗ crosses zero before or after the156

vertical asymptote, i.e. on whether µH > µ0. As we have already noted, the answer to the former157

question depends on whether benefits are accelerating or decelerating. We have not found a similar158

straightforward interpretation of the latter condition, but we note that µ0 > µV whenever benefits and159

costs are not simultaneously accelerating or simultaneously decelerating. For each of the four possible160

combinations, we can characterize the evolutionary dynamics.161

Theorem 1. Let µ0, µV , and rH be as defined above. Let r∗(µ) be the interior strategy given by Eq. 3.1 whenever162

0 < r∗(µ) < 1. Otherwise, let r∗(µ) be the boundary strategy that results from directional selection. The163

following conclusions then hold.164

• Assume B is accelerating and that µ0 > µV , as is the case if C is decelerating. For µ < µV , we have165

r∗(µ) = 0 and selection is thus towards no cooperation. For µV < µ < µ0, r∗(µ) is decreasing and166

the evolutionary dynamics is bistable. For µ > µ0 we have r∗(µ) = 1 and selection is thus towards full167

cooperation.168

• Assume B is accelerating and that µ0 < µV . For µ < µ0 we have r∗(µ) = 0 and selection is thus169

towards no cooperation. For For µ0 < µ < µV we have r∗(µ) is increasing and convergence stable, i.e.,170

an evolutionary attractor. For µ > µV we have r∗(µ) = 1 and selection is thus towards full cooperation.171

• Assume B is decelerating and µ0 > µV , as is the case if C is accelerating. For µ < µ0 we have r∗(µ) = 0172

and selection is thus towards no cooperation. For µ > µV , r∗(µ) is increasing and convergence stable, i.e.,173

an evolutionary attractor.174

• Assume B is decelerating and µ0 < µV . For µ0 < µ < µV , r∗(µ) is increasing and convergence175

stable, i.e., an evolutionary attractor. For µ > µV we have r∗(µ) = 1 and selection is thus towards full176

cooperation.177

Proof. The conclusions follow from the geometric observations that precede the theorem and the fact,178

also discussed above, that the selection gradient is increasing function of µ.179

We next investigate the effects of relatedness on evolutionary stability. The condition for180

evolutionary stability, Eq. 7, is181
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Figure 2. Bifurcation diagrams showing how the evolutionary dynamics depend on average relatedness
for all four possible combinations of the accelerating and decelerating benefit and cost functions in
Fig. 1. Green thin line represents convergence stability without evolutionary stability, blue thick
line represents convergence stability with evolutionary stability, black dotted line represents neither
convergence stability nor evolutionary stability, and black thick line represents evolutionary stability
without convergence stability. We see that the four cases are qualitatively different. We also see that
when B and C are both decelerating, a certain range of relatedness leads to evolutionary branching.
The parameters used were in all cases N = 10, and b2, b1, c2, c1 as in Figure 1.

Nb2(µ
2 + σ2)− c2 < 0. (10)182

We thus see that both increased average relatedness (µ) and increased variance in relatedness (σ2)183

can affect the evolutionary stability of a singular strategy. We consider four cases depending on the184

signs of b2 and c2. When benefits are accelerating (b2 > 0) and costs decelerating (c2 < 0), the singular185

strategy is never evolutionarily stable. As Theorem 1 shows, any interior singular strategy will lack186

convergence stability and there will thus not be any evolutionary branching points. Diversification187

may still be possible, but would have to be established through a large change in strategy. When188

benefits are decelerating (b2 < 0) and costs accelerating (c2 > 0), any interior singular strategy is189

always evolutionarily stable. If benefits and costs are both accelerating (b2 > 0, c2 > 0), either is190

possible and any change with increased relatedness µ or variance σ2 is a loss of evolutionary stability.191

Finally, if benefits and costs are both decelerating (b2 < 0, c2 < 0), either is possible and any change192

with increased relatedness µ or variance σ2 is a gain of evolutionary stability.193

Figure 2 shows typical outcomes for four combinations of accelerating and decelerating costs and194

benefits. The outcomes are typical and consistent with our conclusions, though it should be noted that195

Theorem 1 alows for alternative outcomes of directional selection when benefits and costs are both196

accelerating or both decelerating.197
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Finally, we investigate the potential for evolutionary branching when benefits and costs are both198

accelerating or both decelerating. Solving Eq. 6 for µ, the boundary between convergence stability and199

not convergence stability becomes200

µc =
c2

Nb2
, (11)201

assuming b2 6= 0. If B is decelerating, then µ > µc implies convergence stability, and if B is accelerating,202

then µ < µc implies convergence stability.203

Solving Eq. 10 for σ2, we get the boundary between evolutionary stability and instability204

σ2
e =

c2 − Nb2µ2

Nb2
, (12)205

once again assuming b2 6= 0. If B is decelerating, then σ2 > σ2
e implies evolutionary stability, and if B206

is accelerating, then σ2 < σ2
e implies evolutionary stability. Instead solving Eq. 10 for µ we see that the207

singular strategy gains evolutionary stability at208

µe =

√
c2 − Nb2σ2

e
Nb2

, (13)209

If B is decelerating, then µ > µe implies evolutionary stability, and if B is accelerating, then µ < µe210

implies evolutionary stability. For µe to equal µc implies σ2
e = µc(1− µc), that is, with maximum211

variance (see A.3), convergence stability and evolutionary stability switch at the same time. Assuming212

on the other hand that µe < µc, this would imply σ2
e > µe(1− µe) which is not possibe, see Appendix213

A.3. In other words, evolutionary stability will switch as soon as or after convergence stability switches214

when increasing the average relatedness, depending on whether the variance is at its maximum or not.215

There is a region in the b2 − c2-plane where µe is undefined. This is when b2 < 0, c2 > Nb2σ2; or216

b2 > 0, c2 < Nb2σ2. When the first one of these is the case, the condition for evolutionary stability will217

always hold, and hence the strategy will always be evolutionarily stable. Conversely, when the second218

is the case, the strategy will never be evolutionarily stable.219

Using (12), we can plot σ2 against µ to find out the effects of increased variance in relatedness220

on the evolutionary stability, as in Figure 3. We see that increased variance has a noticeable effect:221

The higher the variance, the sooner the switch to evolutionary stability. We also see that increased222

relatedness can make the evolutionary dynamics bistable.223

We have carried out numerical simulations to corroborate our findings results, using the method224

described in Appendix B. Our analytical investigation predicts evolutionary branching at µ = 0.4 and225

evolutionary stability at µ = 0.8 for B and C decelerating, and bistability when µ = 0.5 for B and C226

accelerating. This is consistent with the results from the simulations, see Figure 4.227

3.2. General cost and benefit functions228

Having analyzed the case of quadratic cost and benefit functions, we now turn to the case of229

general strictly increasing non-linear functions. As our first result, we note that the position of an230

interior singular strategy, if it exists, depends only on the average relatedness and not on any higher231

moment of the probability distribution. To see this, we recall that an interior singular strategy r∗ is by232

definition a point at which the selection gradient vanishes,233

µB′(Nr∗)− C′(r∗) = 0.234

To see how increased relatedness affects an interior singular strategy, we differentiate implicitly with235

respect to µ which gives,236

r∗′(µ) =
B′(Nr∗)

C′′(r∗)− µNB′′(Nr∗)
. (14)237
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Figure 3. Plots of variance in relatedness against average relatedness. The grey region represents
combinations of mean and variance that are not logically possible (see Appendix A.3). We see that for
decreasing cost and benefit, the region with evolutionary branching shrinks with increased variance
in relatedness. We also see that for increasing cost and benefit, the region with neither convergence
stability nor evolutionary stability shrinks with increased variance in relatedness. In the latter case, with
increased average relatedness or variance in relatedness, the singular strategy moves from evolutionary
stability without convergence stability to neither evolutionary stability nor convergence stability. The
parameters used are in both cases N = 10, and b2, b1, c2, c1 as in Figure 1

From Eq. 6 we see that the denominator is positive if and only if the intertior singular strategy is238

convergence stable. Since the benefit function is strictly increasing, we conclude that increased239

relatedness has opposite effect on interior singular strategies depending on whether they are240

evolutionary attractors or repellors. As illustrated in Fig. 2, evolutionary attractors increase with241

relatedness while evolutionary repellors decrease with relatedness.242

Next, we restrict attention to benefit and cost functions that are either accelerating or decelerating243

for the full range of strategies considered, giving a total of four combinations to be explored. For two244

cases, we give a full classification of the evolutionary dynamics, allowing for the possibility of large245

mutational steps.246

Theorem 2. Assume that benefits are decelerating and costs are accelerating, more specifically that B′′(x) < 0247

and C′′(x) > 0 for all x ∈ [0, 1]. Then there is exactly one continuously stable strategy r∗. Furthermore, we248

have that Sr(m) < 0 if m < r ≤ r∗ or m > r ≥ r∗. The continuously stable strategy is always evolutionarily249

stable and increases with the degree of relatedness.250

In short, the theorem asserts that the evolutionary dynamics will lead to a monomorphic251

population that, once established, cannot be invaded by any other strategy.252

Proof. We have already shown in the analysis of quadratic benefit and cost functions that all three253

outcomes can in fact occur, hence we only need to assert that no additional outcomes are possible. To254

first see that there can never be more than one interior singular strategy, we show that the selection255

gradient is a strictly declining function of the resident strategy. Differentiating the selection gradient256

with respect to the resident trait value gives,257

d
dr

S′r(r) = µNB′′(Nr)− C′′(r) < 0 for all r ∈ [0, 1].258
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Thus, we see that there can be maximally one interior singular strategy which can be either a boundary259

strategy, r∗ = 0 (no investment), r∗ = 1 (maximal investment) or an interior strategy, 0 < r∗ < 1260

(intermediate investment). As the selection gradient is a declining function of the resident strategy,261

we also conclude that directional selection will small evolutionary steps will eventually lead to the262

vicinity of this strategy, i.e., the singular strategy is convergence stable. To see that large mutational263

steps will also leads towards the strategy and that, once established, it cannot be invaded by any other264

strategy, we write the invasion fitness as265

Sr(m) =
∫ m

r
S′r(x)dx =

∫ m

r

(
S′r(r) +

∫ x

r
S′′r (y)dy

)
dx = (r−m)S′r(r) +

∫ m

r

∫ x

r
S′′r (y)dy dx. (15)266

It is easily seen that S′′r (m) < 0 and hence the double integral in the second term is always negative267

since x is intermediate between r and m. It follows that Sr(m) < 0 whenever (r−m)S′r(r) < 0, which268

is precisely when m < r ≤ r∗ or m > r ≥ r∗. Thus, the strategy is continuously stable as asserted.269

The other case which can similarly be classified is that of accelerating costs and decelerating270

benefits. In this case, coexistence of cooperators and defectors is possible whenever the evolutionary271

dynamics is bistable.272

Theorem 3. Assume that benefits are accelerating and costs are decelerating, more specifically that B′′(x) < 0273

and C′′(x) > 0 for all x ∈ [0, 1]. Then selection is either towards full cooperation, towards no cooperation,274

or there is exactly one interior singular stable strategy r∗ in the sense that Sr(m) > 0 if m < r ≤ r∗ or275

m > r ≥ r∗. In the case of an interior singular strategy, we have that S0(1) > 0 and S1(0) > 0, enabling a276

protected dimorphism or cooperators and defectors. The interior singular strategy is never evolutionarily stable277

and decreases with the degree of relatedness.278

Proof. The first part of the proof is nearly identical to the previous case, but with opposite signs.279

Specifically, we show by differentiation that the selection gradient is increasing which implies that280

there can be at most one interior singular strategy, r∗. Noting that S′′r (m) > 0, we conclude from Eq. 15281

with r = r∗ that Sr(m) > 0 if m < r ≤ r∗ or m > r ≥ r∗.282

It remains to show that a protected dimorphism of cooperators and defectors is possible whenever283

we have an interior singular strategy, 0 < r∗ < 1. Note that in this case, S′1(1) > 0 and S′0(0) < 0 due284

to the bistable evolutionary dynamics. Furthermore noting that the double integral in Eq. 15 is positive285

independent of whether m > r or r < m, we have that286

S1(0) = (1− 0)S′1(1) +
∫ 1

0

∫ 1

x
S′′r (y)dy dx > 0, (16)287

and288

S0(1) = (0− 1)S′0(0) +
∫ 1

0

∫ x

0
S′′r (y)dy dx > 0, (17)289

showing that a protected dimorphism of cooperators and defectors is possible.290

4. Discussion291

In this paper, we have carried out a systematic investigation of the effects of relatedness on the292

evolution of cooperation in non-linear public goods game with continuous investments. As expected,293

we found that relatedness is beneficial for cooperation. When the evolutionary outcome is a single294

intermediate level of cooperation, higher relatedness increases that level. If, on the other hand, the295

evolutionary outcome is bistable such that an initially uncooperative population evolves to lower296

levels of cooperation and an initially cooperative society evolves to higher levels of cooperation, higher297

relatedness decreases the threshold level of cooperation that separates the two outcomes. The degree298

of relatedness also affects the potential for evolutionary branching, i.e., the emergence of two or more299
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Figure 4. Simulations using group size N = 10, and B and C both decelerating or both accelerating. As
predicted by the analytical investigation, when B and C are decelerating, the population undergoes
evolutionary branching when µ = 0.4, and it reaches evolutionary stability when µ = 0.8. When B and
C are accelerating, bistability occurs when µ = 0.5. In all three cases, σ2 = 0.

coexisting strategies. We find that relatedness reduces the scope for evolutionary branching, making it300

more likely that all individual evolve the same strategy.301

Our framework allow us to also investigate the consequences of uncertainty in the degree to which302

an individual is related with his or her interaction partners, and we find that such uncertainty also303

reduces the scope for evolutionary branching. This can be compared with an earlier result showing that304

uncertainty in the size of interaction groups reduces the scope for evolutionary branching when the305

payoff structure has an additive form but not when it has a multiplicative form [20]. In this study, we306

have considered only payoff functions with an additive form and by analogy it appears plausible that307

uncertainty in relatedness might increase the scope for evolutionary branching under multiplicative308

payoff structures.309

In a related study, Molina and Earn [23] rigorously analyzed a similar public goods game with310

non-linear benefits and linear costs. While they did not consider relatedness or assortment per se,311

one of their results, Theorem 4.4 in which they give conditions for the existence of a continuously312

stable strategy, allow for finite proportions of mutants and can be recast as a result on assortment.313

Our results differ by asserting global convergence stability and global evolutionary stability as well314

as in allowing for non-linear cost functions. The latter is important, as one cannot reduce to the case315

of linear costs by measuring investments in units of fitness costs, i.e., by redefining trait values as316

x̃ := C(x), with C being the cost function. Although this change of unit would make the cost function317

linear, the benefit function B would no longer depend on the sum of individual investments. Hence,318

the results by Molina and Earn [23] do not extend to public goods games with non-linear costs.319

There are several directions in which the work presented here could be extended and we320

particularly wish to highlight two. First, our assumptions that the public goods are formed by321

adding individual contributions and that the payoff can be expressed as a difference of benefit and322

cost function are rather limiting and are unlikely to adequately describe all relevant settings involving323

public goods. Recently, Ito et al. [21] introduced and considered a large class of possible interaction324

structures in cooperative games. We think it would be interesting to extend our work to this larger325

framework and, in particular, systematically explore the effects of relatedness under the different326

options for aggregating rewards. Second, we base our results on a simplified representation of327

assortment. While simple representations have advantages, we think it would be good to complement328

our approach with more mechanistically-grounded studies of how assortment arises and influences329

the evolution of cooperation.330

Our conclusion that increased assortment facilitates the evolution of cooperation is expected,331

in-line with empirical studies (e.g., [28]), and only a few exceptions to this rule has been reported in332

the literature (see for example [29] which shows how increased competition may prevent selection333

for altruistic genes). The value of our study thus do not lie as much in its overall conclusion as in334

revealing in detail how increased assortment helps to promote cooperation, for example by showing335

how boundaries in bistable evolutionary regimes shift and revealing that the scope for evolutionary336
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diversification is reduced by both increased assortment and increased uncertainty in assortment. As337

such, our findings should prove valuable both to theoreticians and empiricists striving to interpret338

results on the evolution of cooperation from laboratory experiments and field observations.339
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Appendix A. Analytical investigations346

Appendix A.1. Derivation of selection gradient347

We start with348

Sr(m) = lim
xm→0+

[
dxm/dt

xm

]
, (A1)349

and from the definitions of dxm/dt, Pm, and P̄, we get350

Sr(m) = lim
xm→0+

[
dxm/dt

xm

]
351

= lim
xm→0+

[
xm · (Pm − P̄)

xm

]
352

= lim
xm→0+

[Pm − P̄]353

= lim
xm→0+ ,xr→1−

[Pm − (xr · Pr + xm · Pm)]354

= lim
xm→0+ ,xr→1−

[xr · P(m, r) + xm · P(m, m)−355

(xr · (xr · P(r, r) + xm · P(r, m)) + xm · (xr · P(m, r) + xm · P(m, m)))]356

= 1 · P(m, r) + 0 · P(m, m)− (1 · (1 · P(r, r) + 0 · P(r, m)) + 0 · (1 · P(m, r) + 0 · P(m, m)))357

= P(m, r)− P(r, r).358

Appendix A.2. Condition for evolutionary stability359

Starting from the condition in [4], we want to find a condition in terms of µ and σ2. We use K360

as the random variable having probability density function Pr(k), and the notation 〈K〉 for expected361

value. Following the appendix from [4], we get to the condition362

B′′(Nr∗)
N

(〈K〉2 + Var[K])− C′′(r∗) < 0. (A2)363

Changing variables from K to ρ = K/N, we get364

B′′(Nr∗)
N

(〈Nρ〉2 + Var[Nρ])− C′′(r∗) < 0. (A3)365

Because of the rules of expected value and variance, this is the same as366

B′′(Nr∗)
N

(N2〈ρ〉2 + N2Var[ρ])− C′′(r∗) < 0, (A4)367

which we simplify to368

NB′′(Nr∗)(〈ρ〉2 + Var[ρ])− C′′(r∗) < 0, (A5)369
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and the desired form is achieved when noticing that 〈ρ〉 = µ and Var(ρ) = σ2.370

Appendix A.3. Impossible region in the µ− σ2-plane371

What we want to find out is the upper bound on σ2 in terms of µ. Firstly, since µ and σ2 are372

defined through the fraction k/N where N ≥ k and k ≥ 1, we note that µ, σ2 ∈ [0, 1]. Next, given373

µ ∈ [0, 1], by the definition of variance, the maximum variance will be achieved when all the values are374

at the endpoints. This is because as long as any value is in the interior of [0, 1], the sum of the squares375

of the distances from µ, and hence the variance, will be lower. In other words, the maximum variance376

is achieved when we are dealing with a Bernoulli distribution, in which case σ2 = µ(1− µ). So, given377

µ ∈ [0, 1], we must have σ2 ∈ [0, µ(1− µ)].378

Appendix A.4. Implicit differentiation379

We want to find out the effects of relatedness on the location of the singular strategy in the380

general case, but having no explicit formula for r∗ in terms of µ, we need to differentiate implicitly.381

We view r∗ as a function of µ and we want to find the derivative r∗′(µ). To do this, we use the382

relationship µB′(Nr∗)−C′(r∗) = 0, and differentiate both sides implicitly with respect to µ: B′(Nr∗) +383

µB′′(Nr∗)Nr∗′(µ)− C′′(r∗)r∗′(µ) = 0, from which we get384

r∗′(µ) =
B′(Nr∗)

C′′(r∗)− µNB′′(Nr∗)
. (A6)385

Appendix B. Individual-based simulations386

We follow the method from [18], with a few alterations. A population size Npop and a virtual387

group size N is fixed, and each player has the two attributes generation and trait value. Next the388

following procedure is repeated until the generation of the offspring is higher than a chosen bound: A389

random focal individual with trait value x is chosen to be replaced by an offspring. The x individual390

gets to interact with another random individual with trait value u. The payoff to the focal individual,391

Px = P(x, u), is then computed as392

P(x, u) =
N

∑
k=1

Pr(k)
N

B(kx + (N − k)u)− C(x), (A7)393

where the probabilities Pr(k) are chosen such that ∑N
k=1 Pr(k) = 1, and such that ∑N

k=1 kPr(k)/N gets394

the desired value (e.g. 0.4 or 0.8). A third random individual with trait value y is chosen for an395

interaction with a fourth random individual with trait value v. The payoff to this other individual, Py,396

is computed in a similar way as Px. Px is then compared to Py to see which individual is the parent to397

the offspring replacing the x individual. If Py < Px then the x individual is the parent. Otherwise the y398

individual is the parent with a probability w = (Py − Px)/α, where399

α = max
0≤x,u,y,v≤1

|P(x, u)− P(y, v)| (A8)400

to ensure w ∈ [0, 1]. The offspring inherits the parent’s trait value at a high probability, otherwise401

the offspring’s trait value is taken from a normal distribution centered on the parent’s trait value. If402

the trait value gets lower than 0 then it’s set to 0, and if it gets higher than 1 then it’s set to 1. The403

generation and trait value of each individual is saved to a text file in order to keep the time complexity404

at a minimum.405
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