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1 Abstract: Evolution of cooperation has traditionally been studied by assuming that individuals
= adopt either of two pure strategies, to cooperate or defect. Recent work have considered continuous
s cooperative investments, turning full cooperation and full defection into two opposing ends of a
«  spectrum and sometimes allowing for the emergence of the traditionally-studied pure strategies
s through evolutionary diversification. These studies have typically assumed a well-mixed population
s  in which individuals are encountered with equal probability, Here, we allow for the possibility of
»  assortative interactions by assuming that, with specified probabilities, an individual interacts with
¢ one or more other individuals of the same strategy. A closely related assumption has previously been
s made in evolutionary game theory and has been interpreted in terms of relatedness. We systematically
1o study the effect of relatedness and find, among other conclusions, that the scope for evolutionary
1 branching is reduced by either higher average degree of, or higher uncertainty in, relatedness with
1z interaction partners. We also determine how different types of non-linear dependencies of benefits
1= and costs constrain the types of evolutionary outcomes that can occur. While our results overall
1« corroborate the conclusions of earlier studies, that higher relatedness promotes the evolution of
15 cooperation, our investigation gives a comprehensive picture of how relatedness affects the evolution
e  of cooperation with continuous investments.

1z Keywords: adaptive dynamics; evolution; cooperation

s 1. Introduction

-

19 Cooperation, and in particular the willingness to cooperate with relatives, is regularly observed in
20 many species. Observed forms of cooperation include egg trading, cooperative foraging, and predator
z  inspection among fishes; defensive coalitions, cooperative hunting, food sharing, and alarm calls
22 among birds; grooming behaviour, alarm signals, coalitions, alloparenting, and cooperative hunting
= among various mammals; bloodsharing among vampire bats; care-giving behaviour in dolphins;
2 foraging, anti-predator behaviour, and hive thermoregulation in honeybee colonies; and “social
2 contracts” among paper wasps [1]. Social insects such as ants and bees also cooperate frequently (e.g.,
26 [2,3]) and cooperation is observed even among microbes (e.g. [4]). Finally, human societies are striking
2z examples of cooperation.

28 Since cooperation often involves a cost to the individual without conveying a commensurate
20 immediate benefit, one would naively suspect that cooperation cannot evolve to any higher degree.
o This, however, is not the case, and several mechanisms capable of promoting and supporting
a1 cooperation has been proposed and explored [5,6]. An influential explanation of cooperation between
sz related individuals is kin selection, which states that there can be positive selection for a gene conveying
33 cooperative behavior if the beneficiaries of that behavior are likely to share the same gene. This is
s typically the case when interactions occurs between relatives, but the principle applies more generally
s and assortative interaction between individuals can arise for a range of other reasons such as spatial
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36 structure or social dynamics. In certain settings, the principle of kin selection can be formulated
s» quantitatively in a form that is now known as Hamilton’s rule: a cooperative gene is selected for if and
s onlyif rb > c, where 7 is the average degree of relatedness, b is the average benefit to the recipients of
s the cooperative act, and c is the average cost to the individual actor [7].

40 Cooperation has often been studied in the setting of evolutionary game theory based on the
a1 prisoner’s dilemma or its many-player generalization, the public-goods game (see e.g, [8,9]). Although
«2 the latter game in principle allows for continuous investment, it is often assumed that individuals adopt
«s  either of two pure strategies corresponding to cooperation and defection. The evolutionary dynamics
4 are studied with the so-called replicator equations in which strategies with a higher payoff than
«s average in the population increase in frequency. To allow for the possibility of assortative interactions
« in this framework, Grafen [10] introduced the assumption that a fraction of an individual’s interaction
a7 are with individuals of the same type with the remaining interactions occurring with partners drawn
s at random from the population. This approach and related approaches has since been used to address
+ arange of evolutionary questions [11-17].

50 Recently, several studies have moved beyond the traditional cooperative games by considering
s1 continuous cooperative investments as well as non-linearity of benefits and costs [4,18-23]. With this
s2 setting, additional evolutionary outcomes become possible, including evolutionary branching in the
ss cooperative trait under consideration and the emergence of two or more different coexisting strategies.
s In alandmark study, Doebeli et al. [18] considered a setting in which individuals interact in pairs and
ss each make a cooperative investment for their common good. Their joint benefit is given by a non-linear
s function of their joint investment and their costs are given by a non-linear function of their respective
sz investments. Finally, their payoffs are determined as the difference of the benefit and their respective
s costs. By assuming that the benefit and cost function were given by quadrative polynomials, they
so classified all possible evolutionary outcomes. Building on this framework, Cornforth et al. [4] showed
so how interaction assortment, interpreted as relatedness, can be incorporated. Though developed
&1 independently, the idea is similar to Grafen [10]. Cornforth et al. investigated how assortment
ez affects the evolution of cooperation for three different benefit functions and under the assumption of
es proportional costs.

6a Here, we extend the previous results by Cornforth et al. and systematically study the effects
es of relatedness on the evolution of cooperation in non-linear public-goods games with continuous
es investment. In Section 2, we present the general model. We consider both quadratic cost and benefit
ez functions and general, increasing, cost and benefit functions. In Section 3, we analyze the dynamics
es of quadratic cost and benefit functions, and then derive results for general cost and benefit functions.
eo Finally, in Section 4, we recapitulate and discuss our main results and identify important challenges
7o for future research.

7 2. Model description

72 2.1. Demographical dynamics

73 We consider a model based upon [18] and [4]. We assume an infinite population in which the ith
z¢ individual has trait value x; representing cooperative investment, with 0 < x; < 1. At each generation,
7 N random individuals with respective trait values x1, ..., Xy are chosen for an interaction, in which
7 the payoff to the ith individual, with 1 <i < N, is given by

B(x1 +...+XN)

77 N — C(xl-), (1)

7s where B : [0,N] - RTU{0} and C : [0,1] — R* U {0} are two increasing functions such that
7 B(0) = C(0) = 0. B(x1 + ...+ xy) is the collective benefit of the cooperative investment of the entire
so group, and C(x;) is the cost of the individual’s own investment. The collective benefit is assumed to be
s1 divided equally among the members of the group, yielding a per capita benefit of B(x + ...+ xn)/N.
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82 Each individual is assumed to be identical by descent (i.b.d.) to a random number of individuals
s in the group including itself. We define Pr(k) to be the probability for an individual to be i.b.d. to
es exactly k individuals in the group including itself. Just like in Cornforth et al. [4], the expected payoff to
es a rare mutant with trait value m in a monomorphic population of residents with trait value » becomes

B(km + (N — k)r)
N

N
. P(mr) = Pr(k) —C(m), 2

ez We assume that the population dynamics follows the replicator equation [8], i.e., that successful
ss strategies increase in frequency at a rate proportional to the difference with the average population-level
s payoff.

% We first carry out a comprehensive analysis of quadratic benefit and cost functions B(x) =
o1 byx? +byx, C(x) = cpx? + c1x that typically look like in Figure 1. We restrict the range of possibilities
o2 by requiring that B(x1 + ...+ xy) and C(x;) should be increasing, i.e., that by > 0,c; > 0,b7 > —2Nby,
os and c; > —2c. The signs of by and c; will depend on whether the functions are accelerating or
oa decelerating. As a second step, we derive results for general increasing benefit and cost functions.

os 2.2. Evolutionary dynamics

% We base our analysis of the evolutionary dynamics on adaptive-dynamics techniques [24-26].
oz Readers not famililar with these methods may want to refer to an introductory text such as Brannstrom
s etal. [27]. In brief, we consider the initial growth rate of a rare strategy m in an environment dominated
e by a resident strategy r. This growth rate is called the invasion fitness and written S,(m). The sign
10 Of the invasion fitness determines whether the rare strategy can grow in numbers and invade. From
11 the invasion fitness we obtain the selectiong gradient S;(r). Strategies at which selection ceases,
102 S}(r) = 0 are called evolutionary singular. They can be evolutionary attractors, in which case they
103 are called convergence stable. Once established, the subsequent evolutionary dynamics depends on
10 Whether the singular strategy is evolutionarily stable or an evolutionary branching point. In the former
105 case, evolution comes to a halt while in the latter case, the population diversifies and two coexisting
106 strategies emerges.

107 From the replicator equation (see Appendix A.1) we obtain the following expression for the
e invasion fitness

109 Sr(m) = P(m,f’) — P(r,r) = ﬁ Pr(k)B(kaj]— (N_k)r) o C(m) B szl w

—C(r)|- G
1o Differentiating with respect to the mutant trait value and evalutating at m = r yields the selection

11 gradient

, N, kPr(k)B'(Nr)
112 Sr r) = AN AN
(r) k; N

13 where y is the average whole-group relatedness, defined as the expected value of fraction of the group
ue thatisib.d. to the focal individual (including the focal individual itself), i.e.

—C'(r) = uB'(Nr) = C'(r), @)

N, kPr(k
115 }l:k_zl Pzr\g ) (5)

us  Given this selection gradient, we obtain the condition for convergence stability of an evolutionarily
uz singular strategy

118 NB”(NT'*)“M — C”(T’*) < 0, (6)

1s  and the condition for evolutionary stability
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Figure 1. Examples of cost and benefit functions. Parameters used are for decelerating benefit by =
—1, by = 20; for accelerating benefit by = 0.5, by = 1; for decelerating cost c; = —2.75, ¢; = 6; and for
accelerating cost c; = 2, ¢; = 1. In choosing the horizontal range for the plots of the benefit functions,
we have assumed N = 10.

NB"(Nr*)[u® + 0% - C"(r*) <0, @)

121 where 02 = Var [K/N], with K being the random variable with probability density function Pr(k). For
122 a derivation of these conditions, see the appendix of Cornforth et al. [4], as well as Appendix A.2.

123 3. Results

124 We first carry out a comprehensive analysis of the effect of assortment on the evolution of
125 cooperation with quadratic benefit and cost functions and then derive results for general cost and
126 benefit functions. Our key findings are illustrated by Figure 2 and 3. These show the effects of increased
127 average relatedness and increased variance in relatedness on the direction of selection and evolutionary
12¢  stability of the cooperative investment. Note, in particular, that a singular strategy increases with
120 increased relatedness if and only if it is convergence stable, and that increased relatedness as well as
130 how increased uncertainty in relatedness can change the evolutionary stability of singular strategies.
11 Finally we corroborate selected results using numerical simulations.

132 3.1. Quadratic benefit and cost functions

133 Recall that we assume benefit and cost functions, B and C, that are increasing, satisfy B(0) =
1a C(0) = 0, and are given by quadratic polynomials, as shown in Figure 1. For these functions, we
135 completely classify the evolutionary dynamics and its dependence on on the mean and variance of
136 relatedness. Our conclusions are corroborated by numerical investigations (Fig. 4).

137 With quadratic polynomials, the selection gradient, Eq. 2.2, is given by
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138 Si(r) = uB'(Nr) — C'(r) = u(2Nbyr + by) — 2cor — 1. (8)

130 Recalling from Sect. 2.1 that that we must have b; > —2Nb, for B to be increasing, we have 2Nb,r +
1o by > 0 and it follows as expected that increased relatedness always alters selection pressures in the
11 direction of higher cooperative investments.

142 From the selection gradient, Eq. 8, we solve for the singular strategies, i.e., the values of r at which
13 the selection gradient vanishes, and find that for each p, there is at most one interior evolutionarily
1aa  singular strategy in the allowed range of cooperative investments. It is given by

c1 — by

145 r* (,u) = m/ (9)

s Whenever this value lies between 0 and 1.

147 Momentarily leaving aside the constraints on y and r* imposed by their biological interpretation,
s we note that the graph of r*(u) crosses zero at yg = c1/by, has a vertical asymptote at py = ¢/ (Nby)
1s and a horizontal asymptote at ry = —by /(2Nby). The graph consists of two curves that are located
150 above and below the horizontal asymptote, respectively. Recalling from Sect. 2.1 that we must have
11 by > —2Nb;, for B to be increasing, we see that the horizontal asymptote is located outside of the range
12 0 <r < 1. Specifically, for accelerating benefits we have i > 1 and for decelerating benefits we have
13 1y < —1. It follows that only one of the curves can be biologically relevant and this is the curve that
1sa  Crosses zero at ug = c1/b1.

155 The evolutionary dynamics now depends on whether the horizontal asymptote is located above
156 Or below the allowed trait range and on whether the graph of r* crosses zero before or after the
17 vertical asymptote, i.e. on whether yy > pp. As we have already noted, the answer to the former
15 question depends on whether benefits are accelerating or decelerating. We have not found a similar
10 straightforward interpretation of the latter condition, but we note that yi9 > py whenever benefits and
160 costs are not simultaneously accelerating or simultaneously decelerating. For each of the four possible
11 combinations, we can characterize the evolutionary dynamics.

12 Theorem 1. Let pug, py, and ry be as defined above. Let r* (1) be the interior strategy given by Eq. 3.1 whenever
s 0 < r*(u) < 1. Otherwise, let r*(y) be the boundary strategy that results from directional selection. The
s following conclusions then hold.

165 o Assume B is accelerating and that uy > uy, as is the case if C is decelerating. For y < py, we have
166 r*(u) = 0 and selection is thus towards no cooperation. For yy < u < uo, r*(u) is decreasing and
167 the evolutionary dynamics is bistable. For y > po we have r*(u) = 1 and selection is thus towards full
168 cooperation.

169 e Assume B is accelerating and that yy < py. For y < po we have r*(u) = 0 and selection is thus
170 towards no cooperation. For For py < p < py we have r*(u) is increasing and convergence stable, i.e.,
e an evolutionary attractor. For y > py we have r*(u) = 1 and selection is thus towards full cooperation.
172 o Assume B is decelerating and po > py, as is the case if C is accelerating. For y < pgo we have r*(pu) = 0
173 and selection is thus towards no cooperation. For y > py, r*(p) is increasing and convergence stable, i.e.,
174 an evolutionary attractor.

175 o Assume B is decelerating and py < py. For py < p < py, r*(u) is increasing and convergence
176 stable, i.e., an evolutionary attractor. For u > py we have r*(u) = 1 and selection is thus towards full
177 cooperation.

17e  Proof. The conclusions follow from the geometric observations that precede the theorem and the fact,
s also discussed above, that the selection gradient is increasing function of u. [

180 We next investigate the effects of relatedness on evolutionary stability. The condition for
11 evolutionary stability, Eq. 7, is
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Figure 2. Bifurcation diagrams showing how the evolutionary dynamics depend on average relatedness
for all four possible combinations of the accelerating and decelerating benefit and cost functions in
Fig. 1. Green thin line represents convergence stability without evolutionary stability, blue thick
line represents convergence stability with evolutionary stability, black dotted line represents neither
convergence stability nor evolutionary stability, and black thick line represents evolutionary stability
without convergence stability. We see that the four cases are qualitatively different. We also see that
when B and C are both decelerating, a certain range of relatedness leads to evolutionary branching.
The parameters used were in all cases N = 10, and by, by, ¢, ¢1 as in Figure 1.

182 sz(]/lz + (72) —cp < 0. (10)

163 We thus see that both increased average relatedness (i) and increased variance in relatedness (0?)
1es  can affect the evolutionary stability of a singular strategy. We consider four cases depending on the
s signs of by and c¢;. When benefits are accelerating (b, > 0) and costs decelerating (¢, < 0), the singular
16 strategy is never evolutionarily stable. As Theorem 1 shows, any interior singular strategy will lack
1z convergence stability and there will thus not be any evolutionary branching points. Diversification
1ee  may still be possible, but would have to be established through a large change in strategy. When
10 benefits are decelerating (b, < 0) and costs accelerating (co > 0), any interior singular strategy is
10 always evolutionarily stable. If benefits and costs are both accelerating (by > 0, c; > 0), either is
101 possible and any change with increased relatedness y or variance o2 is a loss of evolutionary stability.
102 Finally, if benefits and costs are both decelerating (b, < 0, c; < 0), either is possible and any change
103 with increased relatedness y or variance 02 is a gain of evolutionary stability.

108 Figure 2 shows typical outcomes for four combinations of accelerating and decelerating costs and
105 benefits. The outcomes are typical and consistent with our conclusions, though it should be noted that
s Theorem 1 alows for alternative outcomes of directional selection when benefits and costs are both

17 accelerating or both decelerating.
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198 Finally, we investigate the potential for evolutionary branching when benefits and costs are both
100 accelerating or both decelerating. Solving Eq. 6 for 1, the boundary between convergence stability and
200 DOt convergence stability becomes

-2
201 He = szr (11)

202 assuming by # 0. If B is decelerating, then u > p. implies convergence stability, and if B is accelerating,

20 then y <y implies convergence stability.
204 Solving Eq. 10 for 02, we get the boundary between evolutionary stability and instability

2 Cy — szyz

205 = 12

200 once again assuming by # 0. If B is decelerating, then 0 > ¢ implies evolutionary stability, and if B
200 is accelerating, then 02 < ¢ implies evolutionary stability. Instead solving Eq. 10 for 1 we see that the
20e  singular strategy gains evolutionary stability at

. [Cyp — sz()’g
209 He = 7]\”72 y (13)

210 If B is decelerating, then yu > y, implies evolutionary stability, and if B is accelerating, then p < p,
au  implies evolutionary stability. For . to equal p. implies 02 = pc(1 — pc), that is, with maximum
212 variance (see A.3), convergence stability and evolutionary stability switch at the same time. Assuming
215 on the other hand that p, < y,, this would imply 02 > p.(1 — 1) which is not possibe, see Appendix
24 A.3. In other words, evolutionary stability will switch as soon as or after convergence stability switches
215 when increasing the average relatedness, depending on whether the variance is at its maximum or not.
216 There is a region in the by — cp-plane where y, is undefined. This is when b, < 0, c; > N byo?; or
a7 by >0, cp < Nbyo?. When the first one of these is the case, the condition for evolutionary stability will
z1s always hold, and hence the strategy will always be evolutionarily stable. Conversely, when the second
210 is the case, the strategy will never be evolutionarily stable.

220 Using (12), we can plot ¢ against y to find out the effects of increased variance in relatedness
2z on the evolutionary stability, as in Figure 3. We see that increased variance has a noticeable effect:
222 The higher the variance, the sooner the switch to evolutionary stability. We also see that increased
223 relatedness can make the evolutionary dynamics bistable.

224 We have carried out numerical simulations to corroborate our findings results, using the method
225 described in Appendix B. Our analytical investigation predicts evolutionary branching at # = 0.4 and
226 evolutionary stability at = 0.8 for B and C decelerating, and bistability when p = 0.5 for B and C
22z accelerating. This is consistent with the results from the simulations, see Figure 4.

226 3.2. General cost and benefit functions

220 Having analyzed the case of quadratic cost and benefit functions, we now turn to the case of
230 general strictly increasing non-linear functions. As our first result, we note that the position of an
21 interior singular strategy, if it exists, depends only on the average relatedness and not on any higher
22 moment of the probability distribution. To see this, we recall that an interior singular strategy r* is by
233 definition a point at which the selection gradient vanishes,

234 ‘ZlB/(NV*) — CI(V*) =0.

235 To see how increased relatedness affects an interior singular strategy, we differentiate implicitly with
236 respect to u which gives,
B/(Nr*)
*/ o
237 r (]4) - C”(T*) —yNB”(Nr*)’

(14)
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Figure 3. Plots of variance in relatedness against average relatedness. The grey region represents
combinations of mean and variance that are not logically possible (see Appendix A.3). We see that for
decreasing cost and benefit, the region with evolutionary branching shrinks with increased variance
in relatedness. We also see that for increasing cost and benefit, the region with neither convergence
stability nor evolutionary stability shrinks with increased variance in relatedness. In the latter case, with
increased average relatedness or variance in relatedness, the singular strategy moves from evolutionary
stability without convergence stability to neither evolutionary stability nor convergence stability. The
parameters used are in both cases N = 10, and by, by, c2, ¢ as in Figure 1

23 From Eq. 6 we see that the denominator is positive if and only if the intertior singular strategy is
230 convergence stable. Since the benefit function is strictly increasing, we conclude that increased
200 relatedness has opposite effect on interior singular strategies depending on whether they are
2a1 evolutionary attractors or repellors. As illustrated in Fig. 2, evolutionary attractors increase with
2a2  relatedness while evolutionary repellors decrease with relatedness.

243 Next, we restrict attention to benefit and cost functions that are either accelerating or decelerating
2as  for the full range of strategies considered, giving a total of four combinations to be explored. For two
25 cases, we give a full classification of the evolutionary dynamics, allowing for the possibility of large
2es  Mmutational steps.

a7 Theorem 2. Assume that benefits are decelerating and costs are accelerating, more specifically that B” (x) < 0
2s and C"(x) > 0 for all x € [0,1]. Then there is exactly one continuously stable strategy r*. Furthermore, we
2a0  have that S,(m) < 0if m <r <r*orm > r > r*. The continuously stable strategy is always evolutionarily
20 stable and increases with the degree of relatedness.

251 In short, the theorem asserts that the evolutionary dynamics will lead to a monomorphic
22 population that, once established, cannot be invaded by any other strategy.

23 Proof. We have already shown in the analysis of quadratic benefit and cost functions that all three
2ss Outcomes can in fact occur, hence we only need to assert that no additional outcomes are possible. To
25 first see that there can never be more than one interior singular strategy, we show that the selection
=6 gradient is a strictly declining function of the resident strategy. Differentiating the selection gradient
257 with respect to the resident trait value gives,

%SW) — uNB"(Nr) — C"(r) < Oforall r € [0,1].
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20 Thus, we see that there can be maximally one interior singular strategy which can be either a boundary
20 strategy, r* = 0 (no investment), r* = 1 (maximal investment) or an interior strategy, 0 < r* < 1
201 (intermediate investment). As the selection gradient is a declining function of the resident strategy,
262 We also conclude that directional selection will small evolutionary steps will eventually lead to the
263 vicinity of this strategy, i.e., the singular strategy is convergence stable. To see that large mutational
20s  steps will also leads towards the strategy and that, once established, it cannot be invaded by any other
205 strategy, we write the invasion fitness as

m m X m X

266 Sp(m) = / Si(x)dx = / (S;(r) + / S!(y) dy) dx = (r —m)SL(r) + / / S/ (y)dydx. (15)
r r r r r

267 It is easily seen that S}/ (m) < 0 and hence the double integral in the second term is always negative

26  since x is intermediate between r and m. It follows that S,(m) < 0 whenever (r — m)S..(r) < 0, which

260 is precisely when m < r < r* orm > r > r*. Thus, the strategy is continuously stable as asserted. []

270 The other case which can similarly be classified is that of accelerating costs and decelerating
=i benefits. In this case, coexistence of cooperators and defectors is possible whenever the evolutionary
22 dynamics is bistable.

27z Theorem 3. Assume that benefits are accelerating and costs are decelerating, more specifically that B” (x) < 0
2a7a and C"(x) > 0 forall x € [0,1]. Then selection is either towards full cooperation, towards no cooperation,
a1s  OF there is exactly one interior singular stable strategy r* in the sense that S,(m) > 0if m < r < r* or
are M > 1 > r*. In the case of an interior singular strategy, we have that Sy(1) > 0 and S1(0) > 0, enabling a
27 protected dimorphism or cooperators and defectors. The interior singular strategy is never evolutionarily stable
2re  and decreases with the degree of relatedness.

270 Proof. The first part of the proof is nearly identical to the previous case, but with opposite signs.
20 Specifically, we show by differentiation that the selection gradient is increasing which implies that
21 there can be at most one interior singular strategy, r*. Noting that S}/ (m) > 0, we conclude from Eq. 15
22 withr =r*that S, (m) > 0ifm <r <r*orm>r>r-

283 It remains to show that a protected dimorphism of cooperators and defectors is possible whenever
s We have an interior singular strategy, 0 < * < 1. Note that in this case, ${(1) > 0 and 5(0) < 0 due
2es  to the bistable evolutionary dynamics. Furthermore noting that the double integral in Eq. 15 is positive
26 independent of whether m > r or r < m, we have that

1 r1
51(0) = (1—0)S}(1) +/0 /x S(y)dydx > 0, (16)
288 and 1 .
So(1) = (0—1)S5(0) + /O /0 S/ (y)dydx > 0, (17)

200 showing that a protected dimorphism of cooperators and defectors is possible. [

201 4. Discussion

292 In this paper, we have carried out a systematic investigation of the effects of relatedness on the
203 evolution of cooperation in non-linear public goods game with continuous investments. As expected,
20« we found that relatedness is beneficial for cooperation. When the evolutionary outcome is a single
20 intermediate level of cooperation, higher relatedness increases that level. If, on the other hand, the
206 evolutionary outcome is bistable such that an initially uncooperative population evolves to lower
207 levels of cooperation and an initially cooperative society evolves to higher levels of cooperation, higher
208 relatedness decreases the threshold level of cooperation that separates the two outcomes. The degree
200  Of relatedness also affects the potential for evolutionary branching, i.e., the emergence of two or more
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B, C decelerating, avg. relatedness u = 0.4 B, C decelerating, avg. relatedness p = 0.8 B, C accelerating, avg. relatedness u = 0.5
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Figure 4. Simulations using group size N = 10, and B and C both decelerating or both accelerating. As
predicted by the analytical investigation, when B and C are decelerating, the population undergoes
evolutionary branching when p = 0.4, and it reaches evolutionary stability when y = 0.8. When B and
C are accelerating, bistability occurs when y = 0.5. In all three cases, o2 =0.

300 coexisting strategies. We find that relatedness reduces the scope for evolutionary branching, making it
s1  more likely that all individual evolve the same strategy.

302 Our framework allow us to also investigate the consequences of uncertainty in the degree to which
;03 an individual is related with his or her interaction partners, and we find that such uncertainty also
s0s reduces the scope for evolutionary branching. This can be compared with an earlier result showing that
sos uncertainty in the size of interaction groups reduces the scope for evolutionary branching when the
;s payoff structure has an additive form but not when it has a multiplicative form [20]. In this study, we
sz have considered only payoff functions with an additive form and by analogy it appears plausible that
;s uncertainty in relatedness might increase the scope for evolutionary branching under multiplicative
s00  payoff structures.

310 In a related study, Molina and Earn [23] rigorously analyzed a similar public goods game with
su  non-linear benefits and linear costs. While they did not consider relatedness or assortment per se,
a1z one of their results, Theorem 4.4 in which they give conditions for the existence of a continuously
a3 stable strategy, allow for finite proportions of mutants and can be recast as a result on assortment.
se  Our results differ by asserting global convergence stability and global evolutionary stability as well
a5 as in allowing for non-linear cost functions. The latter is important, as one cannot reduce to the case
a6 Of linear costs by measuring investments in units of fitness costs, i.e., by redefining trait values as
a1z X := C(x), with C being the cost function. Although this change of unit would make the cost function
ae  linear, the benefit function B would no longer depend on the sum of individual investments. Hence,
a0 the results by Molina and Earn [23] do not extend to public goods games with non-linear costs.

320 There are several directions in which the work presented here could be extended and we
sz particularly wish to highlight two. First, our assumptions that the public goods are formed by
;2 adding individual contributions and that the payoff can be expressed as a difference of benefit and
s23  cost function are rather limiting and are unlikely to adequately describe all relevant settings involving
s2«  public goods. Recently, Ito et al. [21] introduced and considered a large class of possible interaction
s2s  structures in cooperative games. We think it would be interesting to extend our work to this larger
s2 framework and, in particular, systematically explore the effects of relatedness under the different
sz options for aggregating rewards. Second, we base our results on a simplified representation of
28 assortment. While simple representations have advantages, we think it would be good to complement
;20 our approach with more mechanistically-grounded studies of how assortment arises and influences
330 the evolution of cooperation.

331 Our conclusion that increased assortment facilitates the evolution of cooperation is expected,
332 in-line with empirical studies (e.g., [28]), and only a few exceptions to this rule has been reported in
a3 the literature (see for example [29] which shows how increased competition may prevent selection
s3a  for altruistic genes). The value of our study thus do not lie as much in its overall conclusion as in
:s  revealing in detail how increased assortment helps to promote cooperation, for example by showing
s.s  how boundaries in bistable evolutionary regimes shift and revealing that the scope for evolutionary
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sz diversification is reduced by both increased assortment and increased uncertainty in assortment. As
as  such, our findings should prove valuable both to theoreticians and empiricists striving to interpret
a0 results on the evolution of cooperation from laboratory experiments and field observations.
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s Appendix A. Analytical investigations

sar  Appendix A.1. Derivation of selection gradient

348 We start with
S,(m) = lim [d"’”/ dt] ) (A1)
xm—0t Xm
50 and from the definitions of dx,, /dt, P, and P, we get
351 Sr (m) = lim |:dxm/dt:|
xm—0t Xm
—  lim [xm“’m—l’)}
xm—0t Xm
353 = lim [Pm — p]
xm—0t
354 = li P, — . P . P,
xm%O*l'I,gclral— [ m (xr r + Xm m)]
355 = lim [x; - P(m,7) + xp, - P(m, m)—
xm—0t,x,—1-
356 (xy - (xp - P(r,7) + Xy - P(r,m)) + X - (x, - P(m,7) + xp, - P(m,m)))]
357 = 1-P(m,r)+0-P(m,m)—(1-(1-P(r,r)+0-P(r,m))+0-(1-P(m,r)+0-P(m,m)))
358 = P(m,r)—P(r,7).
0 Appendix A.2. Condition for evolutionary stability
360 Starting from the condition in [4], we want to find a condition in terms of y and o2. We use K

31 as the random variable having probability density function Pr(k), and the notation (K) for expected

sz value. Following the appendix from [4], we get to the condition

o

Bl/ *
363 %((K)z + Var[K]) — C"(r*) < 0. (A2)
368 Changing variables from K to p = K/N, we get

" *
% ((Np)2 + Var[Np]) — C"(+*) < 0. (A3)
366 Because of the rules of expected value and variance, this is the same as

iz *
%(M2 (p)% + N2Var|p]) — C"(r*) < 0, (A4)

368 which we simplify to

NB"(Nr*)({p)? 4 Var[p]) — C"(r*) < 0, (A5)
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370 and the desired form is achieved when noticing that (p) = u and Var(p) = 0.
sn Appendix A.3. Impossible region in the y — o>-plane
372 What we want to find out is the upper bound on ¢ in terms of . Firstly, since u and ¢? are

s defined through the fraction k/N where N > k and k > 1, we note that y, o2 e [0,1]. Next, given
sza Y € [0,1], by the definition of variance, the maximum variance will be achieved when all the values are
srs  at the endpoints. This is because as long as any value is in the interior of [0, 1], the sum of the squares
s7e  Of the distances from y, and hence the variance, will be lower. In other words, the maximum variance
s77  is achieved when we are dealing with a Bernoulli distribution, in which case ¢ = (1 — u). So, given
sy € [0,1], we must have 0% € [0, u(1 — p)].

s Appendix A.4. Implicit differentiation

380 We want to find out the effects of relatedness on the location of the singular strategy in the
;a1 general case, but having no explicit formula for * in terms of y, we need to differentiate implicitly.
;.2 We view r* as a function of y and we want to find the derivative r*/(). To do this, we use the
ss3  relationship uB'(Nr*) — C'(r*) = 0, and differentiate both sides implicitly with respect to y: B'(Nr*) +
ssa UB"(Nr*)Nr*'(u) — C"(r*)r*'(u) = 0, from which we get

B/(Nr*)
%/
385 == . A
r (‘Ll) C”(T*) _ ]/lNBN(NT’*) ( 6)
sss  Appendix B. Individual-based simulations
387 We follow the method from [18], with a few alterations. A population size Ny, and a virtual

ses  group size N is fixed, and each player has the two attributes generation and trait value. Next the
se0  following procedure is repeated until the generation of the offspring is higher than a chosen bound: A
s0 random focal individual with trait value x is chosen to be replaced by an offspring. The x individual
s01  gets to interact with another random individual with trait value u. The payoff to the focal individual,
sz Py = P(x,u),is then computed as

P(x,u) = kﬁ Prlflk) B(kx + (N — K)u) — C(x), (A7)
=1

s0a  where the probabilities Pr(k) are chosen such that Y- ; Pr(k) = 1, and such that Y- | kPr(k) /N gets
35 the desired value (e.g. 0.4 or 0.8). A third random individual with trait value y is chosen for an
ses interaction with a fourth random individual with trait value v. The payoff to this other individual, P,
so7 is computed in a similar way as Py. Py is then compared to P, to see which individual is the parent to
ses the offspring replacing the x individual. If P, < Py then the x individual is the parent. Otherwise the y
o individual is the parent with a probability w = (P, — Py)/a, where

400 o= ngr’r;aﬁgl |P(x,u) — P(y,v)| (A8)
w1 to ensure w € [0,1]. The offspring inherits the parent’s trait value at a high probability, otherwise
a2 the offspring’s trait value is taken from a normal distribution centered on the parent’s trait value. If
03 the trait value gets lower than 0 then it’s set to 0, and if it gets higher than 1 then it’s set to 1. The
as generation and trait value of each individual is saved to a text file in order to keep the time complexity
205 at a minimum.
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