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Abstract: Phenotyping is the task of measuring plant attributes for analyzing the current state of
1 the plant. In agriculture, phenotyping can be used to make decisions concerning the management
2 of crops, such as the watering policy, or whether to spray for a certain pest. Currently, large scale
3 phenotyping in fields is typically done using manual labor, which is a costly, low throughput process.
+  Researchers often advocate the use of automated systems for phenotyping, relying on the use of
s sensors for making measurements. The recent rise of low cost, yet reasonably accurate, RGB-D
s sensors has opened the way for using these sensors in field phenotyping applications. In this paper,
7 we investigate the applicability of 4 different RGB-D sensors for this task. We conduct an outdoor
s experiment, measuring plant attribute in various distances and light conditions. Our results show
s that modern RGB-D sensors, in particular, the Intel D435 sensor, provides a viable tool for close range
1o phenotyping tasks in fields.

Keywords: RGB-D sensors; Empirical analysis; Sensors in agriculture; Phenotyping; Microsoft kinect;
12 Intel D-435; Intel SR300; Orbbec astra s

13

12 1. Introduction

15 The constant increase of the world’s population increases the needs for technological
s developments in agriculture industry. In order to meet the growing demand for food, the agriculture
17 industry has to develop technological tools which will allow us to increase crop production [1]. The
s process of crop phenotyping, including the extraction of visual traits from plants, allows farmers to
1o examine their crops and infer important properties concerning the crop status, such as insufficient
20 irrigation, or developing diseases [2].

21 Consequently, there is an urgent need for the development of novel methods in phenomics for a
22 non-destructive determination of diverse traits under field conditions [3]. Non-destructive, meaning
= that phenotypic data can be collected from the same organism over the course of a long experiment.
22 They are also amenable to automation, making it feasible to study large sample sizes for increased
= statistical power. Image-based phenotyping approach aims to perform extraction phenomics based
26 on obtained images data in non-destructive way [4]. Recently, many new technologies use computer
2z vision methods for phenotyping [5].

28 Field and greenhouse phenotyping — measuring plant phenotypes in standard growing
20 conditions, rather than in a controlled lab, is a difficult challenge [6]. Field conditions are notoriously
s heterogeneous and the inability to control environmental factors such as lighting, makes results difficult
a1 to interpret, however, results from controlled environments are far removed from the situation plants
s2 will experience in the field and, therefore, are difficult to extrapolate to the field [2]. Furthermore,
33 given the slim profit margins in agriculture, farmers cannot invest in costly sensors for phenotyping.
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s« Low-cost sensors can be used by the farmer, whether in a field or in a greenhouse, in order to allow for
ss affordable phenotyping.

36 Indeed, many low cost visual sensors were developed in the last decade. For phenotyping, where
sz one often needs to measure size, length, or width, RGB-D sensors are a viable alternative. RGB-D
ss  sensors provide, in addition to the three color channels (RGB — Red, Green, Blue), a depth channel,
s measuring the distance from the sensor to a point in the image. Using this information we can estimate,
w0 e.g., the length and width of a stem, or the size of a fruit.

a There are several alternative technologies on which low cost RGB-D sensors are based. Optical
a2 techniques for image acquisition can be divided to passive and active. Passive methods use the
a3 reflection of natural light on a given target to measure its shape. Active methods enhance shape
« acquisition by using an external lighting source that provides additional information [7]. For example,
s time-of-flight (TOF) sensors measure depth by estimating the time delay from light emission to light
s detection. Structured-light sensors combine the projection of a light pattern with a standard 2D camera
«z and measure depth via triangulation [8]. Active stereoscopy sensors looks for artificially projected
s features from multiple cameras to reconstruct a 3D shape, using triangulation and epipolar geometry
40 theory [7]. Our work focuses on active sensors.

50 In this paper we evaluate 4 different low cost RGB-D sensors for agricultural phenotyping tasks.
51 We compare the following sensors: MICROSOFT KINECT II, ORBBEC ASTRA S, INTEL SR300, and INTEL
s2  D435. We evaluate all sensors in identical outdoor settings, taking measurements of 6 corn plants, and
ss 2 tomatoes of different colors and sizes. In addition, we have taken measurements of 2 plastic balls
s« of different colors and sizes, as two reference objects of known diameter. Measurements were taken
ss throughout the day in varying lighting conditions, and from varying distances, ranging from 20cm to
ss 150cm.

57 We analyze the depth information received from the sensors to identify the fill rate — the portion
s of missing depth information over the objects of interest. The gathered images were used to train deep
ss learning segmentation models for all object types (corn stalks, tomatoes, balls), which is an important
e task in phenotyping, and we report the quality of the resulting models. In addition, we have trained
e segmentation models using the depth information to estimate whether depth can enhance the quality
ez of the models. We also use the depth information to estimate the known diameter of the plastic balls,
es and we compute the error of the various sensors.

o4 Our results indicate that both the MICROSOFT KINECT II and the INTEL D435 provide much
es superior results to the INTEL SR300 and the ORBBEC ASTRA S in our settings. For many phenotyping
es applications, such as mounting sensors on drones [9,10], the lower weight and reduced energy demands
ez of the INTEL D435 make it an attractive choice for agricultural outdoor applications.

es 2. Related Work

69 We now review related work. We begin with reviewing some research on the use of RGB-D
70 sensors in agricultural applications, and then discuss research on comparing RGB-D sensors, both in
= general applications and specifically in agricultural settings.

72 2.1. Using RGB-D in Agriculture Applications

73 In recent years, the use of RGB-D sensors has been increasing due to the ability of these sensors
za to simultaneously capture depth and color images of the scene. Efficiently mapping the depth and
s color data, results in a colored point cloud in a 3-D spatial domain [11], which is very useful in many
76 applications.

77 Chéné et al. [12] showed the potential and ability of RGB-D imaging systems for 3D measurements
7e in the context of plant phenotyping, in what appears to be the first published application with plants.
7 They showed that Kinect can resolve individual leaves, allowing automated measurement of leaf
s orientation in indoor environment.
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81 A wide variety of phenotyping tasks have been approached using RGB-D data. Xia ef al. [13]
.2 presented an algorithm for leaf segmentation using RGB-D data. Using images of greenhouse paprika
es leaves, they demonstrate their ability to capture leaf measurements using an RGB-D camera. In [14]
s« estimated the size of sweet onions in indoor conditions, and [15] used the RGB-D camera for size
es estimation of mango fruits on trees in field conditions. [16] showed the ability to measure the canopy
e structure of small plants in the field. Azzari et al. [17] used the Kinect sensor to characterize the
ez vegetation structure. Jiang et al. [18] presented an algorithm for accurately quantifying cotton canopy
ss size in field conditions. They showed that the multidimensional traits and multivariate traits were
s better yield predictors than traditional univariate traits, confirming the advantage of using 3D imaging
oo modalities. [19] presented 3D visual detection method for detecting peduncles of sweet peppers in the
o1 field using short range depth camera Intel Real Sense F200.

92 Only a handful of studies use depth sensors for cereals phenotyping. Cereal are especially
o3 challenging, due to their relatively narrow stem, leaves, and head. Sodhi et al. [20] presented an
o« automated method of mapping 2D images collected in an outdoor sorghum field and greenhouse to
s segmented 3D plant units that are of interest for phenotyping, using a multi-camera sensor.

oo 2.2. Object Detection in Agriculture

o7 Object detection is the task of identifying the positions of instances of semantic objects of a certain

s class in a given image using computer vision algorithms. Detection objects in an image is a crucial

oo aspect in the development of agricultural applications. In order to harvest fruit or vegetable, navigate
100 in the field, or spray selectively, the object location in an image has to be determined. This allows us to
11 position robotic arms accordingly, to identify obstacles, or to estimate the object’s characteristics such
102 as ripeness or size [21].
103 Despite many years of research in agricultural oriented object detection, there are still many
10s problems that hinder implementation of object detection in agricultural applications [22]. The highly
105 variable and uncertain outdoor environment with changing illumination conditions, along with the
16 complex plant structure and variable product shape and size make it hard to find a global solution to
107 the detection of objects in the complex and unstructured agricultural environment [21].

ws  2.3. Comparing RGB-D Sensors

109 RGB-D sensors were compared in several different studies, using varying metro-logical methods
1o to evaluate the performance of the sensors under certain conditions and environments. For example,
11 Sabattini et al. [23] and . Beltran and Basafiez [24] compared the Kinect v1, which is based on
u2  structured-light technology, vs the PointGrey Bumblebee2 Stereo—camera for localizing a mobile
13 robot. The performance of the two cameras was compared using a mobile robot and 2D landmarks.
ua  Their work demonstrate experimentally that stereo cameras have a smaller error in the determination
us  of the 3D position of knows points in the image due to its better resolution.

116 Several studies [25-27], compared between two versions of Kinect: vl and v2. Samir et al. [25]
uz showed that the accuracy of v2 is slightly better than v1 with regards to the purpose of respiratory
us  motion tracking, while Amon et al. [26] showed better performance for v2 in estimating the area of
e detection, as well as the rotation accuracy of two versions of the face tracking system of the Microsoft
120 Kinect sensor. In [27], the comparison concentrated on depth image data. Their goal was to investigate
121 the accuracy and precision of depth images of both devices. Accuracy is defined to be the difference or
122 the offset of a measured depth value compared to a ground truth distance. Precision is defined as the
123 repeatability of subsequent depth measurements under unchanged conditions. They investigate the
124 influence of temperature, distance and object color on the captured depth images.

126 Diaz et al. [28] compares two generations of RGB-D sensors by evaluating the performances of
126 Asus Xtion Pro, a structured light based camera, and Kinect v2. This evaluation considers the tasks of
12z 3D reconstruction and object recognition. The quantitative comparison with respect to ground truth
12 Obtained using a metro-logical laser scanner, revealed that Kinect v2 provides less error in the mapping
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120 between the RGB and depth frames, and the obtained depth values are more constant with distance
130 Vvariations.

131 Guidi et al. [29] compared between 5 low-cost 3D cameras with three different technologies by
132 analyzing them in terms of systematic errors and random errors. They tested the cameras on a reference
133 plain, made of a rectangular piece of float glass. Their tests have analyzed the range from 550mm to
13a  1450mm, giving acceptable results with all the devices only between 550mm and 1150mm. Their results
135 exhibit a global uncertainty similar for all the primesense-based devices, when the worst results are
136 produced by the Realsense-based unit. They showed that the five low-cost 3D sensors they compared
137 can certainly cater to gesture tracking and understanding.

138 The most profound and comprehensive was made in [7], they presented 20 3D camera
139 commercially available that use varying technologies — structured light, time of flight, and active and
10 passive stereoscopy. They focused on indoor metrological evaluations on the state of the art device
11 in each technology: MICROSOFT KINECT II (time of flight), ORBBEC ASTRA S (structured light) and
12 INTEL D435(active stereoscopy). They showed that the uncertainty in the depth measurement using a
1as TOF camera scales linearly with the depth, hence providing reliable measurement at longer ranges.
14s The ORBBEC ASTRA S and the Intel R5400TM, on the other hand, which are based on the triangulation
s principle, provide a depth measurement in which the uncertainty grows quadratically. Hence, their
s Usage is preferred for short range applications.

147 Moreover, their work showed that the SR400TM generation of 3D camera provided by Intel
s proved to have outstanding performance when compared to other triangulation-based devices and for
1es  embedded applications, and that the RS400TM generation is a valuable device for shape acquisition.
150 Although They used the same sensors as we do, we evaluate sensor performance in outdoor conditions
11 and for agriculture phenotyping tasks.

152 Kazmi et al. [30] compared TOF cameras with stereo cameras for agricultural applications by
13 evaluating close range depth imaging of leaves indoor and outdoor, under shadow and sunlight
1sa conditions, by varying the exposure of the sensors. Their evaluation metrics focused on analyzing
15 the depth data by aggregating it across several frames using various statistical measures. Their work
16 concludes that TOF cameras are sensitive to ambient light, and stereo vision is relatively more robust
1z for outdoor lighting.

158 Wang et al. [15] estimate mango fruit size on trees in field conditions. Three low cost distance
10 measurement technologies were compared for use in a fruit sizing system, to be mounted on a moving
10 platform equipped with LED illumination for night imaging of mango orchards. For estimation
161 of camera-to-fruit distance, low-cost examples of three distance measurement technologies were
162 compared under lab conditions (fluorescent lighting): Zed (stereo vision camera), Leica (TOF laser)
16z and the MICROSOFT KINECT II (TOF and RGB-D camera). The distance measurement was taken
1ea  using three materials, varying in their level of diffuse reflectance, which placed placed at 14 positions
165 ranging from 0.56 to 5.4 m. In addition, the ceramic tile for Kinect distance measurement was repeated
16 outdoors at times from early afternoon to after sunset. The Zed stereo depth imaging technique was
1z inferior to other technologies. In direct sunlight with a ceramic target, The Kinect failed to measure
1es  distance over 3.5m.

100 3. Materials and Methods

170 We now report the experiment that was used to collect the data. In the experiment, 4 different
11 RGB-D sensors were used in an outdoor scenario to take measurements of young corn plants and
172 tomatoes.
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Figure 1. The setup of the 4 sensors used in the experiment. Kinect II at the bottom, the Astra Pro on
the left, the SR300 on the right, and the gray D435 on top of the SR300.

173 3.1. RGB-D Sensors

174 We compare the following RGB-D sensors: ORBBEC ASTRA s!, MICROSOFT KINECT II2, INTEL
s SR300%, and INTEL D435%. Table 1 shows the properties of all cameras. We now briefly review the
176  SENSOTS.

17z 3.1.1. Astra S

178 The Astra S sensor is manufactured by Orbbec company in China. The camera is based on
1o structured-light technology and it is designed for short range measurements. The structured-light
10 technology uses a single camera with a structured pattern projected on the scene. An infra red (IR)
11 projector projects a codified pattern embedding sufficient structure to provide unique correspondence.
12 The direction of the structured pattern is known a priori, allowing triangulation based on the pattern
13 [7]. The device contains an RGB sensor, IR sensors and a coded pattern projector. In addition, the
1es  device includes 2 microphones and an advanced eye protector.

1ss  3.1.2. Microsoft Kinect II

186 The MICROSOFT KINECT II sensor for Windows was released in 2014, along with a supporting
17 SDK, allowing human body and face tracking. The device is based on Time-of-Flight (TOF) technology,
1ee  estimating distance based on the known speed of light. Such sensors measure the time-of-flight of a
s light signal between the camera and the subject for each point of the image. The device requires a
10 powerful illumination system with relatively high energy consumption. The device contains a full
101 HD RGB camera which is registered with an IR camera. The device also includes IR emitters and a
102 microphone.

103 3.1.3. IntelORealSense™

108 Intel RealSense™ provides an open platform for developers to incorporate Intel’s perceptual
105 devices in their applications. The LibRealSense™ cross-platform API provides several tools for
106 Mmanaging the sensor’s streams, as well as advanced functions for background removal, hand tracking,
107 fine face recognition and 3D scanning.

https://orbbec3d.com/product-astra/
https://developer.microsoft.com/en-us/windows/kinect
https:/ /software.intel.com/en-us/realsense /sr300
https:/ /realsense.intel.com/stereo/
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108 3.1.4. Intel©SR300

199 IntelOSR300 was released in 2016 and it is the second generation of front-facing Intel©RealSense™

200 cameras. Similar to the Astra sensor, The device is based on structured light technology and it is
201 also designed for short range. The SR300 is a subassembly camera product that implements a short
202 range (SR), coded light, 3D imaging system. Along with an infrared laser projector, the subassembly
203 includes a Fast VGA infrared camera and a 2-M pixel RGB color camera with an integrated image
20 signal processor [31]. The cameras are factory-calibrated and the intrinsic and extrinsic parameters of
20 the sensors are stored on board, easily accessible via the librealsense APIs.

206 3.1.5. Intel D435

INTEL D435is part of Intel’s D400™ series, featuring the D435™ and the D415™. The Intel D435
208 depth camera is based on infrared active stereoscopy technology, with a global shutter sensor. The
200 depth is estimated in hardware through an imaging ASIC that processes the infrared stream together
20 with the RGB stream. The device performs frame correlation with a census cost function to identify
21 homologous points and reconstructs the disparity. As it is based on active stereoscopy, an infrared
212 dot-pattern projector adds textures to the scene, to cope with low-texture environments, where the
23 D435 has random focused dot pattern. Both structured light and active stereoscopy are based on the
21 same triangulation principle [7].

215 In our experiment we tested the D435 with 3 modes: 1280720 pixel resolution, 848 x480 pixel
zs  resolution and 640 %480 pixel resolution.

Table 1. Properties of the RGB-D sensors used in our experiment.

217

218

2

[

9

220

Sensor
Parameter ORBBEC ASTRA S | MICROSOFT KINECT II | INTEL SR300 INTEL D435
Range 0.4m-2m 0.5m-4.5m 0.3m-2m 0.2m -10m
RGB FOV 60°(H) x 49.5°(V) | 70.6°(H) x 60°(V) 41.5°(H) x 68°(V) 69.4°(H) x 42.5°(V))
x 73°(D) x 75.2°(D) x 77°(D)
Depth FOV 60°(H) x 49.5°(V) | 70.6°(H) x 60°(V) 55°(H) x 71.55°(V) | 91.2°(H) x 65.5°(V))
x 73°(D) x 88°(D) x 100.6°(D)
Frame rate 30 fps 30 fps 30, 60 fps 30, 60, 90 fps
RGB 640 %480 pixel 1920 x 1080 pixel 1920 x 1080 pixel 1920 x 1080 pixel
resolution 1280x 720 pixel
848 x 480 pixel
640 x 480 pixel
Depth 640 %480 pixel 512 x 424 pixel 640 x 480 pixel 1280 x 720 pixel
resolution 848 x 480 pixel
640x 480 pixel
Weight 300 gr 966gr 300gr 100gr
Size 165mm x 30mm 255mm X 66mm 110mm x 12.6mm | 90mm x 25mm
x 40mm X 67mm x 4.Imm X 25mm
Power supply | USB 2.0 power supply + USB 3.0 | USB 3.0 USB 3.0
Power <24W ~15W 650-1800 mW 618 -1978 mW
consumption
Operating Android, Linux Linux Linux Linux
system Windows 7/8/10 | Windows 8/10 Windows 8/10 Window 8/10
SDK Astra SDK Kinect V2 SDK IntelORealSense™ | IntelORealSense™ SDK
OpenNI2 libfreenect2 SDK librealsense SDK®
3rd party S librealsense sdk © hand and face tracking

3.2. Measured Objects

To test the performance of the RGB-D sensors, we took measurements of 6 different young corn
plants, organized in two rows of 3, to simulate the foreground-background setting in fields. The plants
were 5 weeks old, and approximately 50 cm tall, and were planted in black plastic pots, allowing us to



http://dx.doi.org/10.20944/preprints201810.0664.v1
http://dx.doi.org/10.3390/s18124413

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 October 2018 d0i:10.20944/preprints201810.0664.v1

7 of 17

Figure 2. The experimental setup as captured by the Kinect sensor from 1 meter. Six corn plants in
black plastic pots arranged in two rows. Added tomatoes — a red tomato, an orange cherry tomato.
Two plastic balls for size measurements — a larger green ball and a smaller yellow ball.

2z easily move them to different positions. The plants have not yet developed flowers or corn ears and
222 husk.

223 In addition, we added two different types of tomatoes, allowing us to evaluate the usability of the
224 captured images for object identification other than corn stems. We used one regular red tomato, and
225 one oval orange cherry tomato, positioning them near the corn stalks.

226 In addition, for reliable measurements of object width, we added two plastic balls: a green ball
227 with a diameter of 50 mm, and a smaller yellow ball with a diameter of 7.8 mm. The ball will be later
22s  used to evaluate the ability of the various RGB-D sensors for the important task of computing the
220  width and length of an object of interest, such as stems, fruits, and leaves.

230 Figure 2 shows the setting of the corn plants, tomatoes, and plastic balls.

231 3.3. Procedure

232 In order to evaluate the performance of the RGB-D sensors for close range at various lighting
233 conditions, we conducted an experiment in an outdoor environment. we assembled an imaging
2.a platform which employed a number of sensors: ORBBEC ASTRA S, MICROSOFT KINECT II, INTEL
235 SR300and INTEL D435. The ORBBEC ASTRA Sand the INTEL D435sensors were positioned next to each
236 other, directly above the MICROSOFT KINECT II. The INTEL D435sensor was positioned above the
23z ORBBEC ASTRA S. The sensors assembly was fixed during the entire experiment, and the sensors were
23s  not moved. We used three different computers, allowing us to reduce the time between measurements
230 of different sensors. For the Kinect v2 and the Astra s we used the official SDK for capturing RGB-D
2¢0 images, and the librealsense SDK was used for the Intel cameras.

241 As our goal is evaluation for short distances, our target objects were placed at 7 positions ranging
22 from 0.2 to 1.5m. After measurement were taken, the pots were moved to the next position. The
2e3  images acquisition process was repeated in twelve cycles, at various lighting conditions, from sunrise
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2es  to sunset. At each cycle we measured the luminous flux using the ambient light sensor of a Galaxy S8.
2es  The lux values that the sensor provided were categorized into 4 ranges ’:

246 1. Sunrise light: up to 1000 lux.

247 2. Overcast lighting: from 1000 to 10000 lux.

248 3. Full daylight (vut not direct sun): from 10000 to 32000 lux.
249 4. Direct sunlight: 32000 lux and above.

250 4. Results

251 The main goal of our study is to evaluate the usability of the various sensors for outdoor close
=2 range phenotyping. Below, we provide the results over the conducted experiment. We report the
=3 amount of the depth information that was captured, analyzing the fill rate of the sensors in varying
ze  conditions. We then report the quality of the RGB and the depth information that was captured for
=5 the important task of object identification. We then analyze the usability of the depth information for
26 estimating object size, which is also often useful in phenotyping applications.

257 4.1. Fill rate

258 It is often the case that some pixels in an depth image contain no depth information (typically
20 marked as 0 depth), or contain incorrect depth measurements, such as distances which are much closer,
260 Or much farther, than the actual distance to the object of reference. The fill rate of a sensor is the portion
201 Of pixels that contain valid measurements within a region of interest (ROI). The fill rate is critical for
262 tasks such as the segmentation of objects, or the measurement of width and length.

263 As we are interested in agricultural applications, our ROIs are the corn stems, the tomatoes, and
20s the plastic balls. We calculate the fill rate of depth values in each ROI for each distance. We consider a
205 pixel measurement to be valid if it has a non-zero value, and it is within 3 standard deviations from
2es the mean of non-zero depth values in the ROI.

267 Figure 3 shows the fill rate over all objects of interest by the distance to the objects. The ORBBEC
26s  ASTRA S sensor produces the worst results here, with a fill rate of about 10% from 40cm to 100cm. The
260 INTEL SR300 depth sensor is designed only for short range measurements. As such, it provides about
20 50% fill rate at 20cm, 10% at 40cm, and almost no depth information above that range. The MICROSOFT
an KINECT II depth sensor is designed to operate in a range above 50cm. Indeed, from 50cm and on, the
22z MICROSOFT KINECT II sensor produces very good results, with about 90% fill rate. Finally, the INTEL
23 D435 sensor, in all possible resolutions, provides the best overall performance, with the highest fill
27a  rate in short ranges (20cm to 40cm), and a comparable rate to MICROSOFT KINECT II in the range of
275 60cm to 150cm. This is impressive, especially given the difference in power consumption between the
276 two sensors.

277 We now analyze the sensitivity of the depth sensors to the lighting conditions. This is especially
2zs  important in the uncontrolled field conditions that we are interested in, where lighting conditions may
2re  vary considerably. For this analysis we consider only distance range where the sensors operate well
200 — above 40cm for MICROSOFT KINECT II, below 40cm for INTEL SR300, 40cm to 100cm for ORBBEC
2s1 ASTRA S, and all ranges for INTEL D435.

202 Figure 4a shows the fill rate by the time of day, and Figure 4 shows the fill rate by light intensity.
2e3  As can be seen, the ORBBEC ASTRA S sensor operates best in the lowest lighting intensity measured,
2ee  While the INTEL SR300 sensor operate best in the medium lighting conditions, reaching a fill rate
2es comparable to the best sensors at one specific time of day — early morning with medium lighting
26 intensity. Both the MICROSOFT KINECT II and the INTEL D435 sensors showed little sensitivity to the
2oz lighting conditions, with a slight decrease in performance in the highest lighting conditions measured,
2. around mid-day.

7 http:/ /stjarnhimlen.se/comp /radfaq.html
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Figure 3. Mean fill rate over all objects of interest for each camera by distance to the objects.
280 There are several factors that can affect the fill rate percentage such as an object’s shape and the

200 reflection of light over the object. Figure 5 shows the fill rate for each object type, focusing on the two
201 best sensors — MICROSOFT KINECT II and INTEL D435. The sensors vary in their behavior — the
202 INTEL D435 captures the ball best, has medium fill rate over the tomatoes, and the lowest performance
203 on the stems, while the MICROSOFT KINECT II has the best performance over the stems, and worse
204 performance on both the tomatoes and the ball.

205 When considering the time of day, we see that the INTEL D435 is unaffected by the light intensity
26 in different hours for the ball, but suffers a reduction in quality for stem fill rate. The MICROSOFT
207 KINECT II suffers a considerable reduction in quality during the hours when the sun light is strongest,
20 but this reduction is less noticeable for the stems.

200 4.2. Object Detection using Deep-Learning

300 In order to compare the quality of the data produced by the sensors for the task of object detection,
;1 We use here a state-of-the-art algorithm, the Mask R-CNN model [32]. Our goal was to detect 3 different
302 classes: the larger green ball, the tomato fruit, and the corn stem. In all the experiments below, we split
203 the images by the time of day to train, validation, and test. There were 12 different time points where
;s an image capture cycle for all distances has began. Images from 3 cycles were used for test, images
sos from one cycle was used for validation, and images from the other 8 cycles were used for training the
s models. As we are interested in comparing the images on identical algorithmic settings, we did not
sz perform any hyper-parameter tuning, training all models with the same algorithmic configuration.
sos Each model was trained for 60 epochs, where on the last epoch contained also the validation set. The
300 train set contained 126 images, the validation set 14 images and the test set 28 images.

310 First, we examine the performance of all RGB sensors in the detection task by training a model for
au each camera, using only the obtained RGB images. Table 2 presents the mAP (mean average precision)
a1z results for each camera’s model. As the table shows, the INTEL D435 RGB images produced the best
a3 results in the lowest resolution. The ORBBEC ASTRA S RGB data produced the lowest quality object
a1s  identification model.

a1 We also experimented with using the depth information produced by the sensors to augment the
ss  RGB data in object identification [33]. As only the MICROSOFT KINECT II and the INTEL D435 sensors
a1z produced a reasonable fill rate for most ranges, we limit this experiment only to data gathered using
as  these two cameras. We used only images captured within the camera’s working range, above 60cm for
a0 MICROSOFT KINECT II and above 40cm for the INTEL D435. Table 3 shows the image split into train,
220 validation and test sets for each sensor.
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Figure 4. Fill rate for all depth sensors, considering only objects within the camera range.

Table 2. mAP results for the object detection task using only RGB data.

Sensor mAP | Tomato | Ball | Stem

INTEL D435: 640 0.955 1 0.99 0.87
INTEL D435: 1280 0.906 1 1 0.72
INTEL SR300 0.925 1 0.95 0.83
INTEL D435: 848 0.912 1 1 0.74
MICROSOFT KINECT II | 0.914 1 1 0.75
ORBBEC ASTRA S 0.826 0.96 0.88 | 0.64

We experimented with two methods for incorporating the depth information. First, we replaced
the blue channel in the RGB image with the depth information. We hence trade some color information
for the depth information. As can be seen in Table 4, this method helped in only a two cases — the
INTEL D435 sensor with the highest resolution and the MICROSOFT KINECT II. For other INTEL D435
resolutions this method only reduced the performance. This may be due to insufficient training data,
as the original Mask R-CNN network that we used was trained with standard RGB data, and may be
incompatible with this type of data.

We next replaced the image background with black pixels. As we know the distance d between
the camera to the object of interest, we only maintain the color of pixels within 25 cm of d. To avoid
removing pixels within the object of interest with missing or incorrect depth information, a pixel that
had a neighbor within a 10 pixel radius that was in the 25 cm range, was not modified. The color of all
other pixels was changed to black. As can be seen in Table 4 this method improved object identification
in all cases. Figure 6 provides an example of object identification using the three methods. As we can
see, the removed background prevented the identification of a background object.
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Table 3. Train, validation, and test splits for depth integration in object detection.

Set MICROSOFT KINECT II | INTEL D435
Train 86 112
Validation 8 10
Test 18 22

Table 4. mAP results for object identification incorporating depth information for all object types. RGB
denotes using only the RGB data, BKGD denotes background removal prior to identificaiton, and Blue
denotes replacing the blue channel with depth information.

All Tomato Ball Stem
Sensor RGB [ BKGD [ Blue RGB [ BKGD [ Blue || RGB [ BKGD [ Blue || RGB [ BKGD [ Blue
Kinect 0.866 | 0.924 0.9 1 1 1 0.9 0.96 0.9 0.7 0.81 0.81
D435:1280 || 0.912 | 0.932 | 0.938 0.97 0.97 0.98 0.92 0.95 0.92 0.85 0.87 0.92
D435:848 0.962 | 0.971 | 0.936 1 1 1 1 1 1 0.89 0.91 0.81
D435:640 0976 | 0.981 | 0.953 1 1 1 1 1 1 0.93 0.94 0.86

a5 4.3. Object Size Estimation

336 Measuring the size of a fruit [15], or the width of a leaf or a stem [34] can be an important
sz phenotype which can indicate the plant condition. We therefore examined the capabilities of the
;s sensors to approximate the size of two different objects of reference: the two plastic balls that were
330 used. We choose the balls rather than the actual stems and fruits to avoid confusion from, e.g., varying
s0  width at different points along the stem. The larger ball had a diameter of 50mm, which is similar to
sa1  the size of a tomato, while the smaller ball had a diameter of 7.8mm, similar to the width of a corn
a2 stem.
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(a) RGB (b) BKGD (c) Blue

Figure 6. INTEL D435:848 detection examples for each method. The blue bounding box denotes the
ground truth, the green bounding box denotes a true positive prediction, and the red bounding box
denotes a false positive prediction.

343 Given the distance of an object from the sensor, one can approximate its size or length. Given a
sas  twp pixels in the image, and the depth data, one can compute their 3D coordinates [7]:

Dx ‘(Cx_x)
X = A== 1
A 1)

Dyy - (cy —y)
y = ¥ 7 2
fy @
Z = Dyy (3)

sas where Dy, is the distance to the pixel at coordinates x, y, cx and ¢y are the principal points and f, and
sas  fy are the focal lengths expressed in pixel units. We used Dy, as the average distance of two selected
a7 pixels.

Given the 3D coordinates for each pixel, measuring the distance between two pixels is simple,
using Euclidean distance in 3D, denoted d(py, p). Given a series of images, let p} and p) be two pixels
on the opposite sides on the perimeter of the ball in image i. We can now compute the root of the mean
square error (RMSE) of the estimation:

RMSE = ¢ vl )~ .

where @ is the true ball diameter. In some cases it is interesting to compute relative error with respect
to the size of the object. This is because an error of, e.g., lcm, may be problematic when estimating a
distance of 10cm, but may be considered negligible when estimating a distance of 1 meter. We hence
compute the mean relative average error (MRAE):

d i, i\ _ )2
YN (d(p1.py)—®)

MRAE = N @ 5)

248 For estimating the ball diameter using the various sensors, we manually selected two pixels,
w0 positioned on two opposite sides of the ball perimeter. We then use Equations 1 to 3 to compute the
30 3D coordinates of the two pixels, and finally computed the Euclidean distance between the points.

351 Figure 7 shows the RMSE results for estimating the diameter of the two balls. As can be seen, all
352 INTEL D435 resolutions performed better than all other sensors. For both balls, the 848 resolution
33 provided the best depth information, and hence, the best diameter estimation. The ORBBEC ASTRA S
sss  sensor had the worst estimation with the highest error on the larger ball. This is because the ORBBEC
s ASTRA S sensor did not capture well the distance to points on the perimeter of the larger ball from the
6 perspective of the camera, possibly due to reflection angles. For the smaller ball, the ORBBEC ASTRA S


http://dx.doi.org/10.20944/preprints201810.0664.v1
http://dx.doi.org/10.3390/s18124413

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 October 2018 d0i:10.20944/preprints201810.0664.v1

13 of 17
12 5
45
! 4
=08 _*
E 3
E £
w 06 o 25
(%} %)
2 2 2
0.4 is
02 !
05
0 0
astra kinect ~ d435_1280 d435_848 d435_640 sr300  astra  kinect d435_1280 d435_848 d435_640
(a) Small ball (b) Large ball

Figure 7. RMSE for diameter estimation of the two balls.

sz sensor provided much better estimations. The INTEL SR300 sensor preformed well on the larger ball,
s but it is limited only to close range, and was able to provide estimations only within a 40cm distance,
0 and was unable to capture the smaller ball at any range.

MRAE
o
N
%]

= 1 m II In == 0B

sr300 astra kinect d435_1280 d435_848  d435_640

mSmall ball  m Large ball
Figure 8. MRAE for diameter estimation of the two balls.

360 Figure 8 shows the relative error (MRAE) with respect to the ball diameter. We can see here that
s the INTEL D435 sensor provided the best relative error, below 5% of the object diameter for the 848
se2 resolution, and below 10% for the other resolutions.

363 Depth estimation often depends on the distance from the sensor to the object. Figure 9 shows
sea  the RMSE for varying object distances. The results are different for the various sensors. For the larger
ses  ball, the MICROSOFT KINECT II sensor error grows with the distance to the target object, but the INTEL
se6 D435 error is reduced with the distance, and for the best resolution, 848, it is at its lowest at the 1.5
sz meter range. The INTEL SR300 works best at the 20cm range, where it provides the best results, and
ses  reasonably well for the 40cm range. The ORBBEC ASTRA S sensor works poorly on all ranges here.
seo For the smaller ball the results are different, and the INTEL D435 errors are not well correlated with
s the distance for the 848 resolution, while the error grows with the distance for the 1280 and the 640
sn resolution. For the smaller ball, the ORBBEC ASTRA S sensor provides the best results at the 60cm
sz range, but much worse results for the 80cm range.

373 Another factor that may affect distance estimation is the light intensity. Figure 10 shows the
s7a  distance estimations in various lux categories. For the larger ball, the INTEL D435 sensor is almost
sz unaffected by light intensity. For the smaller ball, the INTEL D435 estimation is worse as the light
we  intensity grows. The ORBBEC ASTRA S sensor preforms the best at the lowest lux for the smaller
sz ball, and is competitive at the lowest lux for the larger ball as well, but its performance is reduced
a7s  substantially as the light intensity grows, failing to capture any meaningful depth information in the
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Figure 10. RMSE for diameter estimation of the two balls in varying light intensity categories.

higher lux categories. The MICROSOFT KINECT II sensor provides competitive results at lower light
intensities, but its performance degrades at higher light intensities.

As we have seen above, the fill rate of the INTEL SR300 and ORBBEC ASTRA S are low. Hence, the
amount of images containing sufficient depth information obtained by these two sensors (objects with
a fill rate over 50%) is low compared with the MICROSOFT KINECT II and the INTEL D435 sensors.
Moreover, ORBBEC ASTRA S and INTEL D435 are limited to shorter ranges. We will therefore separate
analysis of the sensors.

Finally, in many cases of agricultural applications, one is not necessarily interested in estimating
the size of a specific object, but rather in the average size of objects of a given type in an area. For
example, one may wish to compute the average tomato size in a greenhouse, or the average stem
width in a corn field. In these cases, knowing the error distribution can help to compensate for errors

Table 5. Error distribution

Ball |  Kinect | D435:640 | D435:848 D435:1280
Large | & . i~ -
Small | i e I

: o 2.
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0 in computing a better average estimation. Table 5 shows the distribution of errors for the INTEL D435
31 and MICROSOFT KINECT II sensors. As can be seen, the errors are in general Gaussian, and are often
s02 biased towards either positive or negative errors. In a future study, we will measure a large number of
303 Objects of a given type, and analyze different methods for taking the measurement noise into account.

sea 5. Discussion

3905 All the analysis provided in the previous section clearly shows that the new INTEL D435 sensor
ses can be very useful in field agricultural applications. The INTEL D435 produces RGB data of sufficient
sz quality for object identification using image-based deep learning methods, which is an important
s0s  task in agriculture. The depth information produced by the sensor also has the highest quality of the
100 sensors that we experiment with. First, the INTEL D435 is able to produce a competitive fill rate over
a0 all the ranges in our experiments — from 20cm to 1.5 meters. Furthermore, when using the depth
201 measurements for object size estimation, which is also an important task in agriculture, the INTEL
a2 D435 sensor provided the best results.

a03 The INTEL D435 sensor supports 3 different resolutions. In our experiments, the 848 resolution
a0s provided the best depth information, resulting in lower errors in object size estimation. The RGB
205 information of the lower 640 resolution provided better object identification capabilities. The better
a0 performance for object identification may be attributed to the properties of the deep learning algorithm,
a7 rather than the more accurate RGB data.

408 The MICROSOFT KINECT II sensor also provides a competitive fill rate at all ranges, but the
200 depth measurement quality is lower at the larger distances, and also at higher light intensities. In
a0 addition, the MICROSOFT KINECT II has substantially higher energy requirements than the other
an  sensors, which may pose a problem in applications that require a low weight sensor, such as in small
a2 drone applications.

a13 The INTEL SR300 sensor provides competitive results at lower ranges, especially for measuring
a4 larger objects sizes, but it is limited only for close range applications.
415 Finally, the ORBBEC ASTRA S sensor did not preform well in our experiments, and may not be the

a6 best choice for outdoor applications.

a1z 6. Conclusion and Future Research

a18 In this research we experiment with 4 RGB-D sensors — MICROSOFT KINECT II, ORBBEC ASTRA
ae S INTEL SR300, and INTEL D435 with 3 different resolutions — in outdoor agricultural-oriented tasks.
a20  We compute the fill rate of the sensors over various agricultural objects, and estimate the quality of the
«z2  depth information for measuring object size. We also use both the RGB and the depth data captured
a2 by the sensors for object identification using deep learning methods.

az3 Our experiments clearly show that the new INTEL D435 sensor provides the best results in our
a24  settings, and is hence a viable alternative for outdoor agricultural applications. The relatively high
a2s  quality depth information, together with low energy requirements, and low weight, make the INTEL
a2s D435 useful for many field applications, such as drone-based phenotyping tasks.

a27 In the future we intend to use the INTEL D435 in field phenotyping tasks, such as measuring the
«2s average diameter of stems in wheat, corn, and tomatoes in the field, and also to estimate the average
a20 fruit size in various crops. We also intend to mount the INTEL D435 on a drone to test its applicability
a0 for drone-based phenotyping applications.
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