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Abstract: Phenotyping is the task of measuring plant attributes for analyzing the current state of 
the plant. In agriculture, phenotyping can be used to make decisions concerning the management 
of crops, such as the watering policy, or whether to spray for a certain pest. Currently, large scale 
phenotyping in fields is typically done using manual labor, which is a costly, low throughput process. 
Researchers often advocate the use of automated systems for phenotyping, relying on the use of 
sensors for making measurements. The recent rise of low cost, yet reasonably accurate, RGB-D 
sensors has opened the way for using these sensors in field phenotyping applications. In this paper, 
we investigate the applicability of 4 different RGB-D sensors for this task. We conduct an outdoor 
experiment, measuring plant attribute in various distances and light conditions. Our results show 
that modern RGB-D sensors, in particular, the Intel D435 sensor, provides a viable tool for close range 
phenotyping tasks in fields.

Keywords: RGB-D sensors; Empirical analysis; Sensors in agriculture; Phenotyping; Microsoft kinect; 
Intel D-435; Intel SR300; Orbbec astra s
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1. Introduction14

The constant increase of the world‘s population increases the needs for technological15

developments in agriculture industry. In order to meet the growing demand for food, the agriculture16

industry has to develop technological tools which will allow us to increase crop production [1]. The17

process of crop phenotyping, including the extraction of visual traits from plants, allows farmers to18

examine their crops and infer important properties concerning the crop status, such as insufficient19

irrigation, or developing diseases [2].20

Consequently, there is an urgent need for the development of novel methods in phenomics for a21

non-destructive determination of diverse traits under field conditions [3]. Non-destructive, meaning22

that phenotypic data can be collected from the same organism over the course of a long experiment.23

They are also amenable to automation, making it feasible to study large sample sizes for increased24

statistical power. Image-based phenotyping approach aims to perform extraction phenomics based25

on obtained images data in non-destructive way [4]. Recently, many new technologies use computer26

vision methods for phenotyping [5].27

Field and greenhouse phenotyping — measuring plant phenotypes in standard growing28

conditions, rather than in a controlled lab, is a difficult challenge [6]. Field conditions are notoriously29

heterogeneous and the inability to control environmental factors such as lighting, makes results difficult30

to interpret, however, results from controlled environments are far removed from the situation plants31

will experience in the field and, therefore, are difficult to extrapolate to the field [2]. Furthermore,32

given the slim profit margins in agriculture, farmers cannot invest in costly sensors for phenotyping.33
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Low-cost sensors can be used by the farmer, whether in a field or in a greenhouse, in order to allow for34

affordable phenotyping.35

Indeed, many low cost visual sensors were developed in the last decade. For phenotyping, where36

one often needs to measure size, length, or width, RGB-D sensors are a viable alternative. RGB-D37

sensors provide, in addition to the three color channels (RGB – Red, Green, Blue), a depth channel,38

measuring the distance from the sensor to a point in the image. Using this information we can estimate,39

e.g., the length and width of a stem, or the size of a fruit.40

There are several alternative technologies on which low cost RGB-D sensors are based. Optical41

techniques for image acquisition can be divided to passive and active. Passive methods use the42

reflection of natural light on a given target to measure its shape. Active methods enhance shape43

acquisition by using an external lighting source that provides additional information [7]. For example,44

time-of-flight (TOF) sensors measure depth by estimating the time delay from light emission to light45

detection. Structured-light sensors combine the projection of a light pattern with a standard 2D camera46

and measure depth via triangulation [8]. Active stereoscopy sensors looks for artificially projected47

features from multiple cameras to reconstruct a 3D shape, using triangulation and epipolar geometry48

theory [7]. Our work focuses on active sensors.49

In this paper we evaluate 4 different low cost RGB-D sensors for agricultural phenotyping tasks.50

We compare the following sensors: MICROSOFT KINECT II, ORBBEC ASTRA S, INTEL SR300, and INTEL51

D435. We evaluate all sensors in identical outdoor settings, taking measurements of 6 corn plants, and52

2 tomatoes of different colors and sizes. In addition, we have taken measurements of 2 plastic balls53

of different colors and sizes, as two reference objects of known diameter. Measurements were taken54

throughout the day in varying lighting conditions, and from varying distances, ranging from 20cm to55

150cm.56

We analyze the depth information received from the sensors to identify the fill rate — the portion57

of missing depth information over the objects of interest. The gathered images were used to train deep58

learning segmentation models for all object types (corn stalks, tomatoes, balls), which is an important59

task in phenotyping, and we report the quality of the resulting models. In addition, we have trained60

segmentation models using the depth information to estimate whether depth can enhance the quality61

of the models. We also use the depth information to estimate the known diameter of the plastic balls,62

and we compute the error of the various sensors.63

Our results indicate that both the MICROSOFT KINECT II and the INTEL D435 provide much64

superior results to the INTEL SR300 and the ORBBEC ASTRA S in our settings. For many phenotyping65

applications, such as mounting sensors on drones [9,10], the lower weight and reduced energy demands66

of the INTEL D435 make it an attractive choice for agricultural outdoor applications.67

2. Related Work68

We now review related work. We begin with reviewing some research on the use of RGB-D69

sensors in agricultural applications, and then discuss research on comparing RGB-D sensors, both in70

general applications and specifically in agricultural settings.71

2.1. Using RGB-D in Agriculture Applications72

In recent years, the use of RGB-D sensors has been increasing due to the ability of these sensors73

to simultaneously capture depth and color images of the scene. Efficiently mapping the depth and74

color data, results in a colored point cloud in a 3-D spatial domain [11], which is very useful in many75

applications.76

Chéné et al. [12] showed the potential and ability of RGB-D imaging systems for 3D measurements77

in the context of plant phenotyping, in what appears to be the first published application with plants.78

They showed that Kinect can resolve individual leaves, allowing automated measurement of leaf79

orientation in indoor environment.80
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A wide variety of phenotyping tasks have been approached using RGB-D data. Xia et al. [13]81

presented an algorithm for leaf segmentation using RGB-D data. Using images of greenhouse paprika82

leaves, they demonstrate their ability to capture leaf measurements using an RGB-D camera. In [14]83

estimated the size of sweet onions in indoor conditions, and [15] used the RGB-D camera for size84

estimation of mango fruits on trees in field conditions. [16] showed the ability to measure the canopy85

structure of small plants in the field. Azzari et al. [17] used the Kinect sensor to characterize the86

vegetation structure. Jiang et al. [18] presented an algorithm for accurately quantifying cotton canopy87

size in field conditions. They showed that the multidimensional traits and multivariate traits were88

better yield predictors than traditional univariate traits, confirming the advantage of using 3D imaging89

modalities. [19] presented 3D visual detection method for detecting peduncles of sweet peppers in the90

field using short range depth camera Intel Real Sense F200.91

Only a handful of studies use depth sensors for cereals phenotyping. Cereal are especially92

challenging, due to their relatively narrow stem, leaves, and head. Sodhi et al. [20] presented an93

automated method of mapping 2D images collected in an outdoor sorghum field and greenhouse to94

segmented 3D plant units that are of interest for phenotyping, using a multi-camera sensor.95

2.2. Object Detection in Agriculture96

Object detection is the task of identifying the positions of instances of semantic objects of a certain97

class in a given image using computer vision algorithms. Detection objects in an image is a crucial98

aspect in the development of agricultural applications. In order to harvest fruit or vegetable, navigate99

in the field, or spray selectively, the object location in an image has to be determined. This allows us to100

position robotic arms accordingly, to identify obstacles, or to estimate the object’s characteristics such101

as ripeness or size [21].102

Despite many years of research in agricultural oriented object detection, there are still many103

problems that hinder implementation of object detection in agricultural applications [22]. The highly104

variable and uncertain outdoor environment with changing illumination conditions, along with the105

complex plant structure and variable product shape and size make it hard to find a global solution to106

the detection of objects in the complex and unstructured agricultural environment [21].107

2.3. Comparing RGB-D Sensors108

RGB-D sensors were compared in several different studies, using varying metro-logical methods109

to evaluate the performance of the sensors under certain conditions and environments. For example,110

Sabattini et al. [23] and . Beltran and Basañez [24] compared the Kinect v1, which is based on111

structured-light technology, vs the PointGrey Bumblebee2 Stereo–camera for localizing a mobile112

robot. The performance of the two cameras was compared using a mobile robot and 2D landmarks.113

Their work demonstrate experimentally that stereo cameras have a smaller error in the determination114

of the 3D position of knows points in the image due to its better resolution.115

Several studies [25–27], compared between two versions of Kinect: v1 and v2. Samir et al. [25]116

showed that the accuracy of v2 is slightly better than v1 with regards to the purpose of respiratory117

motion tracking, while Amon et al. [26] showed better performance for v2 in estimating the area of118

detection, as well as the rotation accuracy of two versions of the face tracking system of the Microsoft119

Kinect sensor. In [27], the comparison concentrated on depth image data. Their goal was to investigate120

the accuracy and precision of depth images of both devices. Accuracy is defined to be the difference or121

the offset of a measured depth value compared to a ground truth distance. Precision is defined as the122

repeatability of subsequent depth measurements under unchanged conditions. They investigate the123

influence of temperature, distance and object color on the captured depth images.124

Diaz et al. [28] compares two generations of RGB-D sensors by evaluating the performances of125

Asus Xtion Pro, a structured light based camera, and Kinect v2. This evaluation considers the tasks of126

3D reconstruction and object recognition. The quantitative comparison with respect to ground truth127

obtained using a metro-logical laser scanner, revealed that Kinect v2 provides less error in the mapping128

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 October 2018                   doi:10.20944/preprints201810.0664.v1

Peer-reviewed version available at Sensors 2018, 18, 4413; doi:10.3390/s18124413

http://dx.doi.org/10.20944/preprints201810.0664.v1
http://dx.doi.org/10.3390/s18124413


4 of 17

between the RGB and depth frames, and the obtained depth values are more constant with distance129

variations.130

Guidi et al. [29] compared between 5 low-cost 3D cameras with three different technologies by131

analyzing them in terms of systematic errors and random errors. They tested the cameras on a reference132

plain, made of a rectangular piece of float glass. Their tests have analyzed the range from 550mm to133

1450mm, giving acceptable results with all the devices only between 550mm and 1150mm. Their results134

exhibit a global uncertainty similar for all the primesense-based devices, when the worst results are135

produced by the Realsense-based unit. They showed that the five low-cost 3D sensors they compared136

can certainly cater to gesture tracking and understanding.137

The most profound and comprehensive was made in [7], they presented 20 3D camera138

commercially available that use varying technologies — structured light, time of flight, and active and139

passive stereoscopy. They focused on indoor metrological evaluations on the state of the art device140

in each technology: MICROSOFT KINECT II (time of flight), ORBBEC ASTRA S (structured light) and141

INTEL D435(active stereoscopy). They showed that the uncertainty in the depth measurement using a142

TOF camera scales linearly with the depth, hence providing reliable measurement at longer ranges.143

The ORBBEC ASTRA S and the Intel RS400TM, on the other hand, which are based on the triangulation144

principle, provide a depth measurement in which the uncertainty grows quadratically. Hence, their145

usage is preferred for short range applications.146

Moreover, their work showed that the SR400TM generation of 3D camera provided by Intel147

proved to have outstanding performance when compared to other triangulation-based devices and for148

embedded applications, and that the RS400TM generation is a valuable device for shape acquisition.149

Although They used the same sensors as we do, we evaluate sensor performance in outdoor conditions150

and for agriculture phenotyping tasks.151

Kazmi et al. [30] compared TOF cameras with stereo cameras for agricultural applications by152

evaluating close range depth imaging of leaves indoor and outdoor, under shadow and sunlight153

conditions, by varying the exposure of the sensors. Their evaluation metrics focused on analyzing154

the depth data by aggregating it across several frames using various statistical measures. Their work155

concludes that TOF cameras are sensitive to ambient light, and stereo vision is relatively more robust156

for outdoor lighting.157

Wang et al. [15] estimate mango fruit size on trees in field conditions. Three low cost distance158

measurement technologies were compared for use in a fruit sizing system, to be mounted on a moving159

platform equipped with LED illumination for night imaging of mango orchards. For estimation160

of camera-to-fruit distance, low-cost examples of three distance measurement technologies were161

compared under lab conditions (fluorescent lighting): Zed (stereo vision camera), Leica (TOF laser)162

and the MICROSOFT KINECT II (TOF and RGB-D camera). The distance measurement was taken163

using three materials, varying in their level of diffuse reflectance, which placed placed at 14 positions164

ranging from 0.56 to 5.4 m. In addition, the ceramic tile for Kinect distance measurement was repeated165

outdoors at times from early afternoon to after sunset. The Zed stereo depth imaging technique was166

inferior to other technologies. In direct sunlight with a ceramic target, The Kinect failed to measure167

distance over 3.5m.168

3. Materials and Methods169

We now report the experiment that was used to collect the data. In the experiment, 4 different170

RGB-D sensors were used in an outdoor scenario to take measurements of young corn plants and171

tomatoes.172
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Figure 1. The setup of the 4 sensors used in the experiment. Kinect II at the bottom, the Astra Pro on
the left, the SR300 on the right, and the gray D435 on top of the SR300.

3.1. RGB-D Sensors173

We compare the following RGB-D sensors: ORBBEC ASTRA S1, MICROSOFT KINECT II2, INTEL174

SR3003, and INTEL D4354. Table 1 shows the properties of all cameras. We now briefly review the175

sensors.176

3.1.1. Astra S177

The Astra S sensor is manufactured by Orbbec company in China. The camera is based on178

structured-light technology and it is designed for short range measurements. The structured-light179

technology uses a single camera with a structured pattern projected on the scene. An infra red (IR)180

projector projects a codified pattern embedding sufficient structure to provide unique correspondence.181

The direction of the structured pattern is known a priori, allowing triangulation based on the pattern182

[7]. The device contains an RGB sensor, IR sensors and a coded pattern projector. In addition, the183

device includes 2 microphones and an advanced eye protector.184

3.1.2. Microsoft Kinect II185

The MICROSOFT KINECT II sensor for Windows was released in 2014, along with a supporting186

SDK, allowing human body and face tracking. The device is based on Time-of-Flight (TOF) technology,187

estimating distance based on the known speed of light. Such sensors measure the time-of-flight of a188

light signal between the camera and the subject for each point of the image. The device requires a189

powerful illumination system with relatively high energy consumption. The device contains a full190

HD RGB camera which is registered with an IR camera. The device also includes IR emitters and a191

microphone.192

3.1.3. Intel©RealSenseTM
193

Intel RealSenseTM provides an open platform for developers to incorporate Intel’s perceptual194

devices in their applications. The LibRealSenseTM cross-platform API provides several tools for195

managing the sensor’s streams, as well as advanced functions for background removal, hand tracking,196

fine face recognition and 3D scanning.197

1 https://orbbec3d.com/product-astra/
2 https://developer.microsoft.com/en-us/windows/kinect
3 https://software.intel.com/en-us/realsense/sr300
4 https://realsense.intel.com/stereo/
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3.1.4. Intel©SR300198

Intel©SR300 was released in 2016 and it is the second generation of front-facing Intel©RealSenseTM
199

cameras. Similar to the Astra sensor, The device is based on structured light technology and it is200

also designed for short range. The SR300 is a subassembly camera product that implements a short201

range (SR), coded light, 3D imaging system. Along with an infrared laser projector, the subassembly202

includes a Fast VGA infrared camera and a 2-M pixel RGB color camera with an integrated image203

signal processor [31]. The cameras are factory-calibrated and the intrinsic and extrinsic parameters of204

the sensors are stored on board, easily accessible via the librealsense APIs.205

3.1.5. Intel D435206

INTEL D435is part of Intel’s D400TM series, featuring the D435TM and the D415TM. The Intel D435207

depth camera is based on infrared active stereoscopy technology, with a global shutter sensor. The208

depth is estimated in hardware through an imaging ASIC that processes the infrared stream together209

with the RGB stream. The device performs frame correlation with a census cost function to identify210

homologous points and reconstructs the disparity. As it is based on active stereoscopy, an infrared211

dot-pattern projector adds textures to the scene, to cope with low-texture environments, where the212

D435 has random focused dot pattern. Both structured light and active stereoscopy are based on the213

same triangulation principle [7].214

In our experiment we tested the D435 with 3 modes: 1280×720 pixel resolution, 848×480 pixel215

resolution and 640×480 pixel resolution.216

Table 1. Properties of the RGB-D sensors used in our experiment.

Sensor
Parameter ORBBEC ASTRA S MICROSOFT KINECT II INTEL SR300 INTEL D435
Range 0.4m-2m 0.5m-4.5m 0.3m-2m 0.2m -10m
RGB FOV 60°(H) × 49.5°(V) 70.6°(H) × 60°(V) 41.5°(H) × 68°(V) 69.4°(H) × 42.5°(V) )

× 73°(D) × 75.2°(D) × 77°(D)
Depth FOV 60°(H) × 49.5°(V) 70.6°(H) × 60°(V) 55°(H) × 71.55°(V) 91.2°(H) × 65.5°(V) )

× 73°(D) × 88°(D) × 100.6°(D)
Frame rate 30 fps 30 fps 30, 60 fps 30, 60, 90 fps
RGB 640×480 pixel 1920 × 1080 pixel 1920 × 1080 pixel 1920 × 1080 pixel
resolution 1280×720 pixel

848×480 pixel
640×480 pixel

Depth 640×480 pixel 512 × 424 pixel 640 × 480 pixel 1280 × 720 pixel
resolution 848×480 pixel

640×480 pixel
Weight 300 gr 966gr 300gr 100gr
Size 165mm × 30mm 255mm × 66mm 110mm × 12.6mm 90mm × 25mm

× 40mm × 67mm × 4.1mm × 25mm
Power supply USB 2.0 power supply + USB 3.0 USB 3.0 USB 3.0
Power < 2.4 W ∼ 15 W 650-1800 mW 618 -1978 mW
consumption
Operating Android, Linux Linux Linux Linux
system Windows 7/8/10 Windows 8/10 Windows 8/10 Window 8/10
SDK Astra SDK Kinect V2 SDK Intel©RealSenseTM Intel©RealSenseTM SDK

OpenNI2 libfreenect2 SDK librealsense SDK5

3rd party S librealsense sdk 6 hand and face tracking

3.2. Measured Objects217

To test the performance of the RGB-D sensors, we took measurements of 6 different young corn218

plants, organized in two rows of 3, to simulate the foreground-background setting in fields. The plants219

were 5 weeks old, and approximately 50 cm tall, and were planted in black plastic pots, allowing us to220
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Figure 2. The experimental setup as captured by the Kinect sensor from 1 meter. Six corn plants in
black plastic pots arranged in two rows. Added tomatoes — a red tomato, an orange cherry tomato.
Two plastic balls for size measurements — a larger green ball and a smaller yellow ball.

easily move them to different positions. The plants have not yet developed flowers or corn ears and221

husk.222

In addition, we added two different types of tomatoes, allowing us to evaluate the usability of the223

captured images for object identification other than corn stems. We used one regular red tomato, and224

one oval orange cherry tomato, positioning them near the corn stalks.225

In addition, for reliable measurements of object width, we added two plastic balls: a green ball226

with a diameter of 50 mm, and a smaller yellow ball with a diameter of 7.8 mm. The ball will be later227

used to evaluate the ability of the various RGB-D sensors for the important task of computing the228

width and length of an object of interest, such as stems, fruits, and leaves.229

Figure 2 shows the setting of the corn plants, tomatoes, and plastic balls.230

3.3. Procedure231

In order to evaluate the performance of the RGB-D sensors for close range at various lighting232

conditions, we conducted an experiment in an outdoor environment. we assembled an imaging233

platform which employed a number of sensors: ORBBEC ASTRA S, MICROSOFT KINECT II, INTEL234

SR300and INTEL D435. The ORBBEC ASTRA Sand the INTEL D435sensors were positioned next to each235

other, directly above the MICROSOFT KINECT II. The INTEL D435sensor was positioned above the236

ORBBEC ASTRA S. The sensors assembly was fixed during the entire experiment, and the sensors were237

not moved. We used three different computers, allowing us to reduce the time between measurements238

of different sensors. For the Kinect v2 and the Astra s we used the official SDK for capturing RGB-D239

images, and the librealsense SDK was used for the Intel cameras.240

As our goal is evaluation for short distances, our target objects were placed at 7 positions ranging241

from 0.2 to 1.5m. After measurement were taken, the pots were moved to the next position. The242

images acquisition process was repeated in twelve cycles, at various lighting conditions, from sunrise243
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to sunset. At each cycle we measured the luminous flux using the ambient light sensor of a Galaxy S8.244

The lux values that the sensor provided were categorized into 4 ranges 7:245

1. Sunrise light: up to 1000 lux.246

2. Overcast lighting: from 1000 to 10000 lux.247

3. Full daylight (vut not direct sun): from 10000 to 32000 lux.248

4. Direct sunlight: 32000 lux and above.249

4. Results250

The main goal of our study is to evaluate the usability of the various sensors for outdoor close251

range phenotyping. Below, we provide the results over the conducted experiment. We report the252

amount of the depth information that was captured, analyzing the fill rate of the sensors in varying253

conditions. We then report the quality of the RGB and the depth information that was captured for254

the important task of object identification. We then analyze the usability of the depth information for255

estimating object size, which is also often useful in phenotyping applications.256

4.1. Fill rate257

It is often the case that some pixels in an depth image contain no depth information (typically258

marked as 0 depth), or contain incorrect depth measurements, such as distances which are much closer,259

or much farther, than the actual distance to the object of reference. The fill rate of a sensor is the portion260

of pixels that contain valid measurements within a region of interest (ROI). The fill rate is critical for261

tasks such as the segmentation of objects, or the measurement of width and length.262

As we are interested in agricultural applications, our ROIs are the corn stems, the tomatoes, and263

the plastic balls. We calculate the fill rate of depth values in each ROI for each distance. We consider a264

pixel measurement to be valid if it has a non-zero value, and it is within 3 standard deviations from265

the mean of non-zero depth values in the ROI.266

Figure 3 shows the fill rate over all objects of interest by the distance to the objects. The ORBBEC267

ASTRA S sensor produces the worst results here, with a fill rate of about 10% from 40cm to 100cm. The268

INTEL SR300 depth sensor is designed only for short range measurements. As such, it provides about269

50% fill rate at 20cm, 10% at 40cm, and almost no depth information above that range. The MICROSOFT270

KINECT II depth sensor is designed to operate in a range above 50cm. Indeed, from 50cm and on, the271

MICROSOFT KINECT II sensor produces very good results, with about 90% fill rate. Finally, the INTEL272

D435 sensor, in all possible resolutions, provides the best overall performance, with the highest fill273

rate in short ranges (20cm to 40cm), and a comparable rate to MICROSOFT KINECT II in the range of274

60cm to 150cm. This is impressive, especially given the difference in power consumption between the275

two sensors.276

We now analyze the sensitivity of the depth sensors to the lighting conditions. This is especially277

important in the uncontrolled field conditions that we are interested in, where lighting conditions may278

vary considerably. For this analysis we consider only distance range where the sensors operate well279

— above 40cm for MICROSOFT KINECT II, below 40cm for INTEL SR300, 40cm to 100cm for ORBBEC280

ASTRA S, and all ranges for INTEL D435.281

Figure 4a shows the fill rate by the time of day, and Figure 4 shows the fill rate by light intensity.282

As can be seen, the ORBBEC ASTRA S sensor operates best in the lowest lighting intensity measured,283

while the INTEL SR300 sensor operate best in the medium lighting conditions, reaching a fill rate284

comparable to the best sensors at one specific time of day — early morning with medium lighting285

intensity. Both the MICROSOFT KINECT II and the INTEL D435 sensors showed little sensitivity to the286

lighting conditions, with a slight decrease in performance in the highest lighting conditions measured,287

around mid-day.288

7 http://stjarnhimlen.se/comp/radfaq.html
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Figure 3. Mean fill rate over all objects of interest for each camera by distance to the objects.

There are several factors that can affect the fill rate percentage such as an object’s shape and the289

reflection of light over the object. Figure 5 shows the fill rate for each object type, focusing on the two290

best sensors — MICROSOFT KINECT II and INTEL D435. The sensors vary in their behavior — the291

INTEL D435 captures the ball best, has medium fill rate over the tomatoes, and the lowest performance292

on the stems, while the MICROSOFT KINECT II has the best performance over the stems, and worse293

performance on both the tomatoes and the ball.294

When considering the time of day, we see that the INTEL D435 is unaffected by the light intensity295

in different hours for the ball, but suffers a reduction in quality for stem fill rate. The MICROSOFT296

KINECT II suffers a considerable reduction in quality during the hours when the sun light is strongest,297

but this reduction is less noticeable for the stems.298

4.2. Object Detection using Deep-Learning299

In order to compare the quality of the data produced by the sensors for the task of object detection,300

we use here a state-of-the-art algorithm, the Mask R-CNN model [32]. Our goal was to detect 3 different301

classes: the larger green ball, the tomato fruit, and the corn stem. In all the experiments below, we split302

the images by the time of day to train, validation, and test. There were 12 different time points where303

an image capture cycle for all distances has began. Images from 3 cycles were used for test, images304

from one cycle was used for validation, and images from the other 8 cycles were used for training the305

models. As we are interested in comparing the images on identical algorithmic settings, we did not306

perform any hyper-parameter tuning, training all models with the same algorithmic configuration.307

Each model was trained for 60 epochs, where on the last epoch contained also the validation set. The308

train set contained 126 images, the validation set 14 images and the test set 28 images.309

First, we examine the performance of all RGB sensors in the detection task by training a model for310

each camera, using only the obtained RGB images. Table 2 presents the mAP (mean average precision)311

results for each camera’s model. As the table shows, the INTEL D435 RGB images produced the best312

results in the lowest resolution. The ORBBEC ASTRA S RGB data produced the lowest quality object313

identification model.314

We also experimented with using the depth information produced by the sensors to augment the315

RGB data in object identification [33]. As only the MICROSOFT KINECT II and the INTEL D435 sensors316

produced a reasonable fill rate for most ranges, we limit this experiment only to data gathered using317

these two cameras. We used only images captured within the camera’s working range, above 60cm for318

MICROSOFT KINECT II and above 40cm for the INTEL D435. Table 3 shows the image split into train,319

validation and test sets for each sensor.320
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(a) Fill rate by daytime

(b) Fill rate by light intensity

Figure 4. Fill rate for all depth sensors, considering only objects within the camera range.

Table 2. mAP results for the object detection task using only RGB data.

Sensor mAP Tomato Ball Stem
INTEL D435: 640 0.955 1 0.99 0.87
INTEL D435: 1280 0.906 1 1 0.72

INTEL SR300 0.925 1 0.95 0.83
INTEL D435: 848 0.912 1 1 0.74

MICROSOFT KINECT II 0.914 1 1 0.75
ORBBEC ASTRA S 0.826 0.96 0.88 0.64

We experimented with two methods for incorporating the depth information. First, we replaced321

the blue channel in the RGB image with the depth information. We hence trade some color information322

for the depth information. As can be seen in Table 4, this method helped in only a two cases — the323

INTEL D435 sensor with the highest resolution and the MICROSOFT KINECT II. For other INTEL D435324

resolutions this method only reduced the performance. This may be due to insufficient training data,325

as the original Mask R-CNN network that we used was trained with standard RGB data, and may be326

incompatible with this type of data.327

We next replaced the image background with black pixels. As we know the distance d between328

the camera to the object of interest, we only maintain the color of pixels within 25 cm of d. To avoid329

removing pixels within the object of interest with missing or incorrect depth information, a pixel that330

had a neighbor within a 10 pixel radius that was in the 25 cm range, was not modified. The color of all331

other pixels was changed to black. As can be seen in Table 4 this method improved object identification332

in all cases. Figure 6 provides an example of object identification using the three methods. As we can333

see, the removed background prevented the identification of a background object.334

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 October 2018                   doi:10.20944/preprints201810.0664.v1

Peer-reviewed version available at Sensors 2018, 18, 4413; doi:10.3390/s18124413

http://dx.doi.org/10.20944/preprints201810.0664.v1
http://dx.doi.org/10.3390/s18124413


11 of 17

(a) Fill rate over all images (b) Tomato fill rate by daytime

(c) Ball fill rate by daytime (d) Stem fill rate by daytime

Figure 5. Comparing fill rate for different objects

Table 3. Train, validation, and test splits for depth integration in object detection.

Set MICROSOFT KINECT II INTEL D435
Train 86 112
Validation 8 10
Test 18 22

Table 4. mAP results for object identification incorporating depth information for all object types. RGB
denotes using only the RGB data, BKGD denotes background removal prior to identificaiton, and Blue
denotes replacing the blue channel with depth information.

All Tomato Ball Stem
Sensor RGB BKGD Blue RGB BKGD Blue RGB BKGD Blue RGB BKGD Blue

Kinect 0.866 0.924 0.9 1 1 1 0.9 0.96 0.9 0.7 0.81 0.81
D435:1280 0.912 0.932 0.938 0.97 0.97 0.98 0.92 0.95 0.92 0.85 0.87 0.92
D435:848 0.962 0.971 0.936 1 1 1 1 1 1 0.89 0.91 0.81
D435:640 0.976 0.981 0.953 1 1 1 1 1 1 0.93 0.94 0.86

4.3. Object Size Estimation335

Measuring the size of a fruit [15], or the width of a leaf or a stem [34] can be an important336

phenotype which can indicate the plant condition. We therefore examined the capabilities of the337

sensors to approximate the size of two different objects of reference: the two plastic balls that were338

used. We choose the balls rather than the actual stems and fruits to avoid confusion from, e.g., varying339

width at different points along the stem. The larger ball had a diameter of 50mm, which is similar to340

the size of a tomato, while the smaller ball had a diameter of 7.8mm, similar to the width of a corn341

stem.342
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(a) RGB (b) BKGD (c) Blue

Figure 6. INTEL D435:848 detection examples for each method. The blue bounding box denotes the
ground truth, the green bounding box denotes a true positive prediction, and the red bounding box
denotes a false positive prediction.

Given the distance of an object from the sensor, one can approximate its size or length. Given a343

twp pixels in the image, and the depth data, one can compute their 3D coordinates [7]:344

X =
Dx,y · (cx − x)

fx
(1)

Y =
Dx,y · (cy − y)

fy
(2)

Z = Dx,y (3)

where Dx,y is the distance to the pixel at coordinates x, y, cx and cy are the principal points and fx and345

fy are the focal lengths expressed in pixel units. We used Dx,y as the average distance of two selected346

pixels.347

Given the 3D coordinates for each pixel, measuring the distance between two pixels is simple,
using Euclidean distance in 3D, denoted d(p1, p2). Given a series of images, let pi

1 and pi
2 be two pixels

on the opposite sides on the perimeter of the ball in image i. We can now compute the root of the mean
square error (RMSE) of the estimation:

RMSE =

√
∑i=1..N(d(pi

1, pi
2)− Φ)2

N
(4)

where Φ is the true ball diameter. In some cases it is interesting to compute relative error with respect
to the size of the object. This is because an error of, e.g., 1cm, may be problematic when estimating a
distance of 10cm, but may be considered negligible when estimating a distance of 1 meter. We hence
compute the mean relative average error (MRAE):

MRAE =
∑i=1..N

(d(pi
1,pi

2)−Φ)2

Φ
N

(5)

For estimating the ball diameter using the various sensors, we manually selected two pixels,348

positioned on two opposite sides of the ball perimeter. We then use Equations 1 to 3 to compute the349

3D coordinates of the two pixels, and finally computed the Euclidean distance between the points.350

Figure 7 shows the RMSE results for estimating the diameter of the two balls. As can be seen, all351

INTEL D435 resolutions performed better than all other sensors. For both balls, the 848 resolution352

provided the best depth information, and hence, the best diameter estimation. The ORBBEC ASTRA S353

sensor had the worst estimation with the highest error on the larger ball. This is because the ORBBEC354

ASTRA S sensor did not capture well the distance to points on the perimeter of the larger ball from the355

perspective of the camera, possibly due to reflection angles. For the smaller ball, the ORBBEC ASTRA S356
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(a) Small ball (b) Large ball

Figure 7. RMSE for diameter estimation of the two balls.

sensor provided much better estimations. The INTEL SR300 sensor preformed well on the larger ball,357

but it is limited only to close range, and was able to provide estimations only within a 40cm distance,358

and was unable to capture the smaller ball at any range.359

Figure 8. MRAE for diameter estimation of the two balls.

Figure 8 shows the relative error (MRAE) with respect to the ball diameter. We can see here that360

the INTEL D435 sensor provided the best relative error, below 5% of the object diameter for the 848361

resolution, and below 10% for the other resolutions.362

Depth estimation often depends on the distance from the sensor to the object. Figure 9 shows363

the RMSE for varying object distances. The results are different for the various sensors. For the larger364

ball, the MICROSOFT KINECT II sensor error grows with the distance to the target object, but the INTEL365

D435 error is reduced with the distance, and for the best resolution, 848, it is at its lowest at the 1.5366

meter range. The INTEL SR300 works best at the 20cm range, where it provides the best results, and367

reasonably well for the 40cm range. The ORBBEC ASTRA S sensor works poorly on all ranges here.368

For the smaller ball the results are different, and the INTEL D435 errors are not well correlated with369

the distance for the 848 resolution, while the error grows with the distance for the 1280 and the 640370

resolution. For the smaller ball, the ORBBEC ASTRA S sensor provides the best results at the 60cm371

range, but much worse results for the 80cm range.372

Another factor that may affect distance estimation is the light intensity. Figure 10 shows the373

distance estimations in various lux categories. For the larger ball, the INTEL D435 sensor is almost374

unaffected by light intensity. For the smaller ball, the INTEL D435 estimation is worse as the light375

intensity grows. The ORBBEC ASTRA S sensor preforms the best at the lowest lux for the smaller376

ball, and is competitive at the lowest lux for the larger ball as well, but its performance is reduced377

substantially as the light intensity grows, failing to capture any meaningful depth information in the378
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(a) Small ball (b) Large ball

Figure 9. RMSE for diameter estimation of the two balls from varying distances.

(a) Small ball (b) Large ball

Figure 10. RMSE for diameter estimation of the two balls in varying light intensity categories.

higher lux categories. The MICROSOFT KINECT II sensor provides competitive results at lower light379

intensities, but its performance degrades at higher light intensities.380

As we have seen above, the fill rate of the INTEL SR300 and ORBBEC ASTRA S are low. Hence, the381

amount of images containing sufficient depth information obtained by these two sensors (objects with382

a fill rate over 50%) is low compared with the MICROSOFT KINECT II and the INTEL D435 sensors.383

Moreover, ORBBEC ASTRA S and INTEL D435 are limited to shorter ranges. We will therefore separate384

analysis of the sensors.385

Finally, in many cases of agricultural applications, one is not necessarily interested in estimating386

the size of a specific object, but rather in the average size of objects of a given type in an area. For387

example, one may wish to compute the average tomato size in a greenhouse, or the average stem388

width in a corn field. In these cases, knowing the error distribution can help to compensate for errors389

Table 5. Error distribution

Ball Kinect D435:640 D435:848 D435:1280

Large

Small
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in computing a better average estimation. Table 5 shows the distribution of errors for the INTEL D435390

and MICROSOFT KINECT II sensors. As can be seen, the errors are in general Gaussian, and are often391

biased towards either positive or negative errors. In a future study, we will measure a large number of392

objects of a given type, and analyze different methods for taking the measurement noise into account.393

5. Discussion394

All the analysis provided in the previous section clearly shows that the new INTEL D435 sensor395

can be very useful in field agricultural applications. The INTEL D435 produces RGB data of sufficient396

quality for object identification using image-based deep learning methods, which is an important397

task in agriculture. The depth information produced by the sensor also has the highest quality of the398

sensors that we experiment with. First, the INTEL D435 is able to produce a competitive fill rate over399

all the ranges in our experiments — from 20cm to 1.5 meters. Furthermore, when using the depth400

measurements for object size estimation, which is also an important task in agriculture, the INTEL401

D435 sensor provided the best results.402

The INTEL D435 sensor supports 3 different resolutions. In our experiments, the 848 resolution403

provided the best depth information, resulting in lower errors in object size estimation. The RGB404

information of the lower 640 resolution provided better object identification capabilities. The better405

performance for object identification may be attributed to the properties of the deep learning algorithm,406

rather than the more accurate RGB data.407

The MICROSOFT KINECT II sensor also provides a competitive fill rate at all ranges, but the408

depth measurement quality is lower at the larger distances, and also at higher light intensities. In409

addition, the MICROSOFT KINECT II has substantially higher energy requirements than the other410

sensors, which may pose a problem in applications that require a low weight sensor, such as in small411

drone applications.412

The INTEL SR300 sensor provides competitive results at lower ranges, especially for measuring413

larger objects sizes, but it is limited only for close range applications.414

Finally, the ORBBEC ASTRA S sensor did not preform well in our experiments, and may not be the415

best choice for outdoor applications.416

6. Conclusion and Future Research417

In this research we experiment with 4 RGB-D sensors — MICROSOFT KINECT II, ORBBEC ASTRA418

S INTEL SR300, and INTEL D435 with 3 different resolutions — in outdoor agricultural-oriented tasks.419

We compute the fill rate of the sensors over various agricultural objects, and estimate the quality of the420

depth information for measuring object size. We also use both the RGB and the depth data captured421

by the sensors for object identification using deep learning methods.422

Our experiments clearly show that the new INTEL D435 sensor provides the best results in our423

settings, and is hence a viable alternative for outdoor agricultural applications. The relatively high424

quality depth information, together with low energy requirements, and low weight, make the INTEL425

D435 useful for many field applications, such as drone-based phenotyping tasks.426

In the future we intend to use the INTEL D435 in field phenotyping tasks, such as measuring the427

average diameter of stems in wheat, corn, and tomatoes in the field, and also to estimate the average428

fruit size in various crops. We also intend to mount the INTEL D435 on a drone to test its applicability429

for drone-based phenotyping applications.430
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