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14 Abstract: Text fields in electronic medical records (EMR) contain information on important factors that
15 influence health outcomes, however, they are underutilized in clinical decision making due to their
16 unstructured nature. We analyzed 6,497 inpatient surgical cases with 719,308 free text notes from Le

17 Bonheur Children’s Hospital EMR. We used a text mining approach on preoperative notes to obtain the
18 text-based risk score algorithm as predictive of death within 30 days of surgery. We studied the

19 additional performance obtained by including text-based risk score as a predictor of death along with
20 other structured data based clinical risk factors. The C-statistic of a logistic regression model with 5-fold
21 cross-validation significantly improved from 0.76 to 0.92 when text-based risk scores were included in
22 addition to structured data. We conclude that preoperative free text notes in EMR include significant
23 information that can predict adverse surgery outcomes.
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26 1. Introduction

27 The introduction should briefly place the study in a broad context and highlight why it is important.
28 It The Health and Medicine Division of the National Academies of Science, Engineering and Medicine
29  have documented medical error as a leading cause of death in the United States and suggested that health
30 information technology has the potential to improve care and health outcomes[1]. To make this vision a
31  reality requires the capacity to predict uncommon events that are potentially preventable. Death after
32 surgery in children is an infrequent occurrence, with an incidence rate of <1.0%][2], [3]. Other adverse
33  outcomes such as unplanned return to the operating room, reintubation after surgery, need for blood
34  transfusions, and unplanned readmission are more common, with incidence rates ranging from 0.2% to
35 4.4%[4]-[6]. Since over 5 million operations are performed on children each year in the United States[7],
36  even a low rate of postoperative mortality represents thousands of lives lost prematurely. The best
37  published models predicting these events rely on structured data such as that contained in the National
38 Surgical Quality Improvement Program-Pediatric (NSQIP-Ped)[3], [8], [9]. Such models are useful in
39  quality improvement work, risk-based payment methods, in improving surgical decision-making, and
40 in providing accurate informed consent discussions with parents [10]-[13].
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41

42 The value of EMR data mining for research applications and clinical care is beginning to be
43 realized[14], [15]. However, analysis of the unstructured text data found in clinical narratives such as
44  admission and discharge summaries, observation notes, and a variety of reports in the EMR has been
45  relatively underutilized. Several Natural Language Processing (NLP) methods have been specifically
46 developed for mining EMR data, including MedLEE[16], HiTex[17], cTAKES[18], and TEPAPA[19]. A
47  recent systematic review showed that the majority of NLP approaches have focused on information
48 extraction tasks such as case-detection[20]. Meta-analysis of 19 case-detection studies showed that the
49  median precision and C-statistic significantly increased when unstructured text was used in addition to
50 structured data from the EMR[20]. Examples of case-detection studies include identification of cancer
51 patient trajectories[14], surveillance of coronary stents in a time- and cost-effective manner[21], and
52  improved accuracy in diagnosis of prostate cancer[22]. There are already some studies that have utilized
53  unstructured text in the EMR to predict health outcomes. Frost et al.[23], using over 11,000 words from
54  text fields in the EMR of over 43,000 patients in a logistic regression model, predicted risk of frequent
55  emergency department visits and high system costs with a C-statistic of 0.71 and 0.76, respectively.
56  Weissman et al. [24] showed that inclusion of unstructured text along with structured data improved
57  prediction of death in the ICU by using four different predictive modeling approaches.

58 Text-mining of clinical notes has been successfully used to identify postoperative complications in
59  a population of veterans[25]. However, to the best of our knowledge, free text notes in EMR have not
60  Dbeen utilized for predicting postoperative surgery outcomes in children. In this study, we examined the
61  use of free text notes in the EMR for preoperative prediction of death after surgery in children. We
62  hypothesized that 1) a risk score can be created through mining unstructured free text notes in EMRs and
63  2) this text-based risk score will improve the performance of models that only use structured data such
64  asthose defined by NSQIP-Ped[26].

65 2. Materials and Methods

66 We analyzed a convenience sample of children undergoing inpatient surgical procedures at Le
67 Bonheur Children’s Hospital, Memphis, TN, on or before their 19th birthday, whose medical records
68  included preoperative free text notes and whose operation occurred between January 1, 2014 and May
69 31, 2017. LeBonheur Children’s Hospital participates in the National Surgical Quality Improvement
70  Project-Pediatric, and a surgical case reviewer abstracts clinical data for a nonrandom sample of children
71  undergoing operative procedures. We term this the NSQIP cohort; children not included in the abstracted
72 sample are termed the non-NSQIP cohort. We separately extracted and analyzed free text from records
73 of patients in the non-NSQIP cohort to develop the text-based risk score algorithm and implemented this
74 algorithm on the NSQIP (test) cohort as described below. Backward elimination stepwise logistic
75  regression was used to determine if the addition of the text-based risk scores improved performance of
76  risk models derived from structured variables (See Figure 1 for details).
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79 Figure 1 Summary of cohort determination and methods
80 2.1. Text Mining and Development of Text-Based Risk Score: Unstructured text fields from

81  all inpatient, outpatient and ambulatory settings prior to the date of surgery were extracted for
82  individuals who had surgeries from January 2014 to May 2017. Records were extracted using HL7
83  Clinical Document Architecture (HL7/CCA) standard from the Cerner EMR system by
84  Methodist/LeBonheur Hospital, then converted to Continuity of Care Document (CCD) in XML, and
85  submitted to Quire Inc. (Memphis, TN) for downstream processing. Each XML document represents a
86  single patient encounter, which may potentially have multiple notes spanning multiple days at multiple
87  locations. In an example where a patient arrived at ER then transferred to surgery and had a later follow-
88  up visit, each of these three related interactions had an independent provider note but all notes were
89  linked to one encounter ID (FIN). The unstructured text was UTF8 HTML encoded and extracted from
90 the "text" element in the "Assessment and Plan" section of the XML document. The HTML tags were
91 removed and minimal formatting such as tabs and line breaks were keptin the final plain text document.
92  The top 10 document types and corresponding counts were as follows: Clinical Document (311,960),
93  Depart Clinical Summary (15,496), Ambulatory Visit Summary Depart (13,905), Office Visit Note (11,251),
94  ED Clinical Summary (11,232), Pediatric Surgery (10,915), ENT (10,125), pediatric surgery (6,647), Teacher
95  Note (6,462), and Progress Note (5,582). A more extensive list of document types is provided in Appendix
96 B. For each patient, all corresponding unstructured text fields were concatenated into one patient
97  document. Patient documents were then pre-processed using a set of Python scripts to remove: 1) Form
98  letters; 2) Tabulated numeric lab data; 3) Vital signs; and 4) Negation phrases. Negation rules for text
99  processing were developed by Quire and were modified iteratively to achieve high precision for this
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100  spedific collection. Finally, only the most recent history and physical examination was included in each
101  patient-document. All text processing steps described above were performed on the entire patient cohort
102  (including the non-NSQIP training and NSQIP test sets described below).

103 Semantic analysis and text-based risk prediction was performed using a proprietary software
104  developed by Quire, which uses a vector space modeling approach called Latent Semantic Indexing[27].
105  Here, patients were represented as a vector of weighted terms extracted from their medical records. A
106  log-entropy term weighting scheme was used as described by Berry and Browne[27]. Once the term-by-
107  patient matrix was constructed, singular value decomposition (SVD) was performed to reduce the
108  dimensionality of this matrix into lower rank approximation (concept space). We used a rank of 500 in
109  this study based on evaluation of this and other collections. Patient similarities were calculated using the
110  cosine of the vector angles[27].

111 The Quire Predictive Modeling (QPM) algorithm ranks all patients in a collection based on the
112 reduced-rank vector cosine values to a set of sentinel patients who exhibit the target outcome. A risk
113  scoreis calculated for each patient based on the percentage of sentinels who have cosine similarities above
114  apreset threshold. In this study, QPM was trained on the non-NSQIP cohort that included 4,738 patients,
115  among whom 48 patients died within 30 days of surgery. A different cohort (NSQIP) of 1,759 patients
116  was used for testing and evaluation. A pseudo-document for each of the NSQIP patients was compared
117  to the 48 non-NSQIP D30 patients to rank and generate risk scores. The risk scores of the non-NSQIP
118  cohort were included in the regression model as described below.

119

120 2.2. NSQIP-Ped Cohort: The methodology for NSQIP-Ped sampling of all pediatric surgery cases
121  hasbeen previously published[26]. Over 300 perioperative-standardized variables were collected. Death
122 within 30 days of surgery (D30) was chosen as the main outcome variable. Based on previous work by
123 our group[3], [8], [9], fifteen preoperative variables were identified as risk factors of D30. Dichotomous
124 risk factors included ventilator dependency, oxygen support, previous cardiac intervention, cerebral
125  palsy, open wound with or without infections, neuromuscular disorder, bleeding disorder, hematologic
126 disorder, inotropic support, blood transfusion, malignancy, do-not-resuscitate order, and neonatal status.
127  Case type and sepsis were the two risk factors with more than two categories and were converted to
128  multiple dichotomous risk factors. Finally, a total of 18 dichotomous preoperative risk factors were
129  included in our analysis and were coded as Present (1) Absent (0), or missing. We excluded the American
130  Society of Anesthesiology (ASA) class score since it has been shown to be covariate with most of the
131 included variables, and is itself a risk score. NSQIP-Ped definitions for risk factors and outcomes were
132 used throughout [26].

133 2.3. Hypothesis Testing and Prediction: We used the Kolmogorov-Smirnov test to check for the
134  normality of data and the Mann-Whitney U test to check whether the distribution of text-based risk
135  variable was the same for different categories of the outcome variables. We implemented stepwise logistic
136  regression analysis with backward elimination in predicting outcomes of cases in the NSQIP-Ped cohort
137 by A) using only text-based risk variables from unstructured data, B) using only 18 NSQIP-Ped risk
138  factors, and C) using all factors in A and B as predictors. C-statistic calculation was used for model
139  prediction performance, and the DeLong test[28] was used to compare the models. In addition to D30,
140  the model was used to predict 11 separate secondary surgery outcomes including death within 90 days
141  of surgery, unplanned readmission, unplanned readmission to operating room, unplanned repeat
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142 surgery related to the principle surgery, unplanned second surgery, blood transfusion within 72 hours
143 of surgery start time, postoperative unplanned intubations, postoperative systemic sepsis, septic shock,
144  postoperative superficial incisional surgical site infections (SSI), and postoperative organ/space SSI. We
145  have also implemented 5-fold cross-validation for each logistic regression model to avoid and detect any
146  possible overfitting.

147 3. Results

148 This We analyzed inpatient records for 6,497 operative cases performed at Le Bonheur Children’s
149  Hospital, Memphis, TN between January 1, 2014 and May 31, 2017 on patients aged 18 years or younger.
150 A total of 719,308 free text notes were available for these cases. On 1,739 of these cases, we also had
151  structured preoperative, operative, and postoperative data from the American College of Surgeons (ACS)
152  National Surgery Quality Improvement Program (NSQIP)[26]. This group of cases makes up the NSQIP-
153  Ped Cohort and used as a testing data set for test-based risk score algorithm. The remaining 4,738
154  operations in the non-NSQIP-Ped Cohort had text but no accompanying structured data. Therefore, the
155  larger non-NSQIP-Ped group was used as the training data set to develop a text-based risk score and
156  NSQIP cohort was used to evaluate the text-based risk score algorithm and for assessing whether text
157  based risk score improve performance of models to predict surgery outcome when used with other
158  structured data based preoperative risk factors.

159 Mortality in the NSQIP-Ped and non-NSQIP-Ped cohorts were 11/1759 (0.63%) and 48/4738 (1.01%,
160  p<0.01), respectively. Age at operation was younger for the NSQIP-Ped cohort (mean + standard
161  deviation of 6.4+6.0 years vs 7.1+5.3 years for non-NSQIP-Ped). Gender (55% male for both) and race (47%
162 white vs. 45% white, 40% black vs. 43% black for NSQIP-Ped vs. non-NSQIP-Ped, respectively) were
163  similar in the two cohorts.

164 3.1. Association between free text-based risk score and death after surgery: The Quire Predictive
165  Model (QPM) approach utilizes a variant of vector-space modeling to represent patients in a cohort as a
166  vector of weighted terms in a reduced rank matrix. Given a set of patients with the target outcome, in
167  this case death within 30 days of surgery (D30), all patients in the cohort can be ranked and scored based
168  on their cosine similarities to the D30=Yes cases. We used the Mann-Whitney U test to compare text-
169  based risk scores since the text-based risk scores were non-normally distributed (Kolmogorov-Smirnov
170  test p>0.1). The text-based risk scores were significantly higher (p<0.001, Mann-Whitney U Test) for D30
171  cases compared with those who survived beyond 30 days in both non-NSQIP training set and NSQIP test
172  set(Table 1). D30=Yes cases were concentrated at higher risk scores, both in the training data set (non-
173 NSQIP-Ped, data not shown) and in the test set (NSQIP-Ped) (see Figure 2).

174 Table 1 Comparison of text-based risk scores for categories of D30

Data Sets Categories Count | Mean text-based risk; 95% CI vMa?::-Whltney UTestp
D30=N 4690 0.35;0.34-0.36
Non-NSQIP- °
<0.001
Ped
D30=Yes 48 0.64;0.59-0.72
NSQIP-Ped D30=No 1748 044;0.42-0.46 <0.001
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Figure 2 (Left) Text-based risk scores for NSQIP cohort for D30: 0 (No, Green) and 1 (Yes, Red).
(Right) observed D30 (percentage) for four different levels of text-based risk scores

3.2. Sensitivity Analysis for Text Based Risk Scores: The results above were based on risk scores
for NSQIP cohort that were generated by a QPM model developed on non-NSQIP cohort that included
48 D30=Yes cases, with a C-statistic of 0.83 (95% confidence interval (CI) 0.77-0.89). We performed a
sensitivity analysis with 5 randomly selected sets of 10, 20, 30, and 40 D30=Yes cases that were projected
onto the NSQIP-Ped cohort to calculate mortality risk. These sets had average C-statistic of 0.80, 0.83,
0.83,0.83 in the NSQIP-Ped cohort, respectively. Figure 3 summarizes the C-statistics obtained for NSQIP
cohort at each run of sensitivity analysis. These results suggest that as few as 20 sentinel D30 patients in
the training cohort can be effectively used to calculate mortality risk in the test cohort.
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188 Figure 3 Sensitivity analysis for QPM model
189 3.3. Prediction of postsurgical mortality in the NSQIP-Ped cohort: We developed three logistic

190  regression models predicting risk of death within 30 days of surgery; Model A using text-based risk score
191  as a single predictor, Model B using 18 risk factors from structured data fields, and Model C using all
192  variables from Model A and B. Model A, a logistic regression model with the text-based risk variable as
193  asingle predictor of D30 yielded a C-statistic of 0.83 (0.77-0.89, 95% CI) (Appendix A.1) without cross-
194  validation and 0.81 (0.74-0.88, 95% CI) with 5-fold cross-validation. Model B, a stepwise logistic
195  regression model, identified ventilator status, bleeding disorder, and inotropic support as significant risk
196 factors, yielding a C-statistic of 0.86 (0.69-1.00, 95% CI) (Appendix A.2) without cross-validation and 0.76
197 (0.54-0.99) with 5-fold cross-validation. However, the difference between C-statistics of models A and B
198  was found non-significant (p>0.1) by DeLong test.

199 Finally, in Model C, we examined whether a stepwise logistic regression using 18 risk factors from
200  structured data fields and one text-based risk score improved the prediction of D30. The final logistic
201  regression model selected the text-based risk score, ventilator status, bleeding disorder, current receipt
202  of inotropic support, and emergent case as significant risk factors, resulting in a C-statistic of 0.96 (0.92-
203  1.00, 95% CI) (Appendix A.3) without cross-validation and 0.92 (0.84-0.99) with 5-fold cross-validation
204  using the same five selected variables. The values of regression coefficients and odd ratios of these five
205  variables obtained for each run of cross-validation were found to be within the 95% confidence intervals
206  (Appendix A.4). We have also implemented another cross-validation by implementing a stepwise logistic
207  regression model at each run instead of using only the variables selected when a stepwise regression
208  applied on the entire NSQIP data. Out of five runs of 5-fold cross validation process, text-based risk score,
209  ventilator status, bleeding disorder, current receipt of inotropic support, and emergent case were selected
210  in the stepwise logistic regression model 3, 5, 4, 3, 3 times, respectively. However, blood transfusion up
211  to 72 hours prior to surgery, neonate status and septic shock status each were also selected in the logistic
212 regression models one time each (Appendix A.5). We further implemented the DeLong test on C-statistics
213 to confirm that simultaneous use of the text-based variable and NSQIP-Ped variables improved the
214  logistic regression model’s performance. The performance of the final logistic regression model including
215  Dboth text-based risk scores and structured data was significantly better than the performance of models
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216  using only text-based risk score (p=0.036) and the model using structured data-based risk factors
217  (p=0.055) in terms of C-statistics.

218 The combined logistic regression model for D30, using a cutoff value of 0.2667, correctly classified
219 7 of 11 deaths (sensitivity of 63.6%) but also produced only 12 false positives (specificity of 99.3%),
220  yielding positive predictive value (precision) of 36.8% and negative predictive value of ~100.0%. The
221 cutoff value of 02667 was selected based on the maximum F1 score, defined as 2 X Precision X
222 Recall/(Precision + Recall), obtained from the predicted probabilities from cross validation process and
223  applied on the final non-cross validated predicted probabilities. We compared these high risk patients to
224 the preoperative risk score (ranging from 1 to 5) developed by the American Society of Anesthesiology
225  (ASA) class[29]. Eight of these false positives had ASA-class 4 and four had ASA-class 3 assignments.
226  Moreover, on case resulted death within 30-90 days of surgery, one case had received unplanned
227  postoperative intubation, four cases received unplanned blood transfusion within 72 hours of the surgery
228  start time, once case had deep wound disruption, one case had surgery related readmission within 30
229  days of surgery, and two cases had repeat surgeries related to the primary surgery. These results confirm
230  that the text-based prediction identifies high-risk individuals.

231 3.4. Association between free text-based risk score and other adverse surgery outcomes: The text-
232 Dbased risk scores for the NSQIP-Ped cohort were also significantly (p<0.05, Mann-Whitney U test)
233 associated with other outcomes such as death within 90 days of surgery, intra- or post-operative blood
234  transfusion within 72 hours of surgery, unplanned readmission within 30 days of surgery, postoperative
235  unplanned intubation, and first unplanned return to operating room (Table 2). In contrast, the text-based
236 risk scores were not significantly associated with post-operative deep organ space surgical site infection.

237 Table 2 Distribution of text-based risk scores over categories of binary outcomes for the NSQIP-Ped

238 cohort
Out C ¢ Mean text-based risk I
utcome oun value with 95%CI p value
o No 1748 0.44;0.42-0.45
Death within 30 days of surgery Yos 1 0.84; 0.78-0.90 <0.001
No 1738 0.44; 0.42-0.45
Death within 90 d f : 0.001
cart Withi 71 cays of strgety Yes 21 0.82; 0.77-0.87 )
Postoperative superficial (incisional) | No 1736 0.44; 0.42-0.45 0.015
surgical site infection Yes 23 0.62; 0.52-0.74 '
Intra- or post-operative blood | No 1625 0.45; 0.43-0.47
transfgsion within 72 hours of surgery Yes 134 0.31; 0.25-0.37 <0.001
start time
Unplanned readmission within 30 | No 1621 0.43; 0.41-0.45 <0.001
days of surgery Yes 138 0.57;0.51-0.62 '
. . No 1735 0.43;0.42-0.45
Postoperative Unplanned Intubation Yos o 0.71, 061081 0.001
First Unplanned Return to Operating | No 1690 0.44; 0.42-0.45 0.039
Room Yes 69 0.52; 0.43-0.60 '
239
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240 3.5. The role of free text-based risk score in predicting other adverse surgery outcomes: The text-
241  based risk score (derived for predicting D30) was significantly predictive of death between 30-90 days
242 after surgery (C-statistic 0.96, 0.92-0.99 95% CI), along with additional outcomes such as postoperative
243 superficial incisional surgical site infection, intra- or post-operative blood transfusion within 72 hours of
244 surgery start time, and unplanned readmission within 30 days of surgery (Table 3). Table 3 also includes
245  the 5-fold cross-validation results for each logistic regression model. More details about the logistic
246  regression models can be found in the Appendix A.6-A.10.

247 Table 3 Logistic regression of outcome including text-based risk score as a predictor
Outcome c-statistics with 95%CI Selected Preoperative Risk Factors
No CV 0.96; 0.92-1.00

Text-based risk score, ventilator
Death within 30 days of surgery dependency, bleeding disorder,

5-fold CV 0.92; 0.84-0.99 | inotropic support, Emergent Case

No CV 0.95;0.92-0.99 | Text-based risk score, ventilator
Death within 90 days of surgery dependency, neonate, bleeding
5-fold CV 0.94;0.89-0.99 | disorder, Emergent case

. . No CV 0.72;0.61-0.83
Postoperative superficial

incisional surgical site infection

Text-based risk score, neonate
5-fold CV 0.67;0.55-0.79

Text-based risk score, oxygen

Intra- or post-operative blood | No CV 0.76;0.71-0.80 :

. s support, neuromuscular disorder,
transfusion within 72 hours of h tolosic disorder. inotropi
surgery start time 5-fold CV 0.73;0.69-0.78 Cmatoiogic ) 1sordet, Motropie

support, malignancy, urgent case
Unplanned readmission within 30 | No CV 0.67; 0.62-0.72 | Text-based risk score, neonate,
days of surgery 5-fold CV 0.66; 0.61-0.70 | SIRS, Sepsis

248
249 4. Discussion

250 Our study suggests that unstructured preoperative text available in EMRs contains critical

251  information predictive of postoperative death in children undergoing surgical procedures. Further,
252  these data suggest that information contained in unstructured text notes can be useful even when

253  distilled to a single risk variable developed via a text modeling approach. Finally, we found that the use
254  of text-based risk scores combined with structured data improves the prediction accuracy of death

255  within 30 days of surgery when compared with models using either unstructured or structured data
256  from the NSQIP-Ped database alone.

257 Data from the unstructured notes is currently used in creating clinically useful risk assessments for

258  surgical procedures. An example is the ASA class that is included as a key variable in the Pediatric Risk
259  Calculator by NSQIP-Ped[30] developed by American Colleague of Surgeons. Automated systems
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260  utilizing algorithms such as the one used in this study have the potential to decrease bias introduced by
261  human retrieval and interpretation of such data and may save time for clinicians.

262 The clinical utility of any risk assessment depends on its accuracy. US health expenditures are higher
263  than other technically advanced countries reporting better objective health outcomes due in part to the
264  provision of expensive care that is unlikely to provide meaningful benefit [31]. Sharing accurate risk
265  estimates with the patient and family is a key component of informed consent and shared decision-
266  making. This allows providers and consumers of surgical care to better weigh alternative treatments that
267 may be less expensive and have equivalent benefit, or to forego treatment in settings where the
268  probability of death after surgery approaches certainty. Formal studies of the impact of clinical decision
269  support tools for surgery are limited, but are needed to determine their impact on practice and patient
270  outcomes.

271 The integrative prediction model presented here was created to predict the risk of death within 30
272  days of surgery. The finding that the novel text-based risk score also contributed to accurate prediction
273  of other major surgery outcomes such as death within 90 days of surgery, postoperative surgical site
274  infection, and unplanned blood transfusion and readmission within 30 days of surgery suggest that
275  postoperative adverse events are interrelated. Logistic regression models for each of these outcomes
276  performed almost equally well in 5-fold cross-validation, suggesting that the logistic regression models
277  built on the text-based risk score are robust and generalizable to a broad variety of adverse events despite
278  the challenges of a relatively small sample size and low event rate.

279 Limitations: Our study has some limitations. The training set included all types of operations while
280  the test set, NSQIP-Ped cohort, systematically excluded some operations[26]. Since the text-based risk
281  scores are calculated based on vectorized combinations of thousands of terms extracted from patient
282  records, the precise words that contribute to postsurgical mortality risk is difficult to deduce. The next
283  step in our work will be to investigate specific keywords that are associated with modifiable risk factors
284  to guide clinicians in developing interventions designed to reduce the risk of severe surgery outcomes.

285 5. Conclusions

286 We conclude that text data in EMRs can improve the ability of structured data tools to predict serious
287  patient outcomes after surgery.

288 Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Appendix A and B.
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Appendix A: Supplementary Analysis Results

1
2
3 1. Logistic Regression Results for D30 using text-based risk score as a single
4 predictor
5
Variables in the Equation
B S.E. Wald df Sig. Exp(B) with 95% CI
Text-based risk 6.22 229 736 1 0.01 502.32 [5.61-44966.12
Constant -940 194 2352 1 0.00
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9 2. Logistic Regression Results for D30 using structured data based risk factors
10

Variables in the Equation

B S.E. Wald df Sig. Exp(B)with 95% CI

Ventilator 285 .98 851 1 0.00 17.21[2.55-116-41]
Bleeding Disorder 418 1.27 1093 1 0.00 65.50 [55.-781-39]
Inotropic Support 266 .99 734 1 0.01 14.29 [2.09-97.87]

11426 1 0.00 0.00

Constant -6.50 .61
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3. Logistic Regression Results for D30 using both unstructured and structured data

Variables in the Equation

B with 95% ClI Sig. Exp(B) with 95% CI
Text-based risk 6.28 (0.42,12.98) 0.066 533.40 [1.94-146823.50]
Ventilator 2.07 (0.15,3.99) 0.035 7.96 [1.58-40.00]
Bleeding Disorder 3.56 (1.35,5.81) 0.002 35.30 [5.33-233.67]
Inotropic Support 2.29 (0.19,4.39) 0.032 9.84 [1.70-57-11]
Emergent Case 1.75(0.03,3.48) 0.046 5.76 [1.34-24 47]
Constant -11.12 (-16.98, -5.26) .0000
ROC Curve
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Area Under the Curve
Asymptotic 95% Confidence Interval

Area Std. Error®  Asymptotic Sig Lower Bound Upper Bound
0.96 0.02 0.00 0.92 1.00
21
22 4. 5-Fold Cross Validation using the five predictors selected in the Model C
23
AUC:Train- Regression Coefficients
Test Constant | Text- Ventilator | Bleeding | Inotropic | Emergent
Based Disorder | Support | Case
Risk
Run1 | 0.98 - 0.84 -15.028 9.320 3.684 4.015 2.599 2.395
Run2 | 0.95-1.00 -10.307 5.772 1.626 2.281 2.398 1.697
Run 3 | 0.95-0.99 -10.486 5.657 1.105 4.079 3.325 2.044
Run4 | 0.95-1.00 -11.294 7.013 1.687 3.623 1.897 1.359
Run5 | 0.96 - 0.87 -11.576 6.504 2.505 3.854 1.678 1.500
24
25
26 5. 5-Fold Cross Validation by implementing Backward Elimination at each run
27
AUC: Train-Test Selected Variables
Run 1 0.99 - 0.34 | Ventilator, Bleeding Disorder, Emergent Case, Neonate
Run 2 0.96 - 0.91 | Text-based risk, Inotropic Support, Emergent Case, Neonate
Run 3 0.96 - 0.90 | Test-based risk, Bleeding Disorder, Inotropic Support, Emergent
Case
Run 4 0.94 - 1.00 | Text-based risk, bleeding disorder, inotropic support, blood
transfusion
Run 5 0.87 - 0.84 | Ventilator, Bleeding Disorder, Septic Shock
28
29
30 6. Logistic Regression Results for D90 using both unstructured and structured data
31
32 Variables in the Equation
B S.E. Wald df  Sig. Exp(B) with 95% CI
Ventilator 2.98 0.61 23.75 1 .00 19.64 [5.93-65.04]
Bleeding Disorder  2.91 0.98 8.80 1 .00 18.27 [2.68-124-52]
Neonate 1.41 0.58 5.85 1 .02 4.09 [1.31-12.80]
Emergent Case 1.41 0.67 4.48 1 .03 4.11[1.11-15.25]
Text-based risk 4.42 1.96 5.09 1 .02 83.31 [1.79-3886.07]
Constant -9.23 1.68 30.25 1 .00 .00
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36
37 7. Logistic Regression Results for Postoperative Superficial Incisional Surgical Site
38 Infection using both unstructured and structured data
39
40 Variables in the Equation
B S.E. Wald df  Sig. Exp(B) with 95% ClI
Text-based risk 142 0.74 3.66 1 0.05 4.13 [0.97-17.66]
Neonate 1.65 044 14.22 1 0.00 5.19 [2.21-12.21]
Constant -5.49 0.51 115.29 1 0.00
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43
44 8. Logistic Regression Results for Postoperative Superficial Incisional Surgical Site
jg Infection using both unstructured and structured data
47 Variables in the Equation
B S.E. Wald df Sig. Exp(B) with 95% CI
Text-based risk 142 0.74 3.66 1 0.05 4.13[0.97-17.66]
Neonate 1.65 0.44 14.22 1 0.00 5.19[2.21-12.21]
Constant -5.49 0.51 115.29 1 0.00 0.00
48
Lo ROC Curve
g
1 - Specificity
49 Diagonal segments are produced by ties.
50
Area Under the Curve
Asymptotic 95% Confidence Interval
Area Std. Error  Asymptotic Sig Lower Bound Upper Bound
0.72 0.06 0.00 0.61 0.83
51
52
53 9. Logistic Regression Results for Intra or Postoperative Blood Transfusion within 72
54 hours of Surgery Start Time using both unstructured and structured data
55
56 Variables in the Equation
B SE.  Wwald df Sig. Exp(B) with 95% CI
Oxygen Support 1.06 040 7.092 1 0.01 2.87 [1.32-6.25]
Neuromuscular Disorder 1.31 0.24 30.42 1 0.00 3.72 [2.33-5.94]
Hematologic Disorders 120 0.33 1296 1 0.00 3.32 [1.73-6.38]
Inotropic Support 253 062 1676 1 0.00 12.52 [3.73-41.98]
Childhood Malignancy 0.52 0.25 4116 1 0.04 1.67 [1.02-2.75]
Urgent Case -1.95 0.74 7014 1 0.01 .14 [0.03-0.60]
D30risk -2.24  0.35 4035 1 0.00 0.106
Constant -211 015 198.08 1 0.00 0.12
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60
61 10. Logistic Regression Results for Unplanned Readmission within 30 days of Surgery
62 using both unstructured and structured data
63
64 Variables in the Equation
B S.E. Wald df  Sig. Exp(B) with 95% ClI

SIRS 0.89 043 432 1 0.04 2.43[1.05-5.63]

Sepsis 0.82 0.33 6.31 1 0.01 2.27 [1.20-4.49]

Neonate -1.20 043 782 1 0.01 0.30 [0.13-0.70]

Text-based risk 1.54 0.29 2814 1 0.00 4.67 [2.64-8.25]

Constant -3.28 020 27216 1 0.00 0.04
65
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1  Appendix B: Top 100 Document types with text which were extracted from the EMR.
2
3 Doc Type TOTAL
4 e
5  Clinical Document 311,960
6  Depart Clinical Summary 15,496
7 Ambulatory Visit Summary Depart 13,905
8  Office Visit Note 11,251
9 ED Clinical Summary 11,232
10  Pediatric Surgery 10,915
11 ENT 10,125
12 pediatric surgery 6,647
13 Teacher Note 6,462
14 Progress Note 5,582
15  Surgery 5,292
16  Parenteral Nutrition 5,138
17  General Message 5,119
18 Oto-HNS 4,903
19  NICU Progress Note 4,724
20  Parenteral Nutrition Service (269-0112) 4,603
21  PICU Progress Note 4,481
22 LeBonheur Pathology Final Report 3,968
23 NSR 3,896
24 Progress 3,619
25 IMCU 3,348
26  progress 3,239
27  Ortho 3,171
28  attempt 3,090
29  IMCU Daily Progress Note 2,917
30 Team D Progress Note 2,907
31  AMB Visit Summary Depart 2,891
32  Palliative Care Progress Note 2,841
33  ortho 2,800
34  Team A Progress Note 2,750
35  follow up 2,674
36 PTnote 2,592
37 Parenteral Nutrition (269-0112) 2,573
38  Discharge Summary 2,417
39 OtoHNS 2,396
40  Team B Progress Note 2,386
41 IMCU PN 23,17
42 IMCU daily 2,268
43 general surgery 2,223
44  Parenteral Nutrition 269-0112 2172
45  Neurology 2,081
46  Team C Progress Note 1,962
47 IP-D 1,916
48 Discharge 1,884
49  surgery 1,845
50 MNT Follow Up 1,827
51 EEG 1,693
52  discharge 1,692
53 Inpatient ST Progress Note 1,676
54  Discharge Planning 1,647
55  Attempt 1,606

56  Pulmonology 1,574
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57  Urology 1,560
58 DS 1,470
59 Pulmonology Attending Note 1,469
60  Teacher note 1,458
61 Trauma NP 1,450
62 PRS 1,418
63  PICU Daily Progress Note 1,380
64  update 1,375
65 IMCU Daily PN 1,321
66 PICU Daily Note 1,244
67  PetTherapy 1,241
68  Peds Surgery 1,221
69  Peds Surg 1,203
70  Contact 1,198
71 NSx 1,150
72 Daily Progress Note 1,148
73 NICU 1,134
74 neurosurgery staff 1,133
75  Assessment 1,117
76  Ped Nephrology 1,094
77  Cardiology 1,066
78 FEFH 1,066
79  CVICU Progress Note 1,035
80 txnote 1,033
81  peds surgery 1,024
82  PICU Accept Note 1,023
83  Neurosurgery 978
84  Abdominal pain 962
85 Team D PN 937
86  Teaching-Supervisory Addendum-Expand *ED 928
87 Gl Progress Note 924
88  Fever 904
89  Plastic Surgery 897
90 IMCU note 887
91  Consult 876
92 D Progress Note 869
93 Neurosurgery staff 855
94 Neurosurgery NP note 844
95 Gl Daily Note 837
96  Vomiting 823
97  nsr 821
98  NICU Daily Progress Note 820
99  DC Planning 813
100  Pediatric Nephrology 798
101  Cardiology Office Visit Note 790
102 Gl 782
103 Parenteral Nutrition Service 769
104 IP-D PT Note 759
105

106 Note that this study utilizes only preoperative text notes. Any post-operative document in the list above
107  were belong the previous surgeries.
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