
 
 

1 
 

Unstructured text in EMR improves prediction of death 1 

after surgery in children  2 

 3 
Oguz Akbilgic 1,2,*, Ramin Homayouni 3,4, Kevin Heinrich 4, Max Raymond Langham, Jr 5, Robert 4 
Lowell Davis 1 5 

1 UTSHC-ORNL Center for Biomedical Informatics, Department of Pediatrics, Memphis, TN, USA 6 
2 Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA 7 
3 Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN, USA 8 
4 Quire Inc, Memphis, TN, USA 9 
5 Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA 10 
 11 
* Correspondence: oz@uthsc.edu, +1-901-287-5841 12 
 13 

Abstract: Text fields in electronic medical records (EMR) contain information on important factors that 14 
influence health outcomes, however, they are underutilized in clinical decision making due to their 15 
unstructured nature. We analyzed 6,497 inpatient surgical cases with 719,308 free text notes from Le 16 
Bonheur Children’s Hospital EMR. We used a text mining approach on preoperative notes to obtain the 17 
text-based risk score algorithm as predictive of death within 30 days of surgery. We studied the 18 
additional performance obtained by including text-based risk score as a predictor of death along with 19 
other structured data based clinical risk factors. The C-statistic of a logistic regression model with 5-fold 20 
cross-validation significantly improved from 0.76 to 0.92 when text-based risk scores were included in 21 
addition to structured data. We conclude that preoperative free text notes in EMR include significant 22 
information that can predict adverse surgery outcomes. 23 
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1. Introduction 26 

The introduction should briefly place the study in a broad context and highlight why it is important. 27 
It The Health and Medicine Division of the National Academies of Science, Engineering and Medicine 28 
have documented medical error as a leading cause of death in the United States and suggested that health 29 
information technology has the potential to improve care and health outcomes[1]. To make this vision a 30 
reality requires the capacity to predict uncommon events that are potentially preventable. Death after 31 
surgery in children is an infrequent occurrence, with an incidence rate of <1.0%[2], [3]. Other adverse 32 
outcomes such as unplanned return to the operating room, reintubation after surgery, need for blood 33 
transfusions, and unplanned readmission are more common, with incidence rates ranging from 0.2% to 34 
4.4%[4]–[6].  Since over 5 million operations are performed on children each year in the United States[7], 35 
even a low rate of postoperative mortality represents thousands of lives lost prematurely. The best 36 
published models predicting these events rely on structured data such as that contained in the National 37 
Surgical Quality Improvement Program-Pediatric (NSQIP-Ped)[3], [8], [9]. Such models are useful in 38 
quality improvement work, risk-based payment methods, in improving surgical decision-making, and 39 
in providing accurate informed consent discussions with parents [10]–[13].  40 
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 41 

The value of EMR data mining for research applications and clinical care is beginning to be 42 
realized[14], [15]. However, analysis of the unstructured text data found in clinical narratives such as 43 
admission and discharge summaries, observation notes, and a variety of reports in the EMR has been 44 
relatively underutilized. Several Natural Language Processing (NLP) methods have been specifically 45 
developed for mining EMR data, including MedLEE[16], HiTex[17], cTAKES[18], and TEPAPA[19]. A 46 
recent systematic review showed that the majority of NLP approaches have focused on information 47 
extraction tasks such as case-detection[20]. Meta-analysis of 19 case-detection studies showed that the 48 
median precision and C-statistic significantly increased when unstructured text was used in addition to 49 
structured data from the EMR[20]. Examples of case-detection studies include identification of cancer 50 
patient trajectories[14], surveillance of coronary stents in a time- and cost-effective manner[21],  and 51 
improved accuracy in diagnosis of prostate cancer[22]. There are already some studies that have utilized 52 
unstructured text in the EMR to predict health outcomes. Frost et al.[23], using over 11,000 words from 53 
text fields in the EMR of over 43,000 patients in a logistic regression model, predicted risk of frequent 54 
emergency department visits and high system costs with a C-statistic of 0.71 and 0.76, respectively. 55 
Weissman et al. [24] showed that inclusion of unstructured text along with structured data improved 56 
prediction of death in the ICU by using four different predictive modeling approaches.  57 

Text-mining of clinical notes has been successfully used to identify postoperative complications in 58 
a population of veterans[25]. However, to the best of our knowledge, free text notes in EMR have not 59 
been utilized for predicting postoperative surgery outcomes in children. In this study, we examined the 60 
use of free text notes in the EMR for preoperative prediction of death after surgery in children. We 61 
hypothesized that 1) a risk score can be created through mining unstructured free text notes in EMRs and 62 
2) this text-based risk score will improve the performance of models that only use structured data such 63 
as those defined by NSQIP-Ped[26].   64 

2. Materials and Methods  65 

We analyzed a convenience sample of children undergoing inpatient surgical procedures at Le 66 
Bonheur Children’s Hospital, Memphis, TN, on or before their 19th birthday, whose medical records 67 
included preoperative free text notes and whose operation occurred between January 1, 2014 and May 68 
31, 2017. LeBonheur Children’s Hospital participates in the National Surgical Quality Improvement 69 
Project-Pediatric, and a surgical case reviewer abstracts clinical data for a nonrandom sample of children 70 
undergoing operative procedures. We term this the NSQIP cohort; children not included in the abstracted 71 
sample are termed the non-NSQIP cohort.  We separately extracted and analyzed free text from records 72 
of patients in the non-NSQIP cohort to develop the text-based risk score algorithm and implemented this 73 
algorithm on the NSQIP (test) cohort as described below. Backward elimination stepwise logistic 74 
regression was used to determine if the addition of the text-based risk scores improved performance of 75 
risk models derived from structured variables (See Figure 1 for details). 76 
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 77 

 78 

Figure 1 Summary of cohort determination and methods 79 

2.1. Text Mining and Development of Text-Based Risk Score: Unstructured text fields from 80 
all inpatient, outpatient and ambulatory settings prior to the date of surgery were extracted for 81 
individuals who had surgeries from January 2014 to May 2017. Records were extracted using HL7 82 
Clinical Document Architecture (HL7/CCA) standard from the Cerner EMR system by 83 
Methodist/LeBonheur Hospital, then converted to Continuity of Care Document (CCD) in XML, and 84 
submitted to Quire Inc. (Memphis, TN) for downstream processing. Each XML document represents a 85 
single patient encounter, which may potentially have multiple notes spanning multiple days at multiple 86 
locations.  In an example where a patient arrived at ER then transferred to surgery and had a later follow-87 
up visit, each of these three related interactions had an independent provider note but all notes were 88 
linked to one encounter ID (FIN). The unstructured text was UTF8 HTML encoded and extracted from 89 
the "text" element in the "Assessment and Plan" section of the XML document.  The HTML tags were 90 
removed and minimal formatting such as tabs and line breaks were kept in the final plain text document.  91 
The top 10 document types and corresponding counts were as follows: Clinical Document (311,960), 92 
Depart Clinical Summary (15,496), Ambulatory Visit Summary Depart (13,905), Office Visit Note (11,251), 93 
ED Clinical Summary (11,232), Pediatric Surgery (10,915), ENT (10,125), pediatric surgery (6,647), Teacher 94 
Note (6,462), and Progress Note (5,582). A more extensive list of document types is provided in Appendix 95 
B.  For each patient, all corresponding unstructured text fields were concatenated into one patient 96 
document. Patient documents were then pre-processed using a set of Python scripts to remove: 1) Form 97 
letters; 2) Tabulated numeric lab data; 3) Vital signs; and 4) Negation phrases. Negation rules for text 98 
processing were developed by Quire and were modified iteratively to achieve high precision for this 99 
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specific collection. Finally, only the most recent history and physical examination was included in each 100 
patient-document. All text processing steps described above were performed on the entire patient cohort 101 
(including the non-NSQIP training and NSQIP test sets described below). 102 

Semantic analysis and text-based risk prediction was performed using a proprietary software 103 
developed by Quire, which uses a vector space modeling approach called Latent Semantic Indexing[27]. 104 
Here, patients were represented as a vector of weighted terms extracted from their medical records. A 105 
log-entropy term weighting scheme was used as described by Berry and Browne[27]. Once the term-by-106 
patient matrix was constructed, singular value decomposition (SVD) was performed to reduce the 107 
dimensionality of this matrix into lower rank approximation (concept space).  We used a rank of 500 in 108 
this study based on evaluation of this and other collections. Patient similarities were calculated using the 109 
cosine of the vector angles[27].  110 

The Quire Predictive Modeling (QPM) algorithm ranks all patients in a collection based on the 111 
reduced-rank vector cosine values to a set of sentinel patients who exhibit the target outcome. A risk 112 
score is calculated for each patient based on the percentage of sentinels who have cosine similarities above 113 
a preset threshold. In this study, QPM was trained on the non-NSQIP cohort that included 4,738 patients, 114 
among whom 48 patients died within 30 days of surgery. A different cohort (NSQIP) of 1,759 patients 115 
was used for testing and evaluation.  A pseudo-document for each of the NSQIP patients was compared 116 
to the 48 non-NSQIP D30 patients to rank and generate risk scores. The risk scores of the non-NSQIP 117 
cohort were included in the regression model as described below. 118 

 119 

2.2. NSQIP-Ped Cohort: The methodology for NSQIP-Ped sampling of all pediatric surgery cases 120 
has been previously published[26].  Over 300 perioperative-standardized variables were collected. Death 121 
within 30 days of surgery (D30) was chosen as the main outcome variable.  Based on previous work by 122 
our group[3], [8], [9], fifteen preoperative variables were identified as risk factors of D30. Dichotomous 123 
risk factors included ventilator dependency, oxygen support, previous cardiac intervention, cerebral 124 
palsy, open wound with or without infections, neuromuscular disorder, bleeding disorder, hematologic 125 
disorder, inotropic support, blood transfusion, malignancy, do-not-resuscitate order, and neonatal status. 126 
Case type and sepsis were the two risk factors with more than two categories and were converted to 127 
multiple dichotomous risk factors. Finally, a total of 18 dichotomous preoperative risk factors were 128 
included in our analysis and were coded as Present (1) Absent (0), or missing. We excluded the American 129 
Society of Anesthesiology (ASA) class score since it has been shown to be covariate with most of the 130 
included variables, and is itself a risk score. NSQIP-Ped definitions for risk factors and outcomes were 131 
used throughout [26]. 132 

2.3. Hypothesis Testing and Prediction: We used the Kolmogorov-Smirnov test to check for the 133 
normality of data and the Mann-Whitney U test to check whether the distribution of text-based risk 134 
variable was the same for different categories of the outcome variables. We implemented stepwise logistic 135 
regression analysis with backward elimination in predicting outcomes of cases in the NSQIP-Ped cohort 136 
by A) using only text-based risk variables from unstructured data, B) using only 18 NSQIP-Ped risk 137 
factors, and C) using all factors in A and B as predictors. C-statistic calculation was used for model 138 
prediction performance, and the DeLong test[28] was used to compare the models. In addition to D30, 139 
the model was used to predict 11 separate secondary surgery outcomes including death within 90 days 140 
of surgery, unplanned readmission, unplanned readmission to operating room, unplanned repeat 141 
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surgery related to the principle surgery, unplanned second surgery, blood transfusion within 72 hours 142 
of surgery start time, postoperative unplanned intubations, postoperative systemic sepsis, septic shock, 143 
postoperative superficial incisional surgical site infections (SSI), and postoperative organ/space SSI. We 144 
have also implemented 5-fold cross-validation for each logistic regression model to avoid and detect any 145 
possible overfitting. 146 

3. Results 147 

This We analyzed inpatient records for 6,497 operative cases performed at Le Bonheur Children’s 148 
Hospital, Memphis, TN between January 1, 2014 and May 31, 2017 on patients aged 18 years or younger. 149 
A total of 719,308 free text notes were available for these cases. On 1,739 of these cases, we also had 150 
structured preoperative, operative, and postoperative data from the American College of Surgeons (ACS) 151 
National Surgery Quality Improvement Program (NSQIP)[26]. This group of cases makes up the NSQIP-152 
Ped Cohort and used as a testing data set for test-based risk score algorithm. The remaining 4,738 153 
operations in the non-NSQIP-Ped Cohort had text but no accompanying structured data. Therefore, the 154 
larger non-NSQIP-Ped group was used as the training data set to develop a text-based risk score and 155 
NSQIP cohort was used to evaluate the text-based risk score algorithm and for assessing whether text 156 
based risk score improve performance of models to predict surgery outcome when used with other 157 
structured data based preoperative risk factors.  158 

Mortality in the NSQIP-Ped and non-NSQIP-Ped cohorts were 11/1759 (0.63%) and 48/4738 (1.01%, 159 
p<0.01), respectively. Age at operation was younger for the NSQIP-Ped cohort (mean ± standard 160 
deviation of 6.4±6.0 years vs 7.1±5.3 years for non-NSQIP-Ped). Gender (55% male for both) and race (47% 161 
white vs. 45% white, 40% black vs. 43% black for NSQIP-Ped vs. non-NSQIP-Ped, respectively) were 162 
similar in the two cohorts.   163 

3.1. Association between free text-based risk score and death after surgery: The Quire Predictive 164 
Model (QPM) approach utilizes a variant of vector-space modeling to represent patients in a cohort as a 165 
vector of weighted terms in a reduced rank matrix. Given a set of patients with the target outcome, in 166 
this case death within 30 days of surgery (D30), all patients in the cohort can be ranked and scored based 167 
on their cosine similarities to the D30=Yes cases. We used the Mann-Whitney U test to compare text-168 
based risk scores since the text-based risk scores were non-normally distributed (Kolmogorov-Smirnov 169 
test p>0.1). The text-based risk scores were significantly higher (p<0.001, Mann-Whitney U Test) for D30 170 
cases compared with those who survived beyond 30 days in both non-NSQIP training set and NSQIP test 171 
set (Table 1). D30=Yes cases were concentrated at higher risk scores, both in the training data set (non-172 
NSQIP-Ped, data not shown) and in the test set (NSQIP-Ped) (see Figure 2).  173 

Table 1 Comparison of text-based risk scores for categories of D30  174 

Data Sets Categories Count Mean text-based risk; 95% CI Mann-Whitney U Test p 
value 

Non-NSQIP-
Ped 

D30=No 4690 0.35; 0.34-0.36 
<0.001 

D30=Yes 48 0.64; 0.59-0.72 

NSQIP-Ped D30=No 1748 0.44; 0.42-0.46 <0.001 
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D30=Yes 11 0.84; 0.78-0.90 

 175 

 176 

Figure 2 (Left) Text-based risk scores for NSQIP cohort for D30: 0 (No, Green) and 1 (Yes, Red). 177 
(Right) observed D30 (percentage) for four different levels of text-based risk scores 178 

3.2. Sensitivity Analysis for Text Based Risk Scores: The results above were based on risk scores 179 
for NSQIP cohort that were generated by a QPM model developed on non-NSQIP cohort that included 180 
48 D30=Yes cases, with a C-statistic of 0.83 (95% confidence interval (CI) 0.77-0.89). We performed a 181 
sensitivity analysis with 5 randomly selected sets of 10, 20, 30, and 40 D30=Yes cases that were projected 182 
onto the NSQIP-Ped cohort to calculate mortality risk.  These sets had average C-statistic of 0.80, 0.83, 183 
0.83, 0.83 in the NSQIP-Ped cohort, respectively. Figure 3 summarizes the C-statistics obtained for NSQIP 184 
cohort at each run of sensitivity analysis. These results suggest that as few as 20 sentinel D30 patients in 185 
the training cohort can be effectively used to calculate mortality risk in the test cohort.  186 
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 187 

Figure 3 Sensitivity analysis for QPM model 188 

3.3. Prediction of postsurgical mortality in the NSQIP-Ped cohort: We developed three logistic 189 
regression models predicting risk of death within 30 days of surgery; Model A using text-based risk score 190 
as a single predictor, Model B using 18 risk factors from structured data fields, and Model C using all 191 
variables from Model A and B. Model A, a logistic regression model with the text-based risk variable as 192 
a single predictor of D30 yielded a C-statistic of 0.83 (0.77-0.89, 95% CI) (Appendix A.1) without cross-193 
validation and 0.81 (0.74-0.88, 95% CI) with 5-fold cross-validation. Model B, a stepwise logistic 194 
regression model, identified ventilator status, bleeding disorder, and inotropic support as significant risk 195 
factors, yielding a C-statistic of 0.86 (0.69-1.00, 95% CI) (Appendix A.2) without cross-validation and 0.76 196 
(0.54-0.99) with 5-fold cross-validation. However, the difference between C-statistics of models A and B 197 
was found non-significant (p>0.1) by DeLong test. 198 

Finally, in Model C, we examined whether a stepwise logistic regression using 18 risk factors from 199 
structured data fields and one text-based risk score improved the prediction of D30. The final logistic 200 
regression model selected the text-based risk score, ventilator status, bleeding disorder, current receipt 201 
of inotropic support, and emergent case as significant risk factors, resulting in a C-statistic of 0.96 (0.92-202 
1.00, 95% CI) (Appendix A.3) without cross-validation and 0.92 (0.84-0.99) with 5-fold cross-validation 203 
using the same five selected variables. The values of regression coefficients and odd ratios of these five 204 
variables obtained for each run of cross-validation were found to be within the 95% confidence intervals 205 
(Appendix A.4). We have also implemented another cross-validation by implementing a stepwise logistic 206 
regression model at each run instead of using only the variables selected when a stepwise regression 207 
applied on the entire NSQIP data. Out of five runs of 5-fold cross validation process, text-based risk score, 208 
ventilator status, bleeding disorder, current receipt of inotropic support, and emergent case were selected 209 
in the stepwise logistic regression model 3, 5, 4, 3, 3 times, respectively. However, blood transfusion up 210 
to 72 hours prior to surgery, neonate status and septic shock status each were also selected in the logistic 211 
regression models one time each (Appendix A.5). We further implemented the DeLong test on C-statistics 212 
to confirm that simultaneous use of the text-based variable and NSQIP-Ped variables improved the 213 
logistic regression model’s performance. The performance of the final logistic regression model including 214 
both text-based risk scores and structured data was significantly better than the performance of models 215 
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using only text-based risk score (p=0.036) and the model using structured data-based risk factors 216 
(p=0.055) in terms of C-statistics. 217 

The combined logistic regression model for D30, using a cutoff value of 0.2667, correctly classified 218 
7 of 11 deaths (sensitivity of 63.6%) but also produced only 12 false positives (specificity of 99.3%), 219 
yielding positive predictive value (precision) of 36.8% and negative predictive value of ~100.0%. The 220 
cutoff value of 0.2667 was selected based on the maximum F1 score, defined as 2 × ݊݋݅ݏ݅ܿ݁ݎܲ ×221 
݊݋݅ݏ݅ܿ݁ݎܲ)/݈݈ܴܽܿ݁ + ܴ݈݈݁ܿܽ), obtained from the predicted probabilities from cross validation process and 222 
applied on the final non-cross validated predicted probabilities. We compared these high risk patients to 223 
the preoperative risk score (ranging from 1 to 5) developed by the American Society of Anesthesiology 224 
(ASA) class[29]. Eight of these false positives had ASA-class 4 and four had ASA-class 3 assignments. 225 
Moreover, on case resulted death within 30-90 days of surgery, one case had received unplanned 226 
postoperative intubation, four cases received unplanned blood transfusion within 72 hours of the surgery 227 
start time, once case had deep wound disruption, one case had surgery related readmission within 30 228 
days of surgery, and two cases had repeat surgeries related to the primary surgery. These results confirm 229 
that the text-based prediction identifies high-risk individuals. 230 

3.4. Association between free text-based risk score and other adverse surgery outcomes: The text-231 
based risk scores for the NSQIP-Ped cohort were also significantly (p<0.05, Mann-Whitney U test) 232 
associated with other outcomes such as death within 90 days of surgery, intra- or post-operative blood 233 
transfusion within 72 hours of surgery, unplanned readmission within 30 days of surgery, postoperative 234 
unplanned intubation, and first unplanned return to operating room (Table 2). In contrast, the text-based 235 
risk scores were not significantly associated with post-operative deep organ space surgical site infection. 236 

Table 2 Distribution of text-based risk scores over categories of binary outcomes for the NSQIP-Ped 237 
cohort 238 

Outcome Count 
Mean text-based risk  

value with 95%CI p value 

Death within 30 days of surgery 
No 1748 0.44; 0.42-0.45 

<0.001 
Yes 11 0.84; 0.78-0.90 

Death within 90 days of surgery 
No 1738 0.44; 0.42-0.45 

<0.001 
Yes 21 0.82; 0.77-0.87 

Postoperative superficial (incisional) 
surgical site infection 

No 1736 0.44; 0.42-0.45 
0.015 

Yes 23 0.62; 0.52-0.74 
Intra- or post-operative blood 
transfusion within 72 hours of surgery 
start time 

No 1625 0.45; 0.43-0.47 
<0.001 

Yes 134 0.31; 0.25-0.37 

Unplanned readmission within 30 
days of surgery 

No 1621 0.43; 0.41-0.45 
<0.001 

Yes 138 0.57; 0.51-0.62 

Postoperative Unplanned Intubation 
No 1735 0.43; 0.42-0.45 

0.001 
Yes 24 0.71; .061-0.81 

First Unplanned Return to Operating 
Room 

No 1690 0.44; 0.42-0.45 
0.039 

Yes 69 0.52; 0.43-0.60 

 239 
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3.5. The role of free text-based risk score in predicting other adverse surgery outcomes: The text-240 
based risk score (derived for predicting D30) was significantly predictive of death between 30-90 days 241 
after surgery (C-statistic 0.96, 0.92-0.99 95% CI), along with additional outcomes such as postoperative 242 
superficial incisional surgical site infection, intra- or post-operative blood transfusion within 72 hours of 243 
surgery start time, and unplanned readmission within 30 days of surgery (Table 3). Table 3 also includes 244 
the 5-fold cross-validation results for each logistic regression model. More details about the logistic 245 
regression models can be found in the Appendix A.6-A.10. 246 

Table 3 Logistic regression of outcome including text-based risk score as a predictor 247 

Outcome c-statistics with 95%CI  Selected Preoperative Risk Factors 

Death within 30 days of surgery 

No CV 0.96; 0.92-1.00 Text-based risk score, ventilator 
dependency, bleeding disorder, 
inotropic support, Emergent Case 5-fold CV 0.92; 0.84-0.99 

Death within 90 days of surgery 
No CV 0.95; 0.92-0.99 Text-based risk score, ventilator 

dependency, neonate, bleeding 
disorder, Emergent case  5-fold CV 0.94; 0.89-0.99 

Postoperative superficial 
incisional surgical site infection 

No CV 0.72; 0.61-0.83 
Text-based risk score, neonate 

5-fold CV 0.67; 0.55-0.79 

Intra- or post-operative blood 
transfusion within 72 hours of 
surgery start time 

No CV 0.76; 0.71-0.80 Text-based risk score, oxygen 
support, neuromuscular disorder, 
hematologic disorder, inotropic 
support, malignancy, urgent case 

5-fold CV 0.73; 0.69-0.78 

Unplanned readmission within 30 
days of surgery 

No CV 0.67; 0.62-0.72 Text-based risk score, neonate, 
SIRS, Sepsis 5-fold CV 0.66; 0.61-0.70 

 248 

4. Discussion 249 

Our study suggests that unstructured preoperative text available in EMRs contains critical 250 
information predictive of postoperative death in children undergoing surgical procedures.  Further, 251 
these data suggest that information contained in unstructured text notes can be useful even when 252 
distilled to a single risk variable developed via a text modeling approach. Finally, we found that the use 253 
of text-based risk scores combined with structured data improves the prediction accuracy of death 254 
within 30 days of surgery when compared with models using either unstructured or structured data 255 
from the NSQIP-Ped database alone.  256 

Data from the unstructured notes is currently used in creating clinically useful risk assessments for 257 
surgical procedures.  An example is the ASA class that is included as a key variable in  the Pediatric Risk 258 
Calculator by NSQIP-Ped[30] developed by American Colleague of Surgeons.  Automated systems 259 
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utilizing algorithms such as the one used in this study have the potential to decrease bias introduced by 260 
human retrieval and interpretation of such data and may save time for clinicians.  261 

The clinical utility of any risk assessment depends on its accuracy. US health expenditures are higher 262 
than other technically advanced countries reporting better objective health outcomes due in part to the 263 
provision of expensive care that is unlikely to provide meaningful benefit [31]. Sharing accurate risk 264 
estimates with the patient and family is a key component of informed consent and shared decision-265 
making.  This allows providers and consumers of surgical care to better weigh alternative treatments that 266 
may be less expensive and have equivalent benefit, or to forego treatment in settings where the 267 
probability of death after surgery approaches certainty.  Formal studies of the impact of clinical decision 268 
support tools for surgery are limited, but are needed to determine their impact on practice and patient 269 
outcomes. 270 

The integrative prediction model presented here was created to predict the risk of death within 30 271 
days of surgery. The finding that the novel text-based risk score also contributed to accurate prediction 272 
of other major surgery outcomes such as death within 90 days of surgery, postoperative surgical site 273 
infection, and unplanned blood transfusion and readmission within 30 days of surgery suggest that 274 
postoperative adverse events are interrelated. Logistic regression models for each of these outcomes 275 
performed almost equally well in 5-fold cross-validation, suggesting that the logistic regression models 276 
built on the text-based risk score are robust and generalizable to a broad variety of adverse events despite 277 
the challenges of a relatively small sample size and low event rate.  278 

Limitations: Our study has some limitations. The training set included all types of operations while 279 
the test set, NSQIP-Ped cohort, systematically excluded some operations[26]. Since the text-based risk 280 
scores are calculated based on vectorized combinations of thousands of terms extracted from patient 281 
records, the precise words that contribute to postsurgical mortality risk is difficult to deduce. The next 282 
step in our work will be to investigate specific keywords that are associated with modifiable risk factors 283 
to guide clinicians in developing interventions designed to reduce the risk of severe surgery outcomes.  284 

5. Conclusions 285 

We conclude that text data in EMRs can improve the ability of structured data tools to predict serious 286 
patient outcomes after surgery.  287 
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Appendix A: Supplementary Analysis Results 1 
 2 

1.  Logistic Regression Results for D30 using text-based risk score as a single 3 
predictor 4 

 5 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) with 95% CI 
Text-based risk 6.22 2.29 7.36 1 0.01 502.32 [5.61-44966.12 
Constant -9.40 1.94 23.52 1 0.00  
 

 6 
 7 

Area Under the Curve 

Area Std. Error Asymptotic Sig. 
Asymptotic 95% Confidence Interval 
Lower Bound Upper Bound 

0.83 0.03 0.00 0.77 0.89 
 8 

2. Logistic Regression Results for D30 using structured data based risk factors  9 
 10 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) with 95% CI 
 Ventilator 2.85 .98 8.51 1 0.00 17.21 [2.55-116-41] 
Bleeding Disorder 4.18 1.27 10.93 1 0.00 65.50 [55.-781-39] 
Inotropic Support 2.66 .99 7.34 1 0.01 14.29 [2.09-97.87] 
Constant -6.50 .61 114.26 1 0.00 0.00 
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 11 
 12 

Area Under the Curve 

Area Std. Errora Asymptotic Sig.b 
Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 
0.86 0.08 0.00 0.70 1.00 

 13 
 14 

3. Logistic Regression Results for D30 using both unstructured and structured data  15 
 16 

Variables in the Equation 17  
B with 95% CI Sig. Exp(B) with 95% CI 

Text-based risk 6.28 (0.42, 12.98)  0.066 533.40 [1.94-146823.50] 
Ventilator 2.07 (0.15, 3.99) 0.035 7.96 [1.58-40.00] 
Bleeding Disorder 3.56 (1.35, 5.81) 0.002 35.30 [5.33-233.67] 
Inotropic Support 2.29 (0.19, 4.39) 0.032 9.84 [1.70-57-11] 
Emergent Case 1.75 (0.03, 3.48) 0.046 5.76 [1.34-24.47] 
Constant -11.12 (-16.98, -5.26) .0000 

 

 18 

 19 
 20 
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Area Under the Curve 

Area Std. Errora Asymptotic Sig 
Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 
0.96 0.02 0.00 0.92 1.00 

 21 
4. 5-Fold Cross Validation using the five predictors selected in the Model C 22 

 23 
 AUC:Train-

Test 
Regression Coefficients 

Constant Text-
Based 
Risk 

Ventilator Bleeding 
Disorder 

Inotropic 
Support 

Emergent 
Case 

Run 1 0.98 - 0.84 -15.028 9.320 3.684 4.015 2.599 2.395 
Run 2 0.95 - 1.00 -10.307 5.772 1.626 2.281 2.398 1.697 
Run 3 0.95 - 0.99  -10.486 5.657 1.105 4.079 3.325 2.044 
Run 4 0.95 - 1.00 -11.294 7.013 1.687 3.623 1.897 1.359 
Run 5 0.96 - 0.87 -11.576 6.504 2.505 3.854 1.678 1.500 

 24 
 25 

5. 5-Fold Cross Validation by implementing Backward Elimination at each run 26 
 27 

 AUC: Train-Test Selected Variables 
Run 1 0.99 - 0.34 Ventilator, Bleeding Disorder, Emergent Case, Neonate 
Run 2 0.96 - 0.91 Text-based risk, Inotropic Support, Emergent Case, Neonate 
Run 3 0.96 - 0.90  Test-based risk, Bleeding Disorder, Inotropic Support, Emergent 

Case 
Run 4 0.94 - 1.00 Text-based risk, bleeding disorder, inotropic support, blood 

transfusion 
Run 5 0.87 - 0.84 Ventilator, Bleeding Disorder, Septic Shock 

 28 
 29 

6. Logistic Regression Results for D90 using both unstructured and structured data 30 
 31 

Variables in the Equation 32  
B S.E. Wald df Sig. Exp(B) with 95% CI 

Ventilator 2.98 0.61 23.75 1 .00 19.64 [5.93-65.04] 
Bleeding Disorder 2.91 0.98 8.80 1 .00 18.27 [2.68-124-52] 
Neonate 1.41 0.58 5.85 1 .02 4.09 [1.31-12.80] 
Emergent Case 1.41 0.67 4.48 1 .03 4.11 [1.11-15.25] 
Text-based risk 4.42 1.96 5.09 1 .02 83.31 [1.79-3886.07] 
Constant -9.23 1.68 30.25 1 .00 .00 

 33 
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 34 
 35 

Area Under the Curve 

Area Std. Error Asymptotic Sig 
Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 
0.95 0.02 0.00 0.92 0.99 

 36 
7. Logistic Regression Results for Postoperative Superficial Incisional Surgical Site 37 

Infection using both unstructured and structured data 38 
 39 

Variables in the Equation 40  
B S.E. Wald df Sig. Exp(B) with 95% CI 

Text-based risk 1.42 0.74 3.66 1 0.05 4.13 [0.97-17.66] 
Neonate 1.65 0.44 14.22 1 0.00 5.19 [2.21-12.21] 
Constant -5.49 0.51 115.29 1 0.00 

 

 41 

 42 
Area Under the Curve 

Area Std. Error Asymptotic Sig Asymptotic 95% Confidence Interval 
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Lower Bound Upper Bound 
0.72 0.06 0.00 0.61 0.83 

 43 
8. Logistic Regression Results for Postoperative Superficial Incisional Surgical Site 44 

Infection using both unstructured and structured data 45 
 46 

Variables in the Equation 47  
B S.E. Wald df Sig. Exp(B) with 95% CI 

Text-based risk 1.42 0.74 3.66 1 0.05 4.13 [0.97-17.66] 
Neonate 1.65 0.44 14.22 1 0.00 5.19 [2.21-12.21] 
Constant -5.49 0.51 115.29 1 0.00 0.00 

 48 

 49 
 50 

Area Under the Curve 

Area Std. Error Asymptotic Sig 
Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 
0.72 0.06 0.00 0.61 0.83 

 51 
 52 

9. Logistic Regression Results for Intra or Postoperative Blood Transfusion within 72 53 
hours of Surgery Start Time using both unstructured and structured data 54 

 55 
Variables in the Equation 56  

B S.E. Wald df Sig. Exp(B) with 95% CI 
Oxygen Support 1.06 0.40 7.092 1 0.01 2.87 [1.32-6.25] 
Neuromuscular Disorder 1.31 0.24 30.42 1 0.00 3.72 [2.33-5.94] 
Hematologic Disorders 1.20 0.33 12.96 1 0.00 3.32 [1.73-6.38] 
Inotropic Support 2.53 0.62 16.76 1 0.00 12.52 [3.73-41.98] 
Childhood Malignancy 0.52 0.25 4.116 1 0.04 1.67 [1.02-2.75] 
Urgent Case -1.95 0.74 7.014 1 0.01 .14 [0.03-0.60] 
D30risk -2.24 0.35 40.35 1 0.00 0.106 
Constant -2.11 0.15 198.08 1 0.00 0.12 

 57 
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 58 
 59 

Area Under the Curve 

Area Std. Error Asymptotic Sig 
Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 
0.76 0.02 0.00 0.71 0.80 

 60 
10. Logistic Regression Results for Unplanned Readmission within 30 days of Surgery 61 

using both unstructured and structured data 62 
 63 

Variables in the Equation 64  
B S.E. Wald df Sig. Exp(B) with 95% CI 

SIRS 0.89 0.43 4.32 1 0.04 2.43 [1.05-5.63] 
Sepsis 0.82 0.33 6.31 1 0.01 2.27 [1.20-4.49] 
Neonate -1.20 0.43 7.82 1 0.01 0.30 [0.13-0.70] 
Text-based risk 1.54 0.29 28.14 1 0.00 4.67 [2.64-8.25] 
Constant -3.28 0.20 272.16 1 0.00 0.04  

 65 

 66 
 67 

Area Under the Curve 

Area Std. Error Asymptotic Sig 
Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 
0.67 0.02 0.00 0.62 0.72 
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Appendix B: Top 100 Document types with text which were extracted from the EMR. 1 
 2 
Doc Type                                               TOTAL 3 
---------------------------------------------   ----------- 4 
Clinical Document                                    311,960 5 
Depart Clinical Summary                                 15,496 6 
Ambulatory Visit Summary Depart                         13,905 7 
Office Visit Note                                        11,251 8 
ED Clinical Summary                                     11,232 9 
Pediatric Surgery                                        10,915 10 
ENT                                                      10,125 11 
pediatric surgery                                           6,647 12 
Teacher Note                                                6,462 13 
Progress Note                                               5,582 14 
Surgery                                                     5,292 15 
Parenteral Nutrition                                        5,138 16 
General Message                                            5,119 17 
Oto-HNS                                                     4,903 18 
NICU Progress Note                                         4,724 19 
Parenteral Nutrition Service (269-0112)                   4,603 20 
PICU Progress Note                                         4,481 21 
LeBonheur Pathology Final Report                           3,968 22 
NSR                                                        3,896 23 
Progress                                                    3,619 24 
IMCU                                                        3,348 25 
progress                                                   3,239 26 
Ortho                                                       3,171 27 
attempt                                                     3,090 28 
IMCU Daily Progress Note                                   2,917 29 
Team D Progress Note                                       2,907 30 
AMB Visit Summary Depart                                   2,891 31 
Palliative Care Progress Note                              2,841 32 
ortho                                                       2,800 33 
Team A Progress Note                                      2,750 34 
follow up                                                   2,674 35 
PT note                                                     2,592 36 
Parenteral Nutrition (269-0112)                            2,573 37 
Discharge Summary                                         2,417 38 
OtoHNS                                                      2,396 39 
Team B Progress Note                                       2,386 40 
IMCU PN                                                     23,17 41 
IMCU daily                                                  2,268 42 
general surgery                                             2,223 43 
Parenteral Nutrition 269-0112                              2,172 44 
Neurology                                                  2,081 45 
Team C Progress Note                                       1,962 46 
IP-D                                                        1,916 47 
Discharge                                                   1,884 48 
surgery                                                     1,845 49 
MNT Follow Up                                              1,827 50 
EEG                                                         1,693 51 
discharge                                                   1,692 52 
Inpatient ST Progress Note                                 1,676 53 
Discharge Planning                                         1,647 54 
Attempt                                                     1,606 55 
Pulmonology                                                 1,574 56 
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Urology                                                     1,560 57 
DS                                                          1,470 58 
Pulmonology Attending Note                                 1,469 59 
Teacher note                                                1,458 60 
Trauma NP                                                   1,450 61 
PRS                                                         1,418 62 
PICU Daily Progress Note                                   1,380 63 
up date                                                     1,375 64 
IMCU Daily PN                                               1,321 65 
PICU Daily Note                                             1,244 66 
Pet Therapy                                                 1,241 67 
Peds Surgery                                                1,221 68 
Peds Surg                                                   1,203 69 
Contact                                                     1,198 70 
NSx                                                         1,150 71 
Daily Progress Note                                        1,148 72 
NICU                                                        1,134 73 
neurosurgery staff                                          1,133 74 
Assessment                                                  1,117 75 
Ped Nephrology                                             1,094 76 
Cardiology                                                  1,066 77 
FEFH                                                        1,066 78 
CVICU Progress Note                                        1,035 79 
tx note                                                     1,033 80 
peds surgery                                                1,024 81 
PICU Accept Note                                           1,023 82 
Neurosurgery                                                    978 83 
Abdominal pain                                                  962 84 
Team D PN                                                       937 85 
Teaching-Supervisory Addendum-Expand *ED          928 86 
GI Progress Note                                                924 87 
Fever                                                            904 88 
Plastic Surgery                                                  897 89 
IMCU note                                                        887 90 
Consult                                                          876 91 
ID Progress Note                                                869 92 
Neurosurgery staff                                                        855 93 
Neurosurgery NP note                                            844 94 
GI Daily Note                                                    837 95 
Vomiting                                                         823 96 
nsr                                                              821 97 
NICU Daily Progress Note                                        820 98 
DC Planning                                                      813 99 
Pediatric Nephrology                                            798 100 
Cardiology Office Visit Note                                    790 101 
GI                                                               782 102 
Parenteral Nutrition Service                                    769 103 
IP-D PT Note                                                     759 104 
 105 
Note that this study utilizes only preoperative text notes. Any post-operative document in the list above 106 
were belong the previous surgeries.  107 
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