

1 Unstructured text in EMR improves prediction of death 2 after surgery in children

3
4 Oguz Akbilgic ^{1,2,*}, Ramin Homayouni ^{3,4}, Kevin Heinrich ⁴, Max Raymond Langham, Jr ⁵, Robert
5 Lowell Davis ¹

6 ¹UTSHC-ORNL Center for Biomedical Informatics, Department of Pediatrics, Memphis, TN, USA

7 ²Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA

8 ³Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN, USA

9 ⁴Quire Inc, Memphis, TN, USA

10 ⁵Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA

11

12 * Correspondence: oz@uthsc.edu, +1-901-287-5841

13

14 **Abstract:** Text fields in electronic medical records (EMR) contain information on important factors that
15 influence health outcomes, however, they are underutilized in clinical decision making due to their
16 unstructured nature. We analyzed 6,497 inpatient surgical cases with 719,308 free text notes from Le
17 Bonheur Children's Hospital EMR. We used a text mining approach on preoperative notes to obtain the
18 text-based risk score algorithm as predictive of death within 30 days of surgery. We studied the
19 additional performance obtained by including text-based risk score as a predictor of death along with
20 other structured data based clinical risk factors. The C-statistic of a logistic regression model with 5-fold
21 cross-validation significantly improved from 0.76 to 0.92 when text-based risk scores were included in
22 addition to structured data. We conclude that preoperative free text notes in EMR include significant
23 information that can predict adverse surgery outcomes.

24 **Keywords:** Post-operative death, unstructured data, logistic regression, text mining, surgery outcome
25

26 1. Introduction

27 The introduction should briefly place the study in a broad context and highlight why it is important.
28 It The Health and Medicine Division of the National Academies of Science, Engineering and Medicine
29 have documented medical error as a leading cause of death in the United States and suggested that health
30 information technology has the potential to improve care and health outcomes[1]. To make this vision a
31 reality requires the capacity to predict uncommon events that are potentially preventable. Death after
32 surgery in children is an infrequent occurrence, with an incidence rate of <1.0%[2], [3]. Other adverse
33 outcomes such as unplanned return to the operating room, reintubation after surgery, need for blood
34 transfusions, and unplanned readmission are more common, with incidence rates ranging from 0.2% to
35 4.4%[4]–[6]. Since over 5 million operations are performed on children each year in the United States[7],
36 even a low rate of postoperative mortality represents thousands of lives lost prematurely. The best
37 published models predicting these events rely on structured data such as that contained in the National
38 Surgical Quality Improvement Program-Pediatric (NSQIP-Ped)[3], [8], [9]. Such models are useful in
39 quality improvement work, risk-based payment methods, in improving surgical decision-making, and
40 in providing accurate informed consent discussions with parents [10]–[13].

41

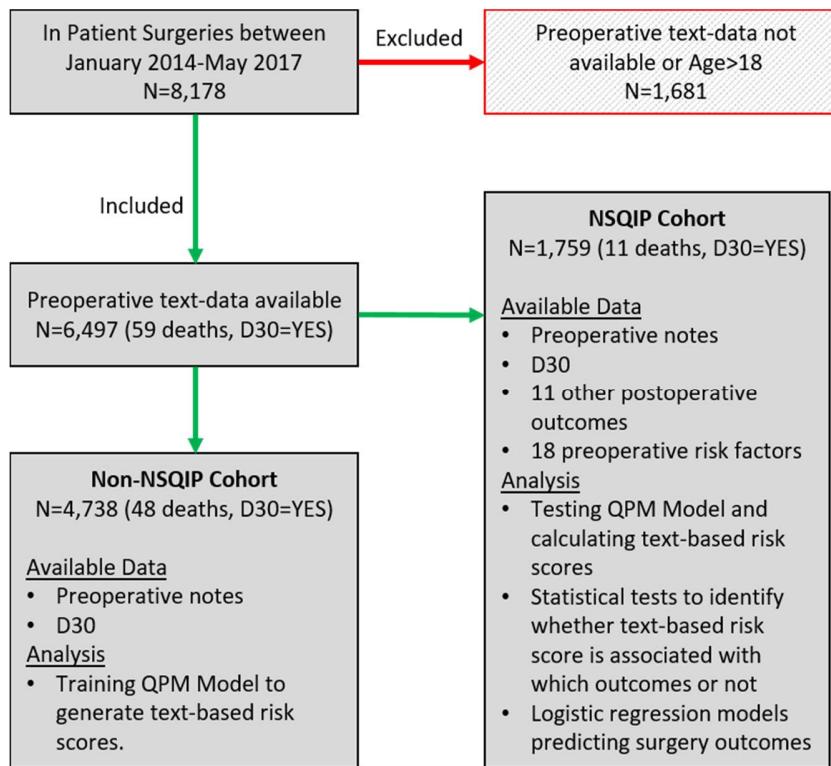
42 The value of EMR data mining for research applications and clinical care is beginning to be
43 realized[14], [15]. However, analysis of the unstructured text data found in clinical narratives such as
44 admission and discharge summaries, observation notes, and a variety of reports in the EMR has been
45 relatively underutilized. Several Natural Language Processing (NLP) methods have been specifically
46 developed for mining EMR data, including MedLEE[16], HiTex[17], cTAKES[18], and TEPAPA[19]. A
47 recent systematic review showed that the majority of NLP approaches have focused on information
48 extraction tasks such as case-detection[20]. Meta-analysis of 19 case-detection studies showed that the
49 median precision and C-statistic significantly increased when unstructured text was used in addition to
50 structured data from the EMR[20]. Examples of case-detection studies include identification of cancer
51 patient trajectories[14], surveillance of coronary stents in a time- and cost-effective manner[21], and
52 improved accuracy in diagnosis of prostate cancer[22]. There are already some studies that have utilized
53 unstructured text in the EMR to predict health outcomes. Frost et al.[23], using over 11,000 words from
54 text fields in the EMR of over 43,000 patients in a logistic regression model, predicted risk of frequent
55 emergency department visits and high system costs with a C-statistic of 0.71 and 0.76, respectively.
56 Weissman et al. [24] showed that inclusion of unstructured text along with structured data improved
57 prediction of death in the ICU by using four different predictive modeling approaches.

58 Text-mining of clinical notes has been successfully used to identify postoperative complications in
59 a population of veterans[25]. However, to the best of our knowledge, free text notes in EMR have not
60 been utilized for predicting postoperative surgery outcomes in children. In this study, we examined the
61 use of free text notes in the EMR for preoperative prediction of death after surgery in children. We
62 hypothesized that 1) a risk score can be created through mining unstructured free text notes in EMRs and
63 2) this text-based risk score will improve the performance of models that only use structured data such
64 as those defined by NSQIP-Ped[26].

65 2. Materials and Methods

66 We analyzed a convenience sample of children undergoing inpatient surgical procedures at Le
67 Bonheur Children's Hospital, Memphis, TN, on or before their 19th birthday, whose medical records
68 included preoperative free text notes and whose operation occurred between January 1, 2014 and May
69 31, 2017. LeBonheur Children's Hospital participates in the National Surgical Quality Improvement
70 Project-Pediatric, and a surgical case reviewer abstracts clinical data for a nonrandom sample of children
71 undergoing operative procedures. We term this the NSQIP cohort; children not included in the abstracted
72 sample are termed the non-NSQIP cohort. We separately extracted and analyzed free text from records
73 of patients in the non-NSQIP cohort to develop the text-based risk score algorithm and implemented this
74 algorithm on the NSQIP (test) cohort as described below. Backward elimination stepwise logistic
75 regression was used to determine if the addition of the text-based risk scores improved performance of
76 risk models derived from structured variables (See Figure 1 for details).

77



78

79 **Figure 1** Summary of cohort determination and methods

80 **2.1. Text Mining and Development of Text-Based Risk Score:** Unstructured text fields from
 81 all inpatient, outpatient and ambulatory settings prior to the date of surgery were extracted for
 82 individuals who had surgeries from January 2014 to May 2017. Records were extracted using HL7
 83 Clinical Document Architecture (HL7/CCA) standard from the Cerner EMR system by
 84 Methodist/LeBonheur Hospital, then converted to Continuity of Care Document (CCD) in XML, and
 85 submitted to Quire Inc. (Memphis, TN) for downstream processing. Each XML document represents a
 86 single patient encounter, which may potentially have multiple notes spanning multiple days at multiple
 87 locations. In an example where a patient arrived at ER then transferred to surgery and had a later follow-
 88 up visit, each of these three related interactions had an independent provider note but all notes were
 89 linked to one encounter ID (FIN). The unstructured text was UTF8 HTML encoded and extracted from
 90 the "text" element in the "Assessment and Plan" section of the XML document. The HTML tags were
 91 removed and minimal formatting such as tabs and line breaks were kept in the final plain text document.
 92 The top 10 document types and corresponding counts were as follows: Clinical Document (311,960),
 93 Depart Clinical Summary (15,496), Ambulatory Visit Summary Depart (13,905), Office Visit Note (11,251),
 94 ED Clinical Summary (11,232), Pediatric Surgery (10,915), ENT (10,125), pediatric surgery (6,647), Teacher
 95 Note (6,462), and Progress Note (5,582). A more extensive list of document types is provided in Appendix
 96 B. For each patient, all corresponding unstructured text fields were concatenated into one patient
 97 document. Patient documents were then pre-processed using a set of Python scripts to remove: 1) Form
 98 letters; 2) Tabulated numeric lab data; 3) Vital signs; and 4) Negation phrases. Negation rules for text
 99 processing were developed by Quire and were modified iteratively to achieve high precision for this

100 specific collection. Finally, only the most recent history and physical examination was included in each
101 patient-document. All text processing steps described above were performed on the entire patient cohort
102 (including the non-NSQIP training and NSQIP test sets described below).

103 Semantic analysis and text-based risk prediction was performed using a proprietary software
104 developed by Quire, which uses a vector space modeling approach called Latent Semantic Indexing[27].
105 Here, patients were represented as a vector of weighted terms extracted from their medical records. A
106 log-entropy term weighting scheme was used as described by Berry and Browne[27]. Once the term-by-
107 patient matrix was constructed, singular value decomposition (SVD) was performed to reduce the
108 dimensionality of this matrix into lower rank approximation (concept space). We used a rank of 500 in
109 this study based on evaluation of this and other collections. Patient similarities were calculated using the
110 cosine of the vector angles[27].

111 The Quire Predictive Modeling (QPM) algorithm ranks all patients in a collection based on the
112 reduced-rank vector cosine values to a set of sentinel patients who exhibit the target outcome. A risk
113 score is calculated for each patient based on the percentage of sentinels who have cosine similarities above
114 a preset threshold. In this study, QPM was trained on the non-NSQIP cohort that included 4,738 patients,
115 among whom 48 patients died within 30 days of surgery. A different cohort (NSQIP) of 1,759 patients
116 was used for testing and evaluation. A pseudo-document for each of the NSQIP patients was compared
117 to the 48 non-NSQIP D30 patients to rank and generate risk scores. The risk scores of the non-NSQIP
118 cohort were included in the regression model as described below.

119

120 **2.2. NSQIP-Ped Cohort:** The methodology for NSQIP-Ped sampling of all pediatric surgery cases
121 has been previously published[26]. Over 300 perioperative-standardized variables were collected. Death
122 within 30 days of surgery (D30) was chosen as the main outcome variable. Based on previous work by
123 our group[3], [8], [9], fifteen preoperative variables were identified as risk factors of D30. Dichotomous
124 risk factors included ventilator dependency, oxygen support, previous cardiac intervention, cerebral
125 palsy, open wound with or without infections, neuromuscular disorder, bleeding disorder, hematologic
126 disorder, inotropic support, blood transfusion, malignancy, do-not-resuscitate order, and neonatal status.
127 Case type and sepsis were the two risk factors with more than two categories and were converted to
128 multiple dichotomous risk factors. Finally, a total of 18 dichotomous preoperative risk factors were
129 included in our analysis and were coded as Present (1) Absent (0), or missing. We excluded the American
130 Society of Anesthesiology (ASA) class score since it has been shown to be covariate with most of the
131 included variables, and is itself a risk score. NSQIP-Ped definitions for risk factors and outcomes were
132 used throughout [26].

133 **2.3. Hypothesis Testing and Prediction:** We used the Kolmogorov-Smirnov test to check for the
134 normality of data and the Mann-Whitney U test to check whether the distribution of text-based risk
135 variable was the same for different categories of the outcome variables. We implemented stepwise logistic
136 regression analysis with backward elimination in predicting outcomes of cases in the NSQIP-Ped cohort
137 by A) using only text-based risk variables from unstructured data, B) using only 18 NSQIP-Ped risk
138 factors, and C) using all factors in A and B as predictors. C-statistic calculation was used for model
139 prediction performance, and the DeLong test[28] was used to compare the models. In addition to D30,
140 the model was used to predict 11 separate secondary surgery outcomes including death within 90 days
141 of surgery, unplanned readmission, unplanned readmission to operating room, unplanned repeat

142 surgery related to the principle surgery, unplanned second surgery, blood transfusion within 72 hours
 143 of surgery start time, postoperative unplanned intubations, postoperative systemic sepsis, septic shock,
 144 postoperative superficial incisional surgical site infections (SSI), and postoperative organ/space SSI. We
 145 have also implemented 5-fold cross-validation for each logistic regression model to avoid and detect any
 146 possible overfitting.

147 **3. Results**

148 This We analyzed inpatient records for 6,497 operative cases performed at Le Bonheur Children's
 149 Hospital, Memphis, TN between January 1, 2014 and May 31, 2017 on patients aged 18 years or younger.
 150 A total of 719,308 free text notes were available for these cases. On 1,739 of these cases, we also had
 151 structured preoperative, operative, and postoperative data from the American College of Surgeons (ACS)
 152 National Surgery Quality Improvement Program (NSQIP)[26]. This group of cases makes up the NSQIP-
 153 Ped Cohort and used as a testing data set for test-based risk score algorithm. The remaining 4,738
 154 operations in the non-NSQIP-Ped Cohort had text but no accompanying structured data. Therefore, the
 155 larger non-NSQIP-Ped group was used as the training data set to develop a text-based risk score and
 156 NSQIP cohort was used to evaluate the text-based risk score algorithm and for assessing whether text
 157 based risk score improve performance of models to predict surgery outcome when used with other
 158 structured data based preoperative risk factors.

159 Mortality in the NSQIP-Ped and non-NSQIP-Ped cohorts were 11/1759 (0.63%) and 48/4738 (1.01%,
 160 $p<0.01$), respectively. Age at operation was younger for the NSQIP-Ped cohort (mean \pm standard
 161 deviation of 6.4 ± 6.0 years vs 7.1 ± 5.3 years for non-NSQIP-Ped). Gender (55% male for both) and race (47%
 162 white vs. 45% white, 40% black vs. 43% black for NSQIP-Ped vs. non-NSQIP-Ped, respectively) were
 163 similar in the two cohorts.

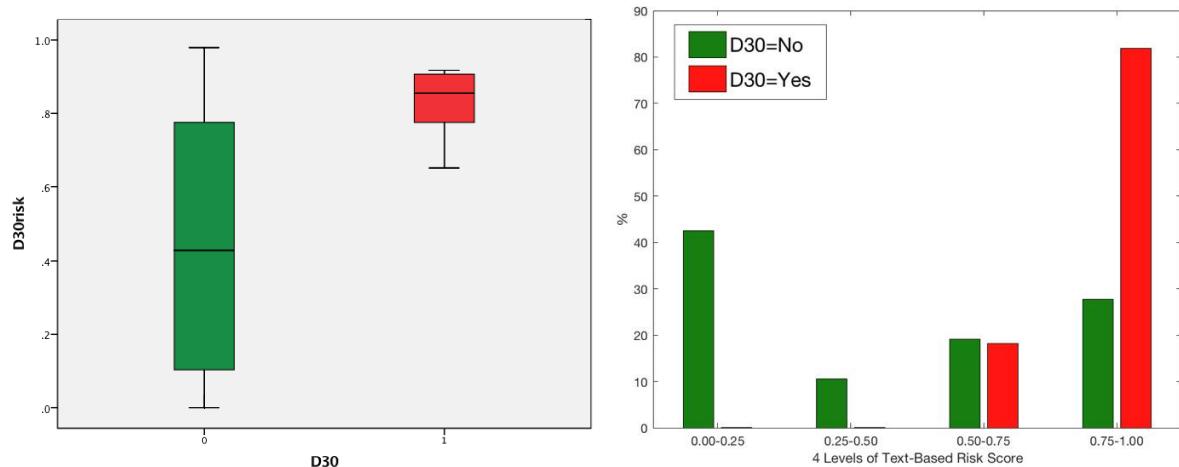
164 **3.1. Association between free text-based risk score and death after surgery:** The Quire Predictive
 165 Model (QPM) approach utilizes a variant of vector-space modeling to represent patients in a cohort as a
 166 vector of weighted terms in a reduced rank matrix. Given a set of patients with the target outcome, in
 167 this case death within 30 days of surgery (D30), all patients in the cohort can be ranked and scored based
 168 on their cosine similarities to the D30=Yes cases. We used the Mann-Whitney U test to compare text-
 169 based risk scores since the text-based risk scores were non-normally distributed (Kolmogorov-Smirnov
 170 test $p>0.1$). The text-based risk scores were significantly higher ($p<0.001$, Mann-Whitney U Test) for D30
 171 cases compared with those who survived beyond 30 days in both non-NSQIP training set and NSQIP test
 172 set (Table 1). D30=Yes cases were concentrated at higher risk scores, both in the training data set (non-
 173 NSQIP-Ped, data not shown) and in the test set (NSQIP-Ped) (see Figure 2).

174 **Table 1** Comparison of text-based risk scores for categories of D30

Data Sets	Categories	Count	Mean text-based risk; 95% CI	Mann-Whitney U Test p value
Non-NSQIP-Ped	D30=No	4690	0.35; 0.34-0.36	<0.001
	D30=Yes	48	0.64; 0.59-0.72	
NSQIP-Ped	D30=No	1748	0.44; 0.42-0.46	<0.001

	D30=Yes	11	0.84; 0.78-0.90	
--	---------	----	-----------------	--

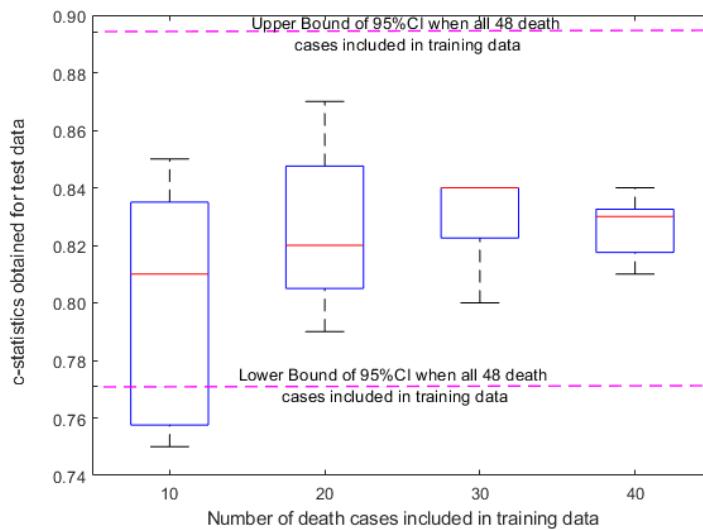
175



176

177 **Figure 2 (Left)** Text-based risk scores for NSQIP cohort for D30: 0 (No, Green) and 1 (Yes, Red).
 178 **(Right)** observed D30 (percentage) for four different levels of text-based risk scores

179 **3.2. Sensitivity Analysis for Text Based Risk Scores:** The results above were based on risk scores
 180 for NSQIP cohort that were generated by a QPM model developed on non-NSQIP cohort that included
 181 48 D30=Yes cases, with a C-statistic of 0.83 (95% confidence interval (CI) 0.77-0.89). We performed a
 182 sensitivity analysis with 5 randomly selected sets of 10, 20, 30, and 40 D30=Yes cases that were projected
 183 onto the NSQIP-Ped cohort to calculate mortality risk. These sets had average C-statistic of 0.80, 0.83,
 184 0.83, 0.83 in the NSQIP-Ped cohort, respectively. Figure 3 summarizes the C-statistics obtained for NSQIP
 185 cohort at each run of sensitivity analysis. These results suggest that as few as 20 sentinel D30 patients in
 186 the training cohort can be effectively used to calculate mortality risk in the test cohort.



187

188

Figure 3 Sensitivity analysis for QPM model

189 **3.3. Prediction of postsurgical mortality in the NSQIP-Ped cohort:** We developed three logistic
 190 regression models predicting risk of death within 30 days of surgery; Model A using text-based risk score
 191 as a single predictor, Model B using 18 risk factors from structured data fields, and Model C using all
 192 variables from Model A and B. Model A, a logistic regression model with the text-based risk variable as
 193 a single predictor of D30 yielded a C-statistic of 0.83 (0.77-0.89, 95% CI) (Appendix A.1) without cross-
 194 validation and 0.81 (0.74-0.88, 95% CI) with 5-fold cross-validation. Model B, a stepwise logistic
 195 regression model, identified ventilator status, bleeding disorder, and inotropic support as significant risk
 196 factors, yielding a C-statistic of 0.86 (0.69-1.00, 95% CI) (Appendix A.2) without cross-validation and 0.76
 197 (0.54-0.99) with 5-fold cross-validation. However, the difference between C-statistics of models A and B
 198 was found non-significant ($p>0.1$) by DeLong test.

199 Finally, in Model C, we examined whether a stepwise logistic regression using 18 risk factors from
 200 structured data fields and one text-based risk score improved the prediction of D30. The final logistic
 201 regression model selected the text-based risk score, ventilator status, bleeding disorder, current receipt
 202 of inotropic support, and emergent case as significant risk factors, resulting in a C-statistic of 0.96 (0.92-
 203 1.00, 95% CI) (Appendix A.3) without cross-validation and 0.92 (0.84-0.99) with 5-fold cross-validation
 204 using the same five selected variables. The values of regression coefficients and odd ratios of these five
 205 variables obtained for each run of cross-validation were found to be within the 95% confidence intervals
 206 (Appendix A.4). We have also implemented another cross-validation by implementing a stepwise logistic
 207 regression model at each run instead of using only the variables selected when a stepwise regression
 208 applied on the entire NSQIP data. Out of five runs of 5-fold cross validation process, text-based risk score,
 209 ventilator status, bleeding disorder, current receipt of inotropic support, and emergent case were selected
 210 in the stepwise logistic regression model 3, 5, 4, 3, 3 times, respectively. However, blood transfusion up
 211 to 72 hours prior to surgery, neonate status and septic shock status each were also selected in the logistic
 212 regression models one time each (Appendix A.5). We further implemented the DeLong test on C-statistics
 213 to confirm that simultaneous use of the text-based variable and NSQIP-Ped variables improved the
 214 logistic regression model's performance. The performance of the final logistic regression model including
 215 both text-based risk scores and structured data was significantly better than the performance of models

216 using only text-based risk score ($p=0.036$) and the model using structured data-based risk factors
 217 ($p=0.055$) in terms of C-statistics.

218 The combined logistic regression model for D30, using a cutoff value of 0.2667, correctly classified
 219 7 of 11 deaths (sensitivity of 63.6%) but also produced only 12 false positives (specificity of 99.3%),
 220 yielding positive predictive value (precision) of 36.8% and negative predictive value of ~100.0%. The
 221 cutoff value of 0.2667 was selected based on the maximum F1 score, defined as $2 \times Precision \times$
 222 $Recall / (Precision + Recall)$, obtained from the predicted probabilities from cross validation process and
 223 applied on the final non-cross validated predicted probabilities. We compared these high risk patients to
 224 the preoperative risk score (ranging from 1 to 5) developed by the American Society of Anesthesiology
 225 (ASA) class[29]. Eight of these false positives had ASA-class 4 and four had ASA-class 3 assignments.
 226 Moreover, on case resulted death within 30-90 days of surgery, one case had received unplanned
 227 postoperative intubation, four cases received unplanned blood transfusion within 72 hours of the surgery
 228 start time, once case had deep wound disruption, one case had surgery related readmission within 30
 229 days of surgery, and two cases had repeat surgeries related to the primary surgery. These results confirm
 230 that the text-based prediction identifies high-risk individuals.

231 **3.4. Association between free text-based risk score and other adverse surgery outcomes:** The text-
 232 based risk scores for the NSQIP-Ped cohort were also significantly ($p<0.05$, Mann-Whitney U test)
 233 associated with other outcomes such as death within 90 days of surgery, intra- or post-operative blood
 234 transfusion within 72 hours of surgery, unplanned readmission within 30 days of surgery, postoperative
 235 unplanned intubation, and first unplanned return to operating room (Table 2). In contrast, the text-based
 236 risk scores were not significantly associated with post-operative deep organ space surgical site infection.

237 **Table 2** Distribution of text-based risk scores over categories of binary outcomes for the NSQIP-Ped
 238 cohort

Outcome		Count	Mean text-based risk value with 95%CI	p value
Death within 30 days of surgery	No	1748	0.44; 0.42-0.45	<0.001
	Yes	11	0.84; 0.78-0.90	
Death within 90 days of surgery	No	1738	0.44; 0.42-0.45	<0.001
	Yes	21	0.82; 0.77-0.87	
Postoperative superficial (incisional) surgical site infection	No	1736	0.44; 0.42-0.45	0.015
	Yes	23	0.62; 0.52-0.74	
Intra- or post-operative blood transfusion within 72 hours of surgery start time	No	1625	0.45; 0.43-0.47	<0.001
	Yes	134	0.31; 0.25-0.37	
Unplanned readmission within 30 days of surgery	No	1621	0.43; 0.41-0.45	<0.001
	Yes	138	0.57; 0.51-0.62	
Postoperative Unplanned Intubation	No	1735	0.43; 0.42-0.45	0.001
	Yes	24	0.71; 0.61-0.81	
First Unplanned Return to Operating Room	No	1690	0.44; 0.42-0.45	0.039
	Yes	69	0.52; 0.43-0.60	

240 **3.5. The role of free text-based risk score in predicting other adverse surgery outcomes:** The text-
 241 based risk score (derived for predicting D30) was significantly predictive of death between 30-90 days
 242 after surgery (C-statistic 0.96, 0.92-0.99 95% CI), along with additional outcomes such as postoperative
 243 superficial incisional surgical site infection, intra- or post-operative blood transfusion within 72 hours of
 244 surgery start time, and unplanned readmission within 30 days of surgery (Table 3). Table 3 also includes
 245 the 5-fold cross-validation results for each logistic regression model. More details about the logistic
 246 regression models can be found in the Appendix A.6-A.10.

247 **Table 3** Logistic regression of outcome including text-based risk score as a predictor

Outcome	c-statistics with 95%CI		Selected Preoperative Risk Factors
<i>Death within 30 days of surgery</i>	No CV	0.96; 0.92-1.00	Text-based risk score, ventilator dependency, bleeding disorder, inotropic support, Emergent Case
	5-fold CV	0.92; 0.84-0.99	
<i>Death within 90 days of surgery</i>	No CV	0.95; 0.92-0.99	Text-based risk score, ventilator dependency, neonate, bleeding disorder, Emergent case
	5-fold CV	0.94; 0.89-0.99	
<i>Postoperative superficial incisional surgical site infection</i>	No CV	0.72; 0.61-0.83	Text-based risk score, neonate
	5-fold CV	0.67; 0.55-0.79	
<i>Intra- or post-operative blood transfusion within 72 hours of surgery start time</i>	No CV	0.76; 0.71-0.80	Text-based risk score, oxygen support, neuromuscular disorder, hematologic disorder, inotropic support, malignancy, urgent case
	5-fold CV	0.73; 0.69-0.78	
<i>Unplanned readmission within 30 days of surgery</i>	No CV	0.67; 0.62-0.72	Text-based risk score, neonate, SIRS, Sepsis
	5-fold CV	0.66; 0.61-0.70	

248

249 **4. Discussion**

250 Our study suggests that unstructured preoperative text available in EMRs contains critical
 251 information predictive of postoperative death in children undergoing surgical procedures. Further,
 252 these data suggest that information contained in unstructured text notes can be useful even when
 253 distilled to a single risk variable developed via a text modeling approach. Finally, we found that the use
 254 of text-based risk scores combined with structured data improves the prediction accuracy of death
 255 within 30 days of surgery when compared with models using either unstructured or structured data
 256 from the NSQIP-Ped database alone.

257 Data from the unstructured notes is currently used in creating clinically useful risk assessments for
 258 surgical procedures. An example is the ASA class that is included as a key variable in the Pediatric Risk
 259 Calculator by NSQIP-Ped[30] developed by American Colleague of Surgeons. Automated systems

260 utilizing algorithms such as the one used in this study have the potential to decrease bias introduced by
261 human retrieval and interpretation of such data and may save time for clinicians.

262 The clinical utility of any risk assessment depends on its accuracy. US health expenditures are higher
263 than other technically advanced countries reporting better objective health outcomes due in part to the
264 provision of expensive care that is unlikely to provide meaningful benefit [31]. Sharing accurate risk
265 estimates with the patient and family is a key component of informed consent and shared decision-
266 making. This allows providers and consumers of surgical care to better weigh alternative treatments that
267 may be less expensive and have equivalent benefit, or to forego treatment in settings where the
268 probability of death after surgery approaches certainty. Formal studies of the impact of clinical decision
269 support tools for surgery are limited, but are needed to determine their impact on practice and patient
270 outcomes.

271 The integrative prediction model presented here was created to predict the risk of death within 30
272 days of surgery. The finding that the novel text-based risk score also contributed to accurate prediction
273 of other major surgery outcomes such as death within 90 days of surgery, postoperative surgical site
274 infection, and unplanned blood transfusion and readmission within 30 days of surgery suggest that
275 postoperative adverse events are interrelated. Logistic regression models for each of these outcomes
276 performed almost equally well in 5-fold cross-validation, suggesting that the logistic regression models
277 built on the text-based risk score are robust and generalizable to a broad variety of adverse events despite
278 the challenges of a relatively small sample size and low event rate.

279 **Limitations:** Our study has some limitations. The training set included all types of operations while
280 the test set, NSQIP-Ped cohort, systematically excluded some operations[26]. Since the text-based risk
281 scores are calculated based on vectorized combinations of thousands of terms extracted from patient
282 records, the precise words that contribute to postsurgical mortality risk is difficult to deduce. The next
283 step in our work will be to investigate specific keywords that are associated with modifiable risk factors
284 to guide clinicians in developing interventions designed to reduce the risk of severe surgery outcomes.

285 5. Conclusions

286 We conclude that text data in EMRs can improve the ability of structured data tools to predict serious
287 patient outcomes after surgery.

288 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1, Appendix A and B.

289 **Author Contributions:** OA and RLD designed and conceptualized the research. OA performed the statistical
290 analysis and drafted the manuscript. RH and KH carried out text data acquisition and text mining. ML provided
291 cleaned structured data and clinical outcomes. All authors contributed to reviewing and writing of the manuscript.

292 **Funding:** This research received no external funding.

293 **Acknowledgments:** We would like to extend our appreciation to Mark McMath, Anuj Mathur, Deepthi Kurup, and
294 Brian Marshall for making the EMR data available for this study. We also thank Robert Beck for abstracting NSQIP
295 data, Ari Walter and Ruchi Ruchi for gathering and validating data and Shane Morrell for processing the text data
296 and running the Quire applications. We would also like to thank Amada Preston from the LeBonheur Scientific
297 Writing Office and Rich Redfearn and Patti Smith for editing the manuscript.

298 **Conflicts of Interest:** Authors KH and RH are affiliated with Quire Inc. (Memphis, TN). Quire personnel were
299 involved in data extraction from the EMR system at Methodist Hospital (Memphis, TN) under a Business Associates
300 Agreement. The other authors have no conflict of interest.

301

302 Appendix

- Appendix A: Supplementary Analysis Results
- Appendix B: Logistic Regression Results for D30 using structured data based risk factors.

References

306 [1] B. S. Systems, *Health IT and Patient Safety : Building Safer Systems for Better Care*, no. November.
307 2011.

308 [2] B. F. Van Der Griend *et al.*, "Postoperative mortality in children after 101,885 anesthetics at a
309 tertiary pediatric hospital," *Anesth. Analg.*, vol. 112, no. 6, pp. 1440–1447, 2011.

310 [3] O. Akbilgic, M. R. Langham, A. I. Walter, T. L. Jones, E. Y. Huang, and R. L. Davis, "A novel risk
311 classification system for 30-day mortality in children undergoing surgery," *PLoS One*, vol. 13,
312 no. 1, 2018.

313 [4] E. C. Cheon *et al.*, "Unplanned, Postoperative Intubation in Pediatric Surgical Patients:
314 Development and Validation of a Multivariable Prediction Model," *Anesthesiology*, vol. 125, no.
315 5, pp. 914–928, 2016.

316 [5] A. M. Stey *et al.*, "Variation in intraoperative and postoperative red blood cell transfusion in
317 pediatric surgery," *Transfusion*, vol. 56, no. 3, pp. 666–672, 2016.

318 [6] E. G. Brown, J. E. Anderson, D. Burgess, R. J. Bold, and D. L. Farmer, "Pediatric surgical
319 readmissions: Are they truly preventable?," *J. Pediatr. Surg.*, vol. 52, no. 1, pp. 161–165, 2017.

320 [7] *Optimal Resources for Children's Surgical Care*, vol. v.1. 2015.

321 [8] M. R. Langham, A. Walter, T. C. Boswell, R. Beck, and T. L. Jones, "Identifying children at risk of
322 death within 30 days of surgery at an NSQIP pediatric hospital," *Surgery*, vol. 158, no. 6, pp.
323 1481–1491, 2015.

324 [9] O. Akbilgic, M. R. Langham, and R. L. Davis, "Race, Preoperative Risk Factors, and Death after
325 Surgery," *Pediatrics*, vol. 141, no. 2, 2018.

326 [10] A. H. S. Harris, "Path from predictive analytics to improved patient outcomes," *Annals of
327 Surgery*, vol. 265, no. 3, pp. 461–463, 2017.

328 [11] K. Y. Bilmoria *et al.*, "Development and evaluation of the universal ACS NSQIP surgical risk
329 calculator: A decision aid and informed consent tool for patients and surgeons," *J. Am. Coll.
330 Surg.*, vol. 217, no. 5, 2013.

331 [12] R. B. Parikh, M. Kakad, and D. W. Bates, "Integrating Predictive Analytics Into High-Value
332 Care," *JAMA*, vol. 315, no. 7, p. 651, 2016.

333 [13] R. Amarasingham *et al.*, "Consensus Statement on Electronic Health Predictive Analytics: A
334 Guiding Framework to Address Challenges," *eGEMS (Generating Evid. Methods to Improv. patient
335 outcomes)*, vol. 4, no. 1, 2016.

336 [14] K. Jensen *et al.*, "Analysis of free text in electronic health records for identification of cancer
337 patient trajectories," *Sci. Rep.*, vol. 7, p. 46226, 2017.

338 [15] J. Lin, T. Jiao, J. E. Biskupiak, and C. McAdam-Marx, "Application of electronic medical record
339 data for health outcomes research: a review of recent literature.," *Expert Rev. Pharmacoecon.
340 Outcomes Res.*, vol. 13, no. 2, pp. 191–200, 2013.

341 [16] C. Friedman, L. Shagina, Y. Lussier, and G. Hripcsak, "Automated encoding of clinical
342 documents based on natural language processing," *J. Am. Med. Informatics Assoc.*, vol. 11, no. 5,
343 pp. 392–402, 2004.

344 [17] Q. T. Zeng, S. Goryachev, S. Weiss, M. Sordo, S. N. Murphy, and R. Lazarus, "Extracting
345 principal diagnosis, co-morbidity and smoking status for asthma research: Evaluation of a
346 natural language processing system," *BMC Med. Inform. Decis. Mak.*, vol. 6, 2006.

347 [18] G. K. Savova *et al.*, "Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES):
348 Architecture, component evaluation and applications," *J. Am. Med. Informatics Assoc.*, vol. 17, no.

349 5, pp. 507–513, 2010.

350 [19] F. P. Y. Lin, A. Pokorny, C. Teng, and R. J. Epstein, "TEPAPA: A novel in silico feature learning
351 pipeline for mining prognostic and associative factors from text-based electronic medical
352 records," *Sci. Rep.*, vol. 7, no. 1, 2017.

353 [20] E. Ford, J. A. Carroll, H. E. Smith, D. Scott, and J. A. Cassell, "Extracting information from the
354 text of electronic medical records to improve case detection: A systematic review," *J. Am. Med.
355 Informatics Assoc.*, vol. 23, no. 5, pp. 1007–1015, 2016.

356 [21] Y. S. Kim *et al.*, "Extracting information from free-text electronic patient records to identify
357 practice-based evidence of the performance of coronary stents," *PLoS One*, vol. 12, no. 8, 2017.

358 [22] A. A. Thomas *et al.*, "Extracting data from electronic medical records: Validation of a natural
359 language processing program to assess prostate biopsy results," *World J. Urol.*, vol. 32, no. 1, pp.
360 99–103, 2014.

361 [23] D. W. Frost, S. Vembu, J. Wang, K. Tu, Q. Morris, and H. B. Abrams, "Using the Electronic
362 Medical Record to Identify Patients at High Risk for Frequent Emergency Department Visits and
363 High System Costs," *Am. J. Med.*, vol. 130, no. 5, p. 601.e17-601.e22, 2017.

364 [24] G. E. Weissman *et al.*, "Inclusion of Unstructured Clinical Text Improves Early Prediction of
365 Death or Prolonged ICU Stay," *Crit. Care Med.*, p. 1, 2018.

366 [25] H. J. Murff *et al.*, "Automated identification of postoperative complications within an electronic
367 medical record using natural language processing," *JAMA*, vol. 306, no. 8, pp. 848–855, 2011.

368 [26] A. C. of S. N. S. Q. I. Program-Pediatrics, "User Guide for the ACS NSQIP Pediatric Participant
369 Use File," 2013.

370 [27] M. Berry and M. Browne, *Understanding Search Engines: Mathematical Modeling and Text Retrieval*,
371 1st ed. Philadelphia: SIAM, 1999.

372 [28] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, "Comparing the Areas under Two or
373 More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach,"
374 *Biometrics*, vol. 44, no. 3, p. 837, 1988.

375 [29] S. Merrick and M. Shaker, "ASA Relative Value Guide (RVG): A Defining Moment in Fair
376 Pricing of Medical Services," *ASA Monit.*, vol. 78, pp. 26–27, 2014.

377 [30] K. Kraemer *et al.*, "Development and Evaluation of the American College of Surgeons NSQIP
378 Pediatric Surgical Risk Calculator," *J. Am. Coll. Surg.*, vol. 223, no. 5, pp. 685–693, 2016.

379 [31] H. Moses, D. H. M. Matheson, E. R. Dorsey, B. P. George, D. Sadoff, and S. Yoshimura, "The
380 anatomy of health care in the United States," *JAMA*, vol. 310, no. 18, pp. 1947–63, 2013.

381

382

383

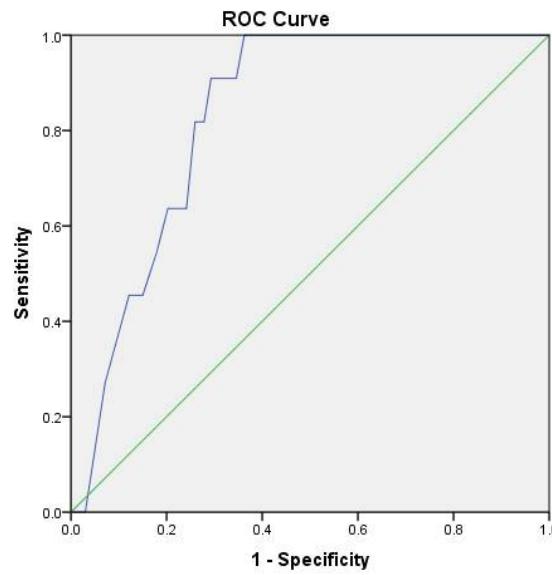
1
2
3
4
5

Appendix A: Supplementary Analysis Results

1. Logistic Regression Results for D30 using text-based risk score as a single predictor

Variables in the Equation

	B	S.E.	Wald	df	Sig.	Exp(B) with 95% CI
Text-based risk	6.22	2.29	7.36	1	0.01	502.32 [5.61-44966.12]
Constant	-9.40	1.94	23.52	1	0.00	



Diagonal segments are produced by ties.

6
7

Area Under the Curve

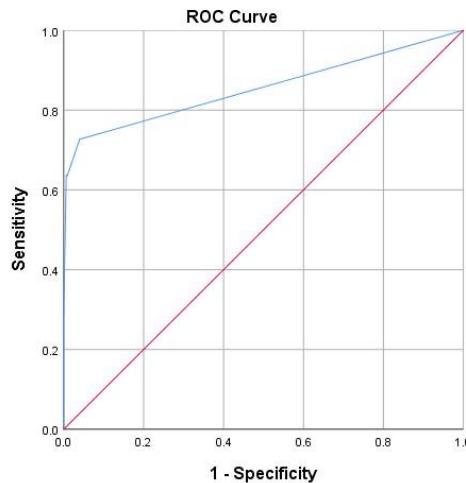
Area	Std. Error	Asymptotic Sig.	Asymptotic 95% Confidence Interval	
			Lower Bound	Upper Bound
0.83	0.03	0.00	0.77	0.89

8
9
10

2. Logistic Regression Results for D30 using structured data based risk factors

Variables in the Equation

	B	S.E.	Wald	df	Sig.	Exp(B) with 95% CI
Ventilator	2.85	.98	8.51	1	0.00	17.21 [2.55-116-41]
Bleeding Disorder	4.18	1.27	10.93	1	0.00	65.50 [55.-781-39]
Inotropic Support	2.66	.99	7.34	1	0.01	14.29 [2.09-97.87]
Constant	-6.50	.61	114.26	1	0.00	0.00



Diagonal segments are produced by ties.

11
12

Area Under the Curve

Area	Std. Error ^a	Asymptotic Sig. ^b	Asymptotic 95% Confidence Interval	
			Lower Bound	Upper Bound
0.86	0.08	0.00	0.70	1.00

13

14

15

3. Logistic Regression Results for D30 using both unstructured and structured data

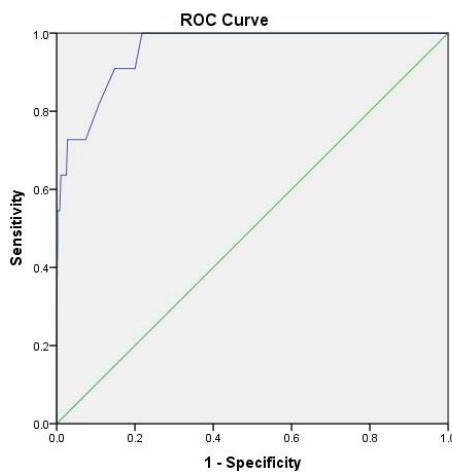
16

17

Variables in the Equation

	B with 95% CI	Sig.	Exp(B) with 95% CI
Text-based risk	6.28 (0.42, 12.98)	0.066	533.40 [1.94-146823.50]
Ventilator	2.07 (0.15, 3.99)	0.035	7.96 [1.58-40.00]
Bleeding Disorder	3.56 (1.35, 5.81)	0.002	35.30 [5.33-233.67]
Inotropic Support	2.29 (0.19, 4.39)	0.032	9.84 [1.70-57-11]
Emergent Case	1.75 (0.03, 3.48)	0.046	5.76 [1.34-24.47]
Constant	-11.12 (-16.98, -5.26)	.0000	

18



Diagonal segments are produced by ties.

19

20

Area Under the Curve						
Area	Std. Error ^a	Asymptotic Sig	Asymptotic 95% Confidence Interval			
			Lower Bound	Upper Bound		
0.96	0.02	0.00	0.92	1.00		

21
22
23

4. 5-Fold Cross Validation using the five predictors selected in the Model C

	AUC:Train-Test	Regression Coefficients					
		Constant	Text-Based Risk	Ventilator	Bleeding Disorder	Inotropic Support	Emergent Case
Run 1	0.98 - 0.84	-15.028	9.320	3.684	4.015	2.599	2.395
Run 2	0.95 - 1.00	-10.307	5.772	1.626	2.281	2.398	1.697
Run 3	0.95 - 0.99	-10.486	5.657	1.105	4.079	3.325	2.044
Run 4	0.95 - 1.00	-11.294	7.013	1.687	3.623	1.897	1.359
Run 5	0.96 - 0.87	-11.576	6.504	2.505	3.854	1.678	1.500

24
25
26
27

5. 5-Fold Cross Validation by implementing Backward Elimination at each run

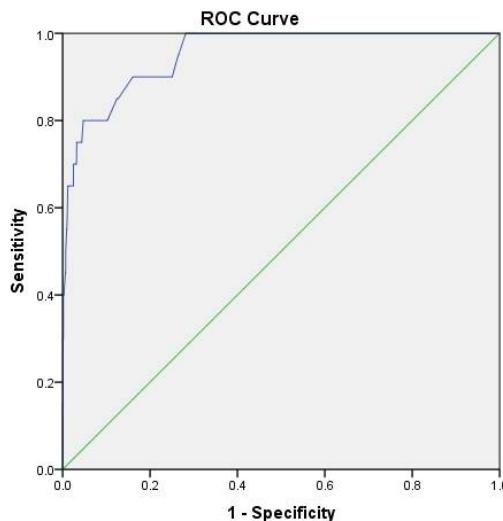
	AUC: Train-Test	Selected Variables
Run 1	0.99 - 0.34	Ventilator, Bleeding Disorder, Emergent Case, Neonate
Run 2	0.96 - 0.91	Text-based risk, Inotropic Support, Emergent Case, Neonate
Run 3	0.96 - 0.90	Test-based risk, Bleeding Disorder, Inotropic Support, Emergent Case
Run 4	0.94 - 1.00	Text-based risk, bleeding disorder, inotropic support, blood transfusion
Run 5	0.87 - 0.84	Ventilator, Bleeding Disorder, Septic Shock

28
29
30
31
32

6. Logistic Regression Results for D90 using both unstructured and structured data

	Variables in the Equation					
	B	S.E.	Wald	df	Sig.	Exp(B) with 95% CI
Ventilator	2.98	0.61	23.75	1	.00	19.64 [5.93-65.04]
Bleeding Disorder	2.91	0.98	8.80	1	.00	18.27 [2.68-124-52]
Neonate	1.41	0.58	5.85	1	.02	4.09 [1.31-12.80]
Emergent Case	1.41	0.67	4.48	1	.03	4.11 [1.11-15.25]
Text-based risk	4.42	1.96	5.09	1	.02	83.31 [1.79-3886.07]
Constant	-9.23	1.68	30.25	1	.00	.00

33



Diagonal segments are produced by ties.

34

35

Area Under the Curve

Area	Std. Error	Asymptotic Sig	Asymptotic 95% Confidence Interval	
			Lower Bound	Upper Bound
0.95	0.02	0.00	0.92	0.99

36

37

38

39

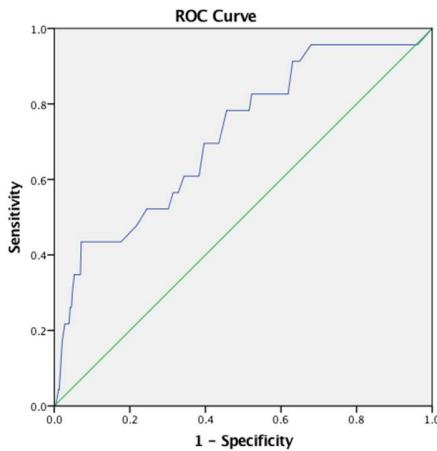
40

7. Logistic Regression Results for Postoperative Superficial Incisional Surgical Site Infection using both unstructured and structured data

Variables in the Equation

	B	S.E.	Wald	df	Sig.	Exp(B) with 95% CI
Text-based risk	1.42	0.74	3.66	1	0.05	4.13 [0.97-17.66]
Neonate	1.65	0.44	14.22	1	0.00	5.19 [2.21-12.21]
Constant	-5.49	0.51	115.29	1	0.00	

41



Diagonal segments are produced by ties.

42

Area Under the Curve

Area	Std. Error	Asymptotic Sig	Asymptotic 95% Confidence Interval

			Lower Bound	Upper Bound
0.72	0.06	0.00	0.61	0.83

43

44

45

46

47

8. Logistic Regression Results for Postoperative Superficial Incisional Surgical Site Infection using both unstructured and structured data

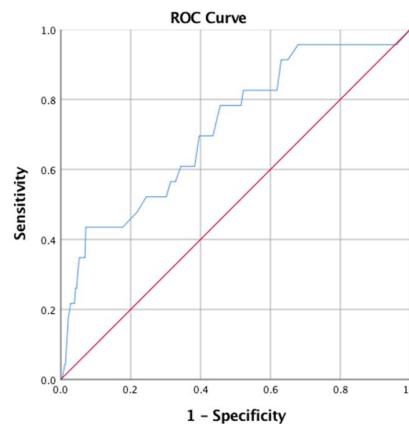
48

Variables in the Equation

	B	S.E.	Wald	df	Sig.	Exp(B) with 95% CI
Text-based risk	1.42	0.74	3.66	1	0.05	4.13 [0.97-17.66]
Neonate	1.65	0.44	14.22	1	0.00	5.19 [2.21-12.21]
Constant	-5.49	0.51	115.29	1	0.00	0.00

49

50



Diagonal segments are produced by ties.

Area Under the Curve

Area	Std. Error	Asymptotic Sig	Asymptotic 95% Confidence Interval	
			Lower Bound	Upper Bound
0.72	0.06	0.00	0.61	0.83

51

52

53

54

9. Logistic Regression Results for Intra or Postoperative Blood Transfusion within 72 hours of Surgery Start Time using both unstructured and structured data

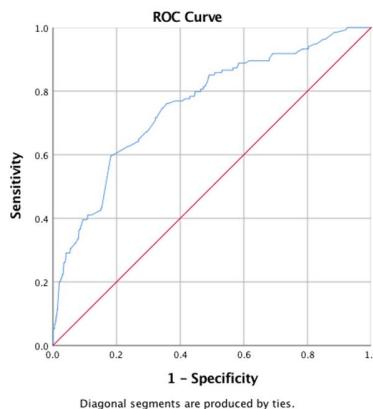
55

56

Variables in the Equation

	B	S.E.	Wald	df	Sig.	Exp(B) with 95% CI
Oxygen Support	1.06	0.40	7.092	1	0.01	2.87 [1.32-6.25]
Neuromuscular Disorder	1.31	0.24	30.42	1	0.00	3.72 [2.33-5.94]
Hematologic Disorders	1.20	0.33	12.96	1	0.00	3.32 [1.73-6.38]
Inotropic Support	2.53	0.62	16.76	1	0.00	12.52 [3.73-41.98]
Childhood Malignancy	0.52	0.25	4.116	1	0.04	1.67 [1.02-2.75]
Urgent Case	-1.95	0.74	7.014	1	0.01	.14 [0.03-0.60]
D30risk	-2.24	0.35	40.35	1	0.00	0.106
Constant	-2.11	0.15	198.08	1	0.00	0.12

57

58
59

Area Under the Curve

Area	Std. Error	Asymptotic Sig	Asymptotic 95% Confidence Interval	
			Lower Bound	Upper Bound
0.76	0.02	0.00	0.71	0.80

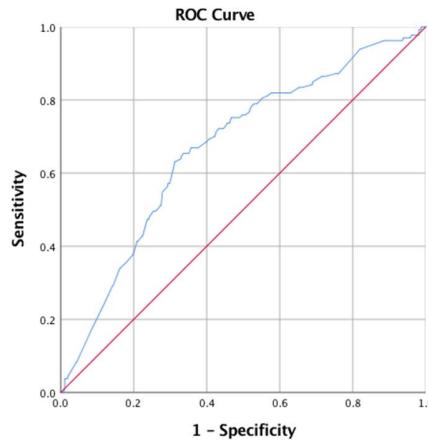
60
61
62
63
64

10. Logistic Regression Results for Unplanned Readmission within 30 days of Surgery using both unstructured and structured data

Variables in the Equation

	B	S.E.	Wald	df	Sig.	Exp(B) with 95% CI
SIRS	0.89	0.43	4.32	1	0.04	2.43 [1.05-5.63]
Sepsis	0.82	0.33	6.31	1	0.01	2.27 [1.20-4.49]
Neonate	-1.20	0.43	7.82	1	0.01	0.30 [0.13-0.70]
Text-based risk	1.54	0.29	28.14	1	0.00	4.67 [2.64-8.25]
Constant	-3.28	0.20	272.16	1	0.00	0.04

65

66
67

Area Under the Curve

Area	Std. Error	Asymptotic Sig	Asymptotic 95% Confidence Interval	
			Lower Bound	Upper Bound
0.67	0.02	0.00	0.62	0.72

Appendix B: Top 100 Document types with text which were extracted from the EMR.

Doc Type	TOTAL
Clinical Document	311,960
Depart Clinical Summary	15,496
Ambulatory Visit Summary Depart	13,905
Office Visit Note	11,251
ED Clinical Summary	11,232
Pediatric Surgery	10,915
ENT	10,125
pediatric surgery	6,647
Teacher Note	6,462
Progress Note	5,582
Surgery	5,292
Parenteral Nutrition	5,138
General Message	5,119
Oto-HNS	4,903
NICU Progress Note	4,724
Parenteral Nutrition Service (269-0112)	4,603
PICU Progress Note	4,481
LeBonheur Pathology Final Report	3,968
NSR	3,896
Progress	3,619
IMCU	3,348
progress	3,239
Ortho	3,171
attempt	3,090
IMCU Daily Progress Note	2,917
Team D Progress Note	2,907
AMB Visit Summary Depart	2,891
Palliative Care Progress Note	2,841
ortho	2,800
Team A Progress Note	2,750
follow up	2,674
PT note	2,592
Parenteral Nutrition (269-0112)	2,573
Discharge Summary	2,417
OtoHNS	2,396
Team B Progress Note	2,386
IMCU PN	23,17
IMCU daily	2,268
general surgery	2,223
Parenteral Nutrition 269-0112	2,172
Neurology	2,081
Team C Progress Note	1,962
IP-D	1,916
Discharge	1,884
surgery	1,845
MNT Follow Up	1,827
EEG	1,693
discharge	1,692
Inpatient ST Progress Note	1,676
Discharge Planning	1,647
Attempt	1,606
Pulmonology	1,574

57	Urology	1,560
58	DS	1,470
59	Pulmonology Attending Note	1,469
60	Teacher note	1,458
61	Trauma NP	1,450
62	PRS	1,418
63	PICU Daily Progress Note	1,380
64	up date	1,375
65	IMCU Daily PN	1,321
66	PICU Daily Note	1,244
67	Pet Therapy	1,241
68	Peds Surgery	1,221
69	Peds Surg	1,203
70	Contact	1,198
71	NSx	1,150
72	Daily Progress Note	1,148
73	NICU	1,134
74	neurosurgery staff	1,133
75	Assessment	1,117
76	Ped Nephrology	1,094
77	Cardiology	1,066
78	FEFH	1,066
79	CVICU Progress Note	1,035
80	tx note	1,033
81	peds surgery	1,024
82	PICU Accept Note	1,023
83	Neurosurgery	978
84	Abdominal pain	962
85	Team D PN	937
86	Teaching-Supervisory Addendum-Expand *ED	928
87	GI Progress Note	924
88	Fever	904
89	Plastic Surgery	897
90	IMCU note	887
91	Consult	876
92	ID Progress Note	869
93	Neurosurgery staff	855
94	Neurosurgery NP note	844
95	GI Daily Note	837
96	Vomiting	823
97	nsr	821
98	NICU Daily Progress Note	820
99	DC Planning	813
100	Pediatric Nephrology	798
101	Cardiology Office Visit Note	790
102	GI	782
103	Parenteral Nutrition Service	769
104	IP-D PT Note	759
105		

106 Note that this study utilizes only preoperative text notes. Any post-operative document in the list above
107 were belong the previous surgeries.