

1 *Review*2

Modelling a Silent Epidemic: A review of the *in vitro* 3 models of Latent Tuberculosis

4 **Savannah E R Gibson¹, James Harrison¹ and Jonathan A G Cox^{1*}**5 *School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK;
6 j.a.g.cox@aston.ac.uk

7

8 **Abstract:** Tuberculosis (TB) is the primary cause of death by a single infectious agent; responsible
9 for around two million deaths in 2016. A major virulence factor of TB is the ability to enter a latent or
10 Non-Replicating Persistent (NRP) state which is presumed untreatable. Approximately, 1.7 billion
11 people are latently infected with TB and on reactivation many of these infections are drug resistant.
12 As the current treatment is ineffective and diagnosis remains poor, millions of people have the
13 potential to reactivate into active TB disease. The immune system seeks to control the TB infection by
14 containing the bacteria in a granuloma, where it is exposed to stressful anaerobic and nutrient
15 deprived conditions. It is thought to be these environmental conditions that trigger the NRP state. A
16 number of *in vitro* models have been developed that mimic conditions within the granuloma to a
17 lesser or greater extent. These different models have all been utilised for the research of different
18 characteristics of NRP *Mycobacterium tuberculosis*, however their disparity in approach and
19 physiological relevance often results in inconsistencies and a lack of consensus between studies. This
20 review provides a summation of the different NRP models and a critical analysis of their respective
21 advantages and disadvantages relating to their physiological relevance.22 **Keywords:** tuberculosis; latency; non-replicating persistent; antibiotic; drug discovery;
23 mycobacterium tuberculosis

24

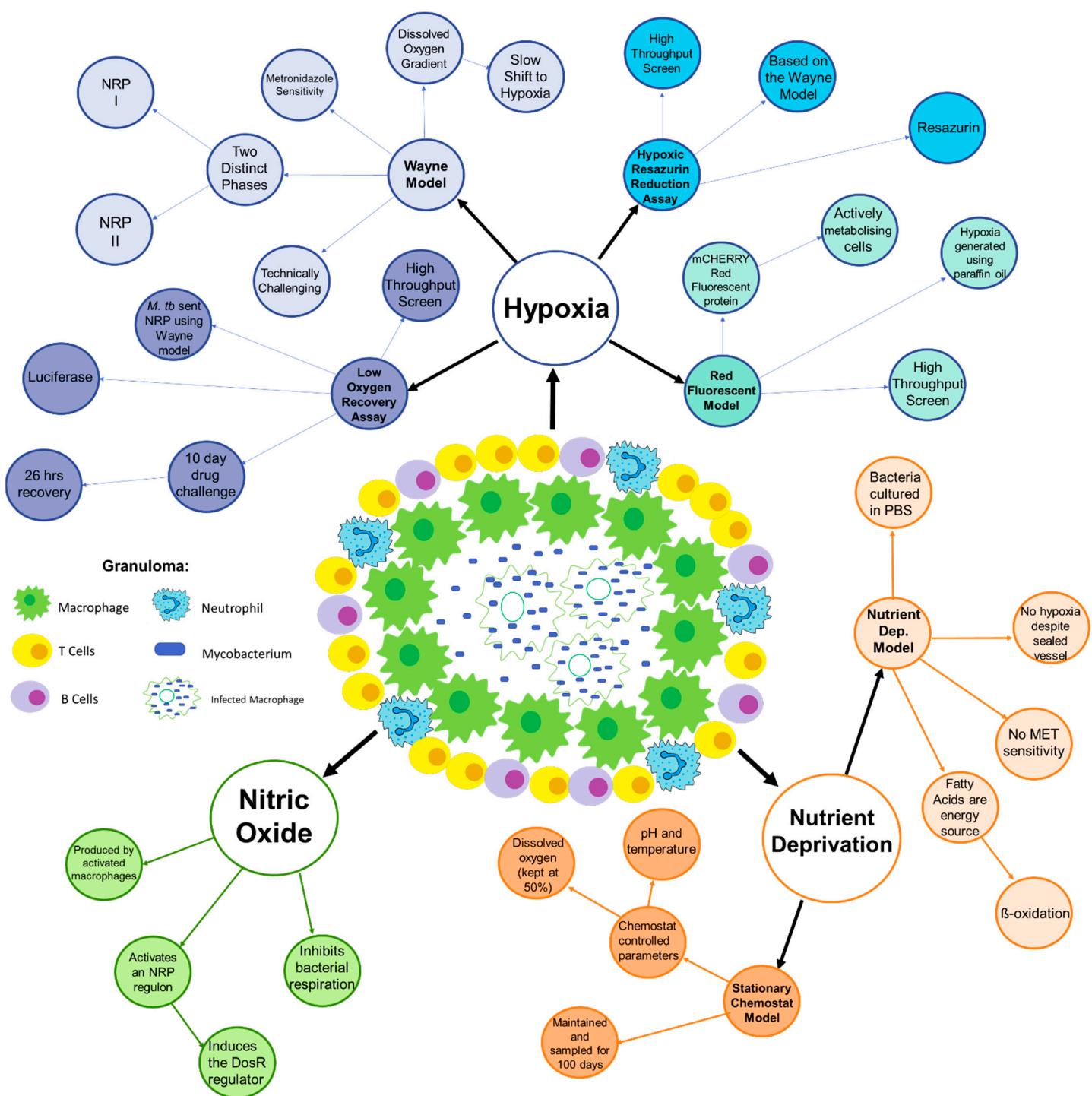
25

1. Introduction

26 Tuberculosis (TB) is the ninth leading cause of death in the world and is the primary cause of
27 mortality by a single infectious agent [1]. According to the World Health Organisation (WHO) there
28 are more than 10 million new cases of TB recorded every year; particular hotspots for TB incidence
29 include Sub-Saharan Africa and South-East Asia. There were an estimated 1.7 million fatalities caused
30 by TB in 2016 of which 375,000 were in HIV-positive people who bear a heavy burden of TB disease,
31 however the global TB mortality rate is falling at 3% a year [1]. The causative agent of TB,
32 *Mycobacterium tuberculosis*, is spread by aerosolisation when infected individuals cough. The exhaled
33 droplet nuclei carry *M. tuberculosis* which is then inhaled by a nearby individual [2]. The infectious
34 dose for *M. tuberculosis* infection is around 1 – 5 bacilli [3]. *M. tuberculosis* progresses to the lungs,
35 where they largely inhabit the resident professional phagocytes. As the disease progresses,
36 neutrophils, monocytes and eventually dendritic cells are recruited by distress signals from the
37 infected macrophages [4,5]. These innate immune cells are then infected as well, compounding the
38 problem. When the adaptive immune system takes control, the bacteria mainly arrest their growth
39 and symptoms become transient or non-existent [6]. In immunocompetent individuals, the adaptive
40 immune system is able to contain *M. tuberculosis* infection by sealing the bacteria in a cooperative
41 group of cells from the innate and adaptive immune system that isolate the bacteria from the rest of
42 the body [7-9]. At this point, progression to latent disease occurs in up to 90% of individuals. If the
43 granuloma cannot be maintained due to immune impairment, *M. tuberculosis* is released and the
44 infection progresses to active TB disease. At this point the individual becomes infectious and starts

45 to shed bacteria [10]. They also become symptomatic: general symptoms of TB include fatigue, weight
46 loss and coughing up bloody sputum [11]. Growing incidences of drug resistance, a high burden of
47 disease and increasing socio-economic determinants such as war and high levels of poverty indicate
48 that more action is needed to eradicate this expanding public health problem [12-15].

49 To achieve the WHO “End TB Strategy” objective of a 90% reduction in TB by 2035, a unified
50 strategy which improves diagnosis and treatment of both latent and active TB is crucial [14,16]. Latent
51 TB, otherwise known as Non-Replicating Persistent (NRP) TB [17], is one of the main mechanisms of
52 TB virulence. It can survive in the host for decades without becoming symptomatic and will only
53 reactivate when the host becomes immunocompromised, even to a small degree [10,18,19]. Latent TB
54 is not a faithful term for the changes that *M. tuberculosis* undergoes. The term “latent” often refers to
55 a dormant state with no active metabolic processes and no response to environmental stimulus. This
56 is not true in the case of TB: its metabolism is regulated to an essential level but is still functional [20-
57 22]. The phrase Non-Replicating Persistence (NRP) was first used by Wayne in 1976 and has since
58 become adopted as the appropriate term to describe this state [17,23].


59 Latent TB is diagnosed by a positive Tuberculin Skin Test (TST) - which produces an antigen
60 (tuberculin) specific T cell response – without the presence of symptoms [24,25]. By mathematical
61 modelling, it has been estimated that 1.7 billion people are latently infected with TB [26]. Of these,
62 around 56 million are deemed highly likely to reactivate into active disease [26]. It is highly likely
63 that a large proportion of the latent disease is drug-resistant and so could reactivate into MDR TB
64 [19]. Both forms of the disease are exceptionally hard to treat and even with intensive combination
65 therapies, treatment is only 54% successful [1]. The lack of effective treatment options for MDR TB is
66 a problem that will only increase with the spread of antibiotic resistance [27]. Therefore, a treatment
67 that effectively targets the asymptomatic, latent state of TB is preferable to current therapies; this
68 would also help to eradicate the currently daunting reservoir of active infection as 90% of all
69 infections are latent [1,14,18].

70 When *M. tuberculosis* is contained by the adaptive immune system within the TB granuloma [28],
71 a distinct metabolic and physiological shift takes place [21,29]. The genes expressed are distinctly
72 different to the active phenotype [29]. This genetic shift is now thought to be caused or largely
73 influenced by the metabolism of cholesterol [21], instead of other preferable fatty acids (glycerol) or
74 glucose [20]. Cholesterol is known to be the only carbon source present in the granuloma as, over
75 time, all other carbon sources have been used by the bacteria whilst still active [20,30].

76 Treatment of TB is preferable when the disease is in the NRP state and the patient is not
77 expressing any symptoms. To do this, novel compounds require screening against an *in vitro* model
78 of NRP TB. There have been a few different models of NRP TB developed all with unique advantages
79 and disadvantages. These different models can all be utilised for the research of different NRP
80 physiological characteristics of the NRP state. This review provides a summation of the different NRP
81 models and a critical analysis of their respective advantages and disadvantages.

82 **2. Conditions within the granuloma**

83 Conditions found within the granuloma are key to the NRP state and accurately mimicking these
84 conditions *in vitro* allows for the development of new models. The environment in the granuloma has
85 a distinct profile that includes hypoxia [17,31], nutrient deprivation [32-34], limited carbon sources
86 [21,22,34] and a high concentration of Nitric Oxide (NO) [35]. Most of the above environmental
87 conditions have been shown to induce the NRP state in mycobacteria individually. It could be
88 presumed that the combination of all these conditions will produce a phenotype closest to that found
89 clinically. Nevertheless, most *in vitro* models focus on one of the conditions in isolation - although
90 there are a few that combine two conditions in their model. A summary of the models discussed can
91 be found in Figure 1.

92

Figure 1 A summary diagram of the *in vitro* models of Non-Replicating Persistent (NRP) Tuberculosis categorised by the granuloma condition it models.

95 3. Hypoxia

96 Hypoxia and the gradual depletion of oxygen is a key element of the granuloma [9]. Upon
 97 detection of an oxygen gradient, *M. tuberculosis* starts to prepare for the NRP state [17,23]. Hypoxia
 98 was one of the first conditions of granuloma identified and as such, it is the best characterised. The
 99 following models all focus on modelling the hypoxic element of the granuloma to trigger the NRP
 100 state, starting with the original and most famous NRP model, the Wayne Model [36].

101 3.1 The Wayne Model

102 In 1976, Lawrence Wayne made the observation that whilst an *M. tuberculosis* culture was
103 aerated, growth would continue in a logarithmic fashion; if aeration was stopped, the culture settled
104 and the concentration of dissolved O₂ (dO₂) decreases, growth would arrest seemingly indefinitely
105 [23]. The concentration of dO₂ was increased by shaking, which lead to the continuation of
106 exponential growth after an extended period of time in an arrested state. This discovery of the effect
107 of an oxygen gradient on *M. tuberculosis* was the first indication that *M. tuberculosis* could enter a state
108 similar to latency, but being subtly different. He coined the state Non-Replicating Persistence (NRP)
109 to reflect the differences [17,36]. After a few improvements, Wayne introduced an *in vitro* model of
110 Latent TB based on his observations of the effect of hypoxia. His hypoxic model, termed The Wayne
111 Model, was introduced in 1996 [36]. The aim of this model was to simulate the gradual depletion of
112 oxygen in the granuloma. The organisms were grown in sealed containers with a controlled ratio of
113 air to culture medium equalling 0.5. This ratio is called the Head Space Ratio (HSR). As the culture
114 grows aerobically, it slowly uses up all the oxygen in the HSR: thus, creating the slow shift down into
115 anaerobic conditions due to the reduction in dO₂. This model contains two distinct states of NRP. The
116 first occurs just as the oxygen saturation in the HSR reaches 1%. Wayne called this NRP stage I [17,36].
117 This stage is described as “microaerophilic”, where the bacilli are no longer replicating or conducting
118 DNA synthesis but still have high levels of ATP production and some active mechanisms of DNA
119 repair [17,29,37]. This is followed by NRP stage II, characterised by fully anaerobic conditions defined
120 as below 0.06% oxygen saturation [36]. NRP stage II is the phenotype most often referred to when
121 describing NRP *M. tuberculosis*. It is important to note that *M. tuberculosis* cannot survive if placed
122 straight into NRP stage II conditions: the process of steady decrease in oxygen saturation in NRP
123 stage I is necessary to achieve NRP stage II [36]. Hypoxia is confirmed by the decolourisation of
124 methylene blue (concentration of 1.5 µg/mL) and by a stabilisation of the growth curve into a plateau
125 [38], sometimes referred to as an early stationary phase. Under this model, *M. tuberculosis* is
126 indifferent to the presence of Isoniazid (INH) but the presence of Metronidazole (MET) has a
127 bactericidal effect [39]. This is directly opposed to the effect of these drugs in aerobic conditions where
128 INH has a bactericidal effect on *M. tuberculosis* but MET has no inhibitory effect [40].

129 This model is the first to model *in vitro* NRP *M. tuberculosis*, and is still the model of choice for
130 most Latent TB researchers. Whilst this model has facilitated a great increase of knowledge into
131 Latent TB and its metabolic profile, it does have some limitations. Firstly, the bactericidal effect MET
132 has anaerobically is not reflected in animal models, such as the Cornell mouse model [41] and a
133 guinea pig model [42]. This has led to the assumption that MET would have no effect if used
134 therapeutically and has cast doubt on other active compounds identified using the Wayne model.

135 This is perhaps related to the Wayne model singularly focussing on replicating the slow shift to
136 hypoxic conditions that happen in the granuloma; it does not include any other environmental
137 conditions found in granuloma [43] (Figure 1). These other factors have an effect on the physiological
138 and metabolic profile of the *M. tuberculosis* which would cause the bacteria to react in a different
139 manner to challenges. Therefore, as the Wayne model lacks these other physiologically relevant
140 conditions, any NRP active antimicrobials identified using this model are treated with some
141 speculation. The bacteria have a different physiological and metabolic profile *in vivo* and this is
142 reflected in the difference in drug profiles [42].

143 Nevertheless, this model is still frequently used in research and has provided large contributions
144 of knowledge and insight into NRP physiology. In addition, a large majority of recent models borrow
145 heavily from the Wayne model. Therefore, this primitive starting point has paved the way for a
146 multitude of other models for NRP in *M. tuberculosis*.

147 3.2 Hypoxic Resazurin Reduction Assay (HyRRA)

148 The following model is an example of an *in vitro* model that has a focus on high throughput
149 phenotypic screening (HTPS). With the demand for new antimicrobials ever increasing, HTPS has
150 become the method of choice for identifying novel active antimicrobials [44]. Whilst HTPS commonly

151 lacks specificity compared to other testing methods, the ability to quickly and frugally screen high
152 volumes of novel compounds to identify new inhibitory molecules is both cost and time efficient.

153 The HyRRA model is based on principles from the Wayne model [36] and an aerobic HTPS *M.*
154 *tuberculosis* assay called Resazurin Microtitre Assay (REMA) [45]. Colorimetric assays such as REMA
155 or an Alamar blue assay have become as common as rapid, inexpensive methods of visual minimum
156 inhibitory concentration (MIC) identification [45,46].

157 The HyRRA was tested on *M. tuberculosis* H37Rv, *Mycobacterium smegmatis* and *Mycobacterium*
158 *bovis* BCG. All species were cultured in 3 mL aliquots in sealed vacutainer tubes, then kept static to
159 induce hypoxia. Drugs were then aseptically added, and the dosed cultures were incubated for 96 h.
160 After this point, the cultures were dispensed into microtitre plates and 0.02% resazurin was added.
161 Resazurin is reduced to Resorufin in the presence of metabolically active cells, thus causing a colour
162 change from deep purple to pink [47]. This cell viability assay was then used to screen a large
163 antibiotic panel using this model, and compare the MICs of these compounds against previous
164 models' findings and classic colony forming units (CFU) assay [48]. The MICs identified by the
165 colourimetric assay were found to be comparable to those found from CFU counts. They found
166 activity against NRP TB from compounds from the nitrofuran group [49]. In this model, as with the
167 Wayne model, the bacteria tested show sensitivity to MET, potentially due to the shared hypoxic
168 condition.

169 This model facilitates the down-scaling of NRP *M. tuberculosis* drug testing to enable a HTPS,
170 improving the discovery of new antimicrobials expeditiously. This is a considerable advantage as
171 previous models struggled to adapt to screening a large quantity of novel compounds. As with the
172 Wayne model, the HyRRA model is based on the hypoxic environment found inside the granuloma.
173 The presumption made is that if hypoxia alone can trigger entry to the NRP state, then hypoxia alone
174 is enough to model the granuloma [17,36]. This is partially correct: hypoxia does trigger entry into
175 the NRP state and will maintain the bacteria in this state, so it is correct to presume that hypoxia is a
176 large driving factor of NRP. However, as discussed later in this review, hypoxia is not the only stress
177 condition present in the granuloma with the ability to trigger the NRP state (Figure 1). The HyRRA
178 solely focusses on one stress condition that can induce the NRP state in mycobacteria. This induction
179 facilitates compound testing on mycobacteria in the NRP but without the other conditions, the
180 compound testing will never be physiologically relevant and as such will produce many false
181 positives. Additionally, many compounds could take longer than 96 hrs to depict a sterilising action
182 and so this method could exclude some potential compounds.

183 3.3 Low Oxygen Recovery Assay (LORA)

184 Another model which is more adapted to HTS is the Low Oxygen Recovery Assay (LORA) [50].
185 Large elements of this model are based on the Wayne model [36] and as such could potentially be
186 characterised as an adaptation of the Wayne model instead of a standalone model. The LORA assay
187 makes use of a luciferase reporter (*luxAB* gene) [51] to depict the metabolic activity level of cells and
188 the authors showed that, on entrance to the NRP state, luminescence decreased but remained present
189 and constant as the experiment progressed [50,52]. In short, the recombinant *M. tuberculosis* H37Rv
190 was manipulated into NRP stage II using a similar protocol to Wayne's [36], albeit using a chemostat
191 to accurately control conditions such as dO₂. After 22 days under these conditions with regular optical
192 density readings (OD_{570nm}), CFU counts, and Relative Light Unit (RLU) readings taken, the cultures
193 were spun down in Phosphate-Buffered Saline (PBS) and frozen at -80 °C. These stocks were
194 challenged with antimicrobial agents for 10 days under anaerobic conditions and then given a day's
195 aerobic recovery. Again, luminescence and CFU counts were taken.

196 To determine the suitability of this assay's use as a HTPS, a Z' test was conducted [53]. The
197 LORA's Z' factor was determined from the RLU's after 10 days of anaerobic incubation and was
198 determined to be in the range of 0.58-0.84. A Z-factor value between 0.5 and 1 is indicative of an
199 excellent assay that is suitable for HTS, therefore the LORA is suitable as a HTPS [53].

200 The authors tested 31 antimicrobial compounds using this model and compared this to a
201 comparative aerobic counterpart and previously recorded results. As found in the Wayne model,

202 INH, which targets the cell wall [54], has no effect on NRP *M. tuberculosis* [17,40]. This lack of efficacy
203 is also consistent clinically. Other drugs that have cell wall targets were also found to be inactive such
204 as Ethambutol and Cycloserine [50]. In agreement with previous models finding: MET [39],
205 Capreomycin [55] and Moxifloxacin [56] had strong sterilising activity among some other active
206 compounds. The general conclusion drawn is that cell wall targeting drugs become inactive in NRP.
207 However, those drugs with intracellular targets such as MET and compounds, including
208 Capreomycin that target the 30S ribosomal subunit, gain activity [39,55].

209 An example of the LORA being used to identified novel compounds was shown by Bonnett *et*
210 *al.* where they identify hydrazones as active against NRP *M. tuberculosis* [57]. These hydrazones were
211 previously identified as effective compounds against active TB. The drug target was found to be the
212 enzyme LepB which is a crucial part of the general secretion pathway of TB [58].

213 The LORA model has many advantages as a model and as previously discussed, the world of
214 drug discovery has an ever increasing focus on HTPS [44]. The LORA's suitability for HTPS as
215 confirmed by the Z' [53] is encouraging; as the authors showed, a wide variety of compounds can be
216 screened with comparative ease when compared to the Wayne Model [36,39]. The use of a luciferase
217 reporter to monitor entry to the NRP state as well as drug activity is novel. This provides a wider
218 range of information than what could be gleaned from previous models such as the HyRRA which
219 uses a qualitative measure to determine the culture entry to NRP [48,50].

220 Nevertheless, as with all models, there are some disadvantages to using this *in vitro* model.
221 Similar to the HyRRA and the Wayne model, this model is based exclusively on hypoxia [36,48,59].
222 As previously discussed, this is an important element but is not independent clinically (Figure 1).

223 Secondly, this is a model based on determining the MIC of novel compounds whose activity and
224 target may not have been identified. The luciferase reporter enabled assessment of the metabolic
225 activity observed in the NRP state. However, to transform the *M. tuberculosis*, a kanamycin selective
226 marker was used [60]. This means that the recombinant *M. tuberculosis* H37Rv-*luxAB* is resistant to
227 kanamycin. This has the potential to confer some level of resistance to other antimicrobials. This is
228 especially relevant when conducting a HTPS on novel compounds. This could lead to the elimination
229 of some compounds that clinically could have powerful sterilising activity.

230 Finally, this assay requires special instruments (Anoxomat system) and is expensive to run with
231 a high cost of reagents and equipment. Generally, the optimal HTPS should be as inexpensive as
232 possible because of the potential low yield of active compounds [44].

233 3.4 Red Fluorescent Protein (RFP) Model

234 This model is also a HTPS of NRP *M. tuberculosis* that is based on the hypoxic element of the
235 granuloma [61]. This model exposed the disadvantage of previous hypoxic models [36,50] which was
236 to maintain hypoxia, all elements of the experiment (both culture and compound) are added together
237 and sealed or placed in an anaerobic cabinet. However, entry to the NRP state takes a period of time
238 extending from 48 hours to 120 hours dependent on conditions [23,32,36]. For approximately the first
239 72 hours in previous models, the *M. tuberculosis* was still in its active state. Therefore, as some
240 compounds (for example rifampicin) are very fast acting compounds; activity to NRP *M. tuberculosis*
241 could be shown. In fact, the compound would have been faster to sterilise the culture than the *M.*
242 *tuberculosis* was to turn NRP. The Red Fluorescent Protein (RFP) model aims to overcome this hurdle
243 by combining molecular biology techniques and a different method of excluding oxygen.

244 Red fluorescent protein can be utilised as a reporter for gene expression and so can be used to
245 determine the difference between an actively growing culture, a static culture and a culture affected
246 by a bactericidal drug [62]. RFP protein was transformed into *M. tuberculosis* H37Rv using the
247 pCHERRY3 plasmid [63].

248 This model also made use of microtitre plates to conduct a HTPS. Cultures were grown
249 aerobically and then a layer of paraffin oil was added on top of the culture which oxygen cannot
250 permeate [64]. To test if the culture is hypoxic, methylene blue was added (1.5 µg/mL), which
251 decolourises in the absence of oxygen [36]. This was incubated for 13 days, at which point compounds

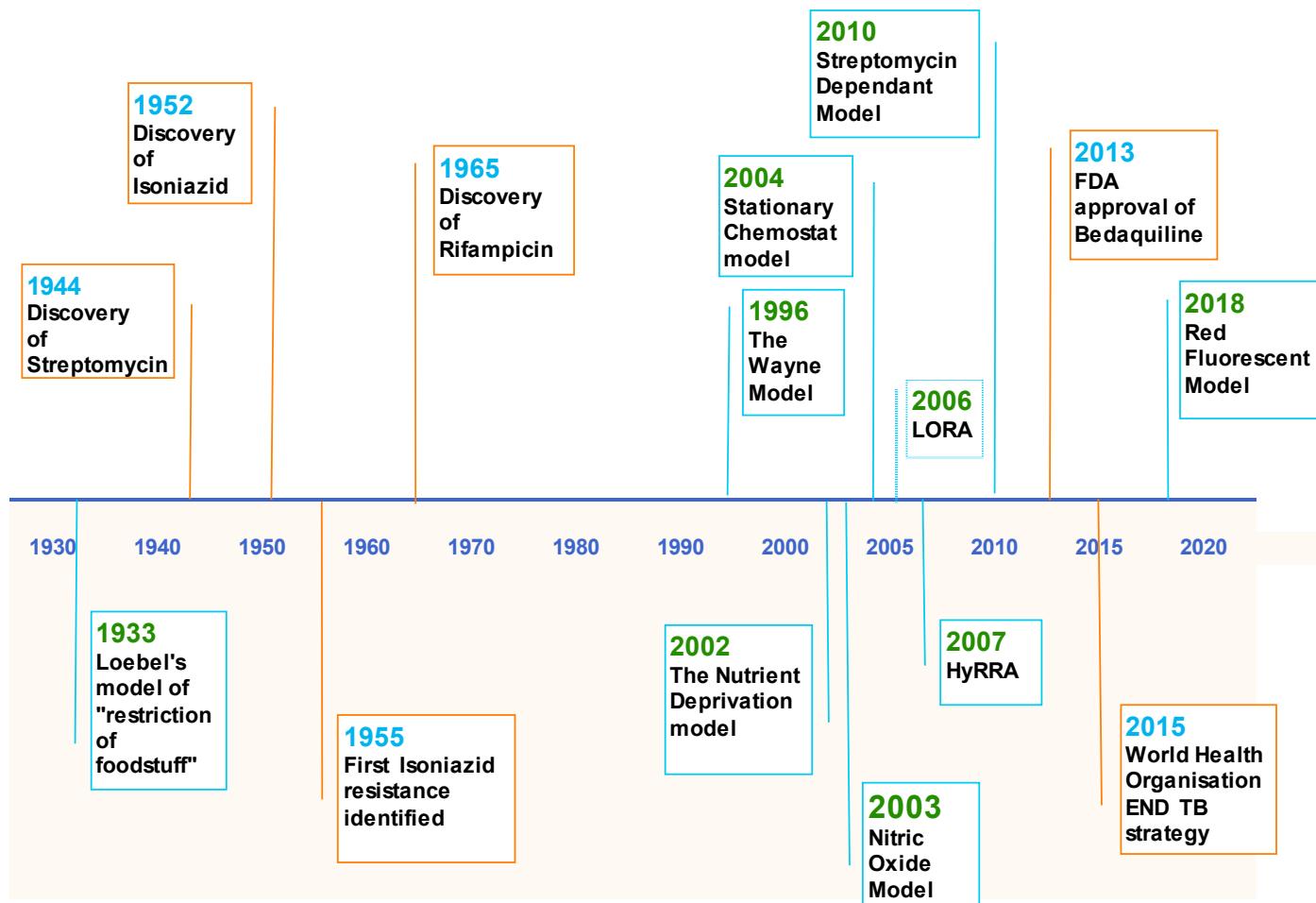
252 were injected into the hypoxic cultures through the paraffin oil layer. This was then incubated for a
253 further 20 days with daily fluorescence readings taken [61].

254 A wide range of compounds were tested, each chosen for their differing modes of action [61]. A
255 notable feature of all the previous hypoxia models is sensitivity to MET [36,48,50]. Interestingly, the
256 RFP model does not show any sensitivity to MET. The authors postulate that this discrepancy could
257 be due to MET being a pro-drug and its activation is largely based on the state of the bacilli [61].
258 However, this sensitivity to MET is not seen in any *in vivo* test, therefore, this lack of sensitivity could
259 indicate an improved physiological advantage to the model [42]. This model also highlighted the
260 extended period of time needed for some compounds to show activity such as the aminoglycosides.
261 Some previous models did not expose the cultures to the compounds for this extended period of time.
262 The drug resistant nature of the bacilli can require a large lead time before the compounds take effect
263 [65].

264 As in the previous tests, a Z' analysis was conducted to see whether this model is suitable for a
265 HTPS [53] which gave a value between 0.91-0.94 indicating that this model is robust for HTPS.

266 The main advantages of this model have already been touched upon. Briefly, other models
267 previously exposed cultures to compounds before they had gone fully into the NRP state
268 [32,36,48,66]. This model ensures that compounds are only tested against *Mycobacterium* that have
269 fully entered the NRP state. Secondly, this model shows that the bacteria are demonstrably in the
270 NRP state, however, there is no susceptibility to MET. Therefore, it could be postulated that hits
271 generated using this model are more physiologically relevant than those identified by previous
272 models. Finally, this model exposes the NRP cultures to compounds for an extended period of time
273 compared with previous models. Some compounds take a long time to act on this highly resistant
274 phenotype of *M. tuberculosis*; so a shorter period of time could exclude some compounds that have a
275 high efficacy but need longer to take effect.

276 Introduced in 2018, this model represents the most recent offering towards NRP research and
277 addresses some of the issues with previous models. Nevertheless, no model perfectly simulates the
278 clinical, *in vivo* condition and there are disadvantages associated with this model. As with the LORA,
279 this model utilises a transformed version of *M. tuberculosis* [50]. This involved the transformation of
280 *M. tuberculosis* H37Rv with RFP using the pCHERRY3 plasmid, which uses a hygromycin selective
281 marker [62]. Using a culture that already has some resistance to antimicrobial is not ideal as it could
282 lead to some level of cross resistance to other antibiotics.


283 In addition, hypoxia is the only element of the granuloma being imitated in this model, as in the
284 other models. As the subsequent models will demonstrate, other NRP inducing conditions have
285 similar but not identical transcriptomes [67]. To create a model that is physiologically relevant, all
286 conditions should be taken into account (Figure 1).

287 4. Nutrient Deprivation and Selective Carbon Sources

288 As early as 1933 (Figure 2), nutrient deprivation was indicated as able to induce the NRP state
289 in TB [33,68]. In recent years, this work has been further developed and has shown granuloma-based
290 bacteria that are not only nutrient starved [32,69], they are restricted to odd chain fatty acids as the
291 sole carbon source, namely cholesterol [21,22]. The effect of nutrient starvation has been less studied
292 than hypoxia; however, the below models all demonstrably show that they can model NRP *M.*
293 *tuberculosis* albeit with a different drug sensitivity profile to that observed in hypoxia-derived NRP
294 mycobacteria.

295
296

297

298

Figure 2 – Timeline of *in vitro* NRP models

299 A representation of the introduction of *in vitro* models of Non-Replicating Persistent Tuberculosis in
 300 combination with the landmarks of Tuberculosis research. Orange markers represent milestones in
 301 TB discovery and treatment. The blue markers represent the introduction of the varying models,
 302 where LORA indicates the Low Oxygen Recovery Assay and HyRRA is an abbreviation for the
 303 Hypoxic Resazurin Reduction Assay.

304 4.1 The Nutrient Deprivation Model

305 In 1933, *in vitro* TB research was still relatively new; Loebel and his team demonstrated that it is
 306 possible to transfer an *M. tuberculosis* culture out of rich media into PBS [33], which then can be left
 307 in solution for many years (Figure 2). Respiration levels slowly decreased and the culture remained
 308 in early stationary phase; however, upon reintroduction to rich media, respiration levels increased
 309 and the bacterial cells resumed normal growth [68]. Loebel concluded that it was possible for *M.*
 310 *tuberculosis* to survive for an extended period of time and that this virulence factor could be attributed
 311 to the bacteria's ability to "depress its oxygen consumption and to live off previously stored
 312 foodstuffs". This postulate was later proved to be correct by subsequent models [17,32].

313 *M. tuberculosis* from a granuloma has a different morphology to those grown *in vitro*, however,
 314 nutrient starved *M. tuberculosis* has a similar morphology to the *in vivo* phenotype [34]. This would
 315 suggest that nutrient starvation is an essential environmental condition in the granuloma with an
 316 altered genetic profile that *in vivo* could work in conjunction with hypoxia activated genes to produce
 317 the clinical phenotype [20,59,70]. Betts and her research team came up with a model based on Loebel's
 318 earlier work that would stop respiration and halt replication but keep the bacteria viable [32,33,68].

319 In this model, bacteria are grown for 7 days in nutrient rich media at which point they are
320 pelleted and resuspended in PBS. They are incubated at 37 °C in sealed containers [32]. Viability is
321 determined by CFU counts at sequential points. Despite no growth at any point, the CFU counts
322 remained consistent throughout, which indicated that the NRP state had been achieved. Interestingly,
323 despite being cultured in a sealed container, similar to the Wayne model, there is no decolourisation
324 of methylene blue which shows that oxygen is still present in the cultures [32,43].

325 The Wayne model was used as a control and as previously seen, after 10 days in sealed
326 containers containing rich media, the culture decolourised methylene blue and entered hypoxia [36].

327 This led to the hypothesis that, instead of the oxygen being consumed, as in the Wayne
328 model[36], the bacilli slowed down their respiration levels and thus entered the NRP state. In this
329 model of NRP, bacteria gain resistance to INH and RIF, however, they do not gain susceptibility to
330 MET [32]. This is one of the primary differences between the Nutrient Deprivation model and the
331 Wayne model [17,32]. They also noticed a difference in gene expression in response to nutrient
332 starvation. They found many enzymes concerned with energy metabolism are downregulated under
333 nutrient-deprived conditions. These enzymes included ones in the tricarboxylic acid (TCA) cycle
334 (*fum*, *acn*, *icd1*) and in glycolysis (*gap*, *tpi*). Sigma factor B (*sig*) was also found to be upregulated.
335 Expression of *sigB* has been associated with the transition into stationary phase and has also been
336 associated with stress conditions [71,72]. An analysis of the whole transcriptome of *M. tuberculosis* in
337 both models showed many similarities including an adaptation in metabolism. However, whilst the
338 model shared 50 “top scoring” genes with the Wayne model, there were over 200 different
339 upregulated genes [67].

340 This is also a widely accepted model of NRP, made interesting by its different drug susceptibility
341 to the Wayne model. This difference could be attributed to its distinctly different transcriptome [67].
342 Nevertheless, entry into the NRP state can be observed despite oxygen being abundant [32]. All the
343 above evidence seems to imply that both nutrient starvation and hypoxia are essential conditions in
344 the granuloma to provide the right environment for NRP.

345 From this, both models have the same failure of only looking at one environmental factor
346 without reflecting the full picture of physiological conditions within the granuloma (Figure 1).

347 4.2 Stationary Chemostat Model

348 Building on this work into investigating the effect of nutrient deprivation on *M. tuberculosis*, a
349 new model was proposed which aimed to use a chemostat to tightly control conditions such as pH,
350 temperature and dissolved oxygen [32,33,68,73]. This stationary chemostat model would allow the
351 long term maintenance of an NRP culture. Chemostats have been utilised by scientists attempting to
352 culture many different bacteria under challenging conditions as it allows greater control of the
353 environment than traditional culture methods [74-76].

354 This model cultured *M. tuberculosis* H37Rv in 750 mL of ADC enriched Middlebrook 7H9 broth
355 with a defined dissolved oxygen concentration of 50%. This culture was then maintained until all the
356 nutrients has been depleted; this slowing of growth was defined as stationary. The depletion of
357 glucose and glycerol was monitored by biochemical assays over the duration of the experiment.
358 Culture samples were extracted from the chemostat at intervals throughout the experiment and
359 plated for CFU counts. To monitor the transcriptome of the culture, RNA was extracted at various
360 time points throughout the experiment.

361 The authors have based this model on the theory that there is a proportion of bacteria that go
362 into an extended stationary phase in response to an external pressure, similar to what is seen in
363 *Escherichia coli* [77]. This could be generated *in vivo* by exposure to antibiotics to which a small
364 proportion of the population would survive (persister population). They observed what they have
365 defined as stationary phase up until day 80, which they attribute to nutrient deprivation, at which
366 point the culture restarts growth. This revival is hypothesised to be the result of adaptation to the
367 new growth environment.

368 The main advantage of this model is that it is conducted in a chemostat, which had not
369 previously been explored as an option for NRP *M. tuberculosis*. Rigidly controlling the environment
370 to simulate known conditions in the granuloma is a widely employed method of *in vitro* modelling.

371 The theory that the condition of Latent TB is caused by stationary persisters as discussed by this
372 study requires further validation. This would have merit if the bacteria were solely extracellular and
373 if this phenomenon did not occur in individuals who had not received antibiotic chemotherapy for
374 their TB [10]. An interesting facet of *M. tuberculosis* infection is the ability to survive extracellularly
375 and intracellularly [78]. It has long been thought that the primary infection is driven by the
376 extracellular bacteria; the intracellular bacteria (predominately residing within the macrophages) are
377 the bacteria involved in the granuloma [17]. Hence, it is the intracellular bacteria that are mainly
378 exposed to the conditions of the granuloma which are the driving force to the persistence of *M.*
379 *tuberculosis* [17,79]. In addition, the culture showed a resuscitation at 80 days; as early as 1933, it was
380 shown that *M. tuberculosis* can persist in sealed containers for 12 years [80]. This evidence in addition
381 to patients reactivating after 20 years provides compelling evidence that this model does not achieve
382 the persistent state observed clinically [65].

383 Another hallmark of persistence of *M. tuberculosis* is the cessation of replication as observed by
384 previous models [32,40,80]. The growth curves displayed in this model do not show a stable,
385 persistent population but a population in a slow decline [73]. This type of growth curve is more
386 reminiscent of a culture in the decline phase of the growth curve: attributed to the depletion of
387 glucose and glycogen. It is possible that the culture has not entered the NRP state but instead has
388 progressed into decline phase, and before this could complete, the bacilli found a new source of
389 nutrients. A large amount of Tween 80 is used in the medium (0.2%), the stereotypical level of Tween
390 80 in mycobacteria cultures is 0.05%. It has been identified that mycobacteria can utilise Tween 80 as
391 a carbon source [81,82]. Therefore, whilst the culture has been deprived of glucose and glycerol –
392 which could contribute to the culture's longevity – it cannot truly be described as nutrient deprived
393 as there are alternative carbon sources present [73]. The original nutrient deprivation model utilised
394 PBS, as have subsequent models, and have demonstrated long term persistence and viability [32,33].

395 This model has many promising features, such as the innovative use of a chemostat for NRP *M.*
396 *tuberculosis* culture. However, to be utilised as a strict model of NRP, the media used in this study
397 may need to be reviewed to reflect the long term persistence seen in other models [32,40].

398 5 Nitric Oxide

399 The previous models have highlighted the two best known environmental conditions of the
400 granuloma: hypoxia and nutrient deprivation [17,32]. Nevertheless, there are other lesser studied
401 environmental conditions that can induce *M. tuberculosis* to enter the NRP state, such as the presence
402 of nitric oxide (NO). Activated macrophages produce NO as a signalling molecule and as a potent
403 antibacterial chemical [35]. NO has also been associated with the inhibition of mitochondrial and
404 bacterial respiration [83]. It has also been shown that NO is responsible for the control of
405 mycobacterial replication, along with various other cytokines and chemokines, such as interferon- γ
406 and tumour necrosis factor- α [84].

407 This model investigated whether NO would trigger NRP; as a low, non-toxic concentration
408 inhibits bacterial respiration. Inhibited respiration could lead to the same state as hypoxia, since
409 hypoxia also limits respiration, but by the depletion of oxygen [85]. *M. tuberculosis* is cultured in the
410 widely used Middlebrook 7H9 broth in aerobic conditions but with a subtoxic concentration of NO.
411 The authors introduced this as less of a structured model of *in vitro* NRP and more of a study into
412 whether NO can independently trigger the NRP state.

413 Exposure of *M. tuberculosis* to NO was shown to induce a 48 gene regulon via the DosR regulator
414 [29]. The DosR regulator or the dormancy survival regulator was identified previously using the
415 Wayne model as being essential for survival in hypoxic conditions [86,87]. DosR is responsible for
416 activating one of the key NRP genes *acr* (*M. tuberculosis* alpha-crystallin/Rv2031) which has been
417 shown to be essential for the growth of *M. tuberculosis* in macrophages [87,88].

418 NO was also showed to inhibit mycobacterial respiration and halt replication in this model.
419 Evidence that would suggest that NO is key to NRP state is the activation of key genes that seem to
420 show that under hypoxic conditions, nitrate becomes the terminal electron acceptor [89].

421 The effects of NO on *M. tuberculosis* induces the same genes and thus physiology as hypoxia
422 does, albeit via a very different methodology. The induction of the DosR regulon, the cessation of
423 growth and the inhibition of respiration are all key markers of the NRP state in both hypoxia and
424 nutrient deprivation [83,90]. The ability of NO to independently produce a similar phenotype to both
425 other conditions highlights the importance it must have in the clinical phenotype.

426 This has not yet been developed into a functional model and there have been no drug panels
427 tested against it. Nevertheless as it shares such a close phenotype to that of hypoxia, the presumption
428 is that the drug profile should be, by and large, the same [55]. The discovery that NO can induce the
429 NRP state in *M. tuberculosis* is a leap forward in knowledge concerning this physiological state and
430 its triggers. However, the NO model requires further development before it can be compared with
431 the other models [32,40].

432 6 Streptomycin Dependent

433 Finally, there is a Streptomycin-dependent model which utilises the 18b strain of *M. tuberculosis*
434 which has mutated to only grow in the presence of Streptomycin [91]. When this antibiotic is
435 removed, replication ceases [92]. The theory behind this model is that this cessation of replication due
436 to the removal of Streptomycin could mimic the NRP state [17,92]. Cultures were grown in
437 Middlebrook 7H9 media in the presence of 50 µg/mL of Streptomycin. The Streptomycin is removed
438 and the cultures are then starved for two weeks before being exposed to antimicrobial compounds.
439 The protocol for drug testing is the REMA and it is the same method that the HyRRA is based on
440 [45,48].

441 This model reports an altered drug profile to those seen in more developed models [92]. A full
442 drug panel was screened against the model and showed no activity from INH but an increased
443 susceptibility for front-line antibiotic Rifampicin [92]. Also identified was the strong sterilising action
444 of new TB compound of interest, PA-824 [93,94].

445 This model attempts to mimic entry into the NRP state via the removal of streptomycin.
446 However, the NRP state is still not fully understood: the transcriptome and physiology can vary
447 between different models that exhibit different granuloma conditions [17,32]. This model was
448 presented as an easy, affordable and reliable way of conducting a HTPS on NRP mycobacteria. The
449 altered drug profile observed when using this model casts doubt on the ability to accurately screen
450 *in vitro* for effective drugs *in vivo* [19,41]. This is coupled with the model not mimicking any part of
451 the granuloma, and as we do not yet know the implications of these environmental conditions, crucial
452 elements of the NRP state could be missing from this model.

453 7. Summary

454 Despite recent interest, there is still a large void in knowledge concerning the NRP state both
455 genetically and physiologically (Figure 2). Many attempts have been made at modelling the NRP
456 state *in vitro*, all contributing different approaches and goals. However, there hasn't yet been a widely
457 accepted model proposed that mimics more than one aspect of the granuloma. Trying to replicate
458 just one condition has a lot of merit as it allows a deep investigation into the effects of one variable
459 on the bacteria. The other argument is that if just one condition in isolation can trigger the NRP state,
460 combining all the other conditions in one unwieldy model is unnecessary.

461 However, when modelling a bacterial infection with the purpose of novel drug screening, the
462 model needs to be as representative of the clinical disease as possible. As the above models show, the
463 different environments all induce a clearly distinct NRP state with different genetic profiles and drug
464 susceptibility (Figure 1). The current practice to address this issue is to use several of the models
465 previously discussed in tandem to screen for new antimicrobials. The consequence of this is that these
466 environments are not found individually *in vivo*. In reality, these distinct phenotypes fuse to form a

467 third phenotype, the clinical phenotype (Figure 1). It is this clinical phenotype that requires future *in*
468 *vitro* modelling if novel drug screening is to be met with any success.

469 **Acknowledgements:** JAGC is grateful to the Academy of Medical Sciences and Global Challenges
470 Research Fund for supporting the Mycobacterial Research Group at Aston University. SERG is
471 supported by a PhD Studentship funded by Aston University.

472 **Author Contributions:** SERG, JH and JAGC reviewed the literature and wrote the manuscript.

473 **Funding:** This research was funded by the Academy of Medical Sciences and Global Challenges
474 Research Fund with a Springboard Grant (SBF003\1088:)

475 **Conflicts of Interest:** The authors declare no conflict of interest.

476 References

- 477 1. WHO. Global Tuberculosis Report 2017. World Health Organisation: Geneva, 2017.
- 478 2. Smith, I. *Mycobacterium tuberculosis* Pathogenesis and Molecular Determinants of Virulence. *Clinical*
479 *Microbiology Reviews* 2003, 16, 463-496, doi:10.1128/cmr.16.3.463-496.2003.
- 480 3. Balasubramanian, V.; Wiegeshaus, E.H.; Taylor, B.T.; Smith, D.W. Pathogenesis of tuberculosis: pathway
481 to apical localization. *Tubercle and Lung Disease* 1994, 75, 168-178, doi:[https://doi.org/10.1016/0962-8479\(94\)90002-7](https://doi.org/10.1016/0962-8479(94)90002-7).
- 482 4. Kang, D.D.; Lin, Y.; Moreno, J.-R.; Randall, T.D.; Khader, S.A. Profiling early lung immune responses in the
483 mouse model of tuberculosis. *PLoS one* 2011, 6, e16161.
- 484 5. Wolf, A.J.; Linas, B.; Trevejo-Nuñez, G.J.; Kincaid, E.; Tamura, T.; Takatsu, K.; Ernst, J.D. *Mycobacterium*
485 tuberculosis infects dendritic cells with high frequency and impairs their function *in vivo*. *The Journal of*
486 *Immunology* 2007, 179, 2509-2519.
- 487 6. Poulsen, A. Some clinical features of tuberculosis. 1. Incubation period. *Acta tuberculosea Scandinavica* 1950,
488 24, 311.
- 489 7. Russell, D.G. Who puts the tubercle in tuberculosis? *Nature Reviews Microbiology* 2007, 5, 39.
- 490 8. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. *Nature Reviews Immunology* 2012, 12,
491 352.
- 492 9. Guirado, E.; Schlesinger, L. Modeling the *Mycobacterium tuberculosis* granuloma—the critical battlefield in
493 host immunity and disease. *Frontiers in immunology* 2013, 4, 98.
- 494 10. Ernst, J.D. The immunological life cycle of tuberculosis. *Nature Reviews Immunology* 2012, 12, 581,
495 doi:10.1038/nri3259.
- 496 11. Knechel, N.A. Tuberculosis: pathophysiology, clinical features, and diagnosis. *Critical care nurse* 2009, 29,
497 34-43.
- 498 12. Lönnroth, K.; Castro, K.G.; Chakaya, J.M.; Chauhan, L.S.; Floyd, K.; Glaziou, P.; Raviglione, M.C.
500 Tuberculosis control and elimination 2010–50: cure, care, and social development. *The Lancet* 2010, 375,
501 1814-1829.
- 502 13. Espinal, M.A. The global situation of MDR-TB. *Tuberculosis* 2003, 83, 44-51.
- 503 14. WHO. The End TB Strategy. Organisation, W.H., Ed. World Health Organisation: Geneva, 2014.
- 504 15. O'Neill, J. Tackling drug-resistant infections globally: Final report and recommendations. 2016. *HM*
505 *Government and Welcome Trust: UK* 2018.
- 506 16. Barry 3rd, C.E.; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.;
507 Young, D. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. *Nature*
508 *Reviews Microbiology* 2009, 7, 845.
- 509 17. Wayne, L.G.; Sohaskey, C.D. Nonreplicating persistence of *Mycobacterium tuberculosis*. *Annual Reviews in*
510 *Microbiology* 2001, 55, 139-163.
- 511 18. Esmail, H.; Barry, C.E.; Young, D.B.; Wilkinson, R.J. The ongoing challenge of latent tuberculosis.
512 *Philosophical Transactions of the Royal Society B: Biological Sciences* 2014, 369, doi:10.1098/rstb.2013.0437.
- 513 19. Getahun, H.; Matteelli, A.; Chaisson, R.E.; Raviglione, M. Latent *Mycobacterium tuberculosis* Infection.
514 *New England Journal of Medicine* 2015, 372, 2127-2135, doi:10.1056/NEJMra1405427.
- 515 20. Griffin, Jennifer E.; Pandey, Amit K.; Gilmore, Sarah A.; Mizrahi, V.; McKinney, John D.; Bertozzi,
516 Carolyn R.; Sassetti, Christopher M. Cholesterol Catabolism by *Mycobacterium tuberculosis* Requires

517 Transcriptional and Metabolic Adaptations. *Chemistry & Biology* 2012, 19, 218-227,
518 doi:<https://doi.org/10.1016/j.chembiol.2011.12.016>.

519 21. Soto-Ramirez, M.D.; Aguilar-Ayala, D.A.; Garcia-Morales, L.; Rodriguez-Peredo, S.M.; Badillo-Lopez, C.;
520 Rios-Muñiz, D.E.; Meza-Segura, M.A.; Rivera-Morales, G.Y.; Leon-Solis, L.; Cerna-Cortes, J.F., et al.
521 Cholesterol plays a larger role during *Mycobacterium tuberculosis* in vitro dormancy and reactivation than
522 previously suspected. *Tuberculosis* 2017, 103, 1-9, doi:<https://doi.org/10.1016/j.tube.2016.12.004>.

523 22. Muñoz-Elías, E.J.; Upton, A.M.; Cherian, J.; McKinney, J.D. Role of the methylcitrate cycle in
524 *Mycobacterium tuberculosis* metabolism, intracellular growth, and virulence. *Molecular Microbiology* 2006,
525 60, 1109-1122, doi:doi:10.1111/j.1365-2958.2006.05155.x.

526 23. Wayne, L.G. Dynamics of submerged growth of *Mycobacterium tuberculosis* under aerobic and
527 microaerophilic conditions. *American Review of Respiratory Disease* 1976, 114, 807-811.

528 24. Huebner, R.E.; Schein, M.F.; Bass Jr, J.B. The tuberculin skin test. *Clinical infectious diseases* 1993, 968-975.

529 25. Lordi, G.M.; Reichman, L.B. Tuberculin skin testing. In *Tuberculosis*, Springer: 1988; pp. 33-38.

530 26. Houben, R.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using
531 Mathematical Modelling. *PLoS Medicine* 2016, 13, doi:10.1371/journal.pmed.1002152.

532 27. Ginsberg, A.M.; Spigelman, M. Challenges in tuberculosis drug research and development. *Nature Medicine*
533 2007, 13, 290, doi:10.1038/nm0307-290.

534 28. Puissegur, M.-P.; Botanch, C.; Duteyrat, J.-L.; Delsol, G.; Caratero, C.; Altare, F. An in vitro dual model of
535 mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host
536 cells. *Cellular Microbiology* 2004, 6, 423-433, doi:doi:10.1111/j.1462-5822.2004.00371.x.

537 29. Voskuil, M.I.; Visconti, K.C.; Schoolnik, G.K. *Mycobacterium tuberculosis* gene expression during
538 adaptation to stationary phase and low-oxygen dormancy. *Tuberculosis* 2004, 84, 218-227,
539 doi:<https://doi.org/10.1016/j.tube.2004.02.003>.

540 30. Brzostek, A.; Pawelczyk, J.; Rumijowska-Galewicz, A.; Dziadek, B.; Dziadek, J. *Mycobacterium tuberculosis*
541 is able to accumulate and utilize cholesterol. *Journal of Bacteriology* 2009, 191, 6584-6591.

542 31. Wayne, L.G. Dynamics of submerged growth of *Mycobacterium tuberculosis* under anaerobic and
543 microaerophilic conditions. *Am Rev Respir Dis* 1976, 114.

544 32. Betts, J.; Lukey, P.; Robb, L.; McAdam, R.; Duncan, K. Evaluation of a nutrient starvation model of
545 *Mycobacterium tuberculosis* persistence by gene and protein expression profiling. *Molecular Microbiology*
546 2002, 43, 717-731, doi:doi:10.1046/j.1365-2958.2002.02779.x.

547 33. Loebel, R.O.; Shorr, E.; Richardson, H.B. The Influence of Adverse Conditions upon the Respiratory
548 Metabolism and Growth of Human Tubercl Bacilli. *Journal of Bacteriology* 1933, 26, 167-200.

549 34. Nyka, W. Studies on the Effect of Starvation on Mycobacteria. *Infect Immun* 1974, 9, 843-850.

550 35. Nathan, C.; Ehrt, S. Nitric oxide in tuberculosis. *Tuberculosis* 2004, 215-235.

551 36. Wayne, L.G.; Hayes, L.G. An in vitro model for sequential study of shiftdown of *Mycobacterium*
552 tuberculosis through two stages of nonreplicating persistence. *Infection and immunity* 1996, 64, 2062-2069.

553 37. Boon, C.; Li, R.; Qi, R.; Dick, T. Proteins of *Mycobacterium bovis* BCG induced in the Wayne dormancy
554 model. *Journal of Bacteriology* 2001, 183, doi:10.1128/jb.183.8.2672-2676.2001.

555 38. Patel, K.; Jhamb, S.S.; Singh, P.P. Models of Latent Tuberculosis: Their Salient Features, Limitations, and
556 Development. *Journal of Laboratory Physicians* 2011, 3, 75-79, doi:10.4103/0974-2727.86837.

557 39. Wayne, L.G.; Sramek, H.A. Metronidazole is bactericidal to dormant cells of *Mycobacterium tuberculosis*.
558 *Antimicrob Agents Chemother* 1994, 38, doi:10.1128/aac.38.9.2054.

559 40. Wayne, L.G. In vitro model of hypoxically induced nonreplicating persistence of *Mycobacterium*
560 tuberculosis. In *Mycobacterium tuberculosis protocols*, Springer: 2001; pp. 247-269.

561 41. Klinkenberg, L.G.; Sutherland, L.A.; Bishai, W.R.; Karakousis, P.C. Metronidazole lacks activity against
562 *Mycobacterium tuberculosis* in an in vivo hypoxic granuloma model of latency. *The Journal of infectious*
563 *diseases* 2008, 198, 275-283, doi:10.1086/589515.

564 42. Hoff, D.R.; Caraway, M.L.; Brooks, E.J.; Driver, E.R.; Ryan, G.J.; Peloquin, C.A.; Orme, I.M.; Basaraba, R.J.;
565 Lenaerts, A.J. Metronidazole Lacks Antibacterial Activity in Guinea Pigs Infected with *Mycobacterium*
566 tuberculosis. *Antimicrob Agents Chemother* 2008, 52, 4137-4140, doi:10.1128/aac.00196-08.

567 43. Alnimr, A.M. Dormancy models for *Mycobacterium tuberculosis*: A. *Brazilian Journal of Microbiology* 2015,
568 46, 641-647, doi:10.1590/s1517-838246320140507.

569 44. Broach, J.R.; Thorner, J. High-throughput screening for drug discovery. *Nature* 1996, 384, 14-16.

570 45. Palomino, J.-C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay
571 plate: simple and inexpensive method for detection of drug resistance in *Mycobacterium tuberculosis*.
572 *Antimicrobial agents and chemotherapy* 2002, 46, 2720-2722.

573 46. Collins, L.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput
574 screening of compounds against *Mycobacterium tuberculosis* and *Mycobacterium avium*. *Antimicrobial
575 Agents and Chemotherapy* 1997, 41, 1004-1009.

576 47. Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin
577 as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals.
578 *Methods* 2007, 42, 321-324.

579 48. Taneja, N.K.; Tyagi, J.S. Resazurin reduction assays for screening of anti-tubercular compounds against
580 dormant and actively growing *Mycobacterium tuberculosis*, *Mycobacterium bovis* BCG and
581 *Mycobacterium smegmatis*. *Journal of Antimicrobial Chemotherapy* 2007, 60, 288-293, doi:10.1093/jac/dkm207.

582 49. Murugasu-Oei, B.; Dick, T. Bactericidal activity of nitrofurans against growing and dormant
583 *Mycobacterium bovis* BCG. *Journal of Antimicrobial Chemotherapy* 2000, 46, 917-919.

584 50. Cho, S.H.; Warit, S.; Wan, B.; Hwang, C.H.; Pauli, G.F.; Franzblau, S.G. Low-oxygen-recovery assay for
585 high-throughput screening of compounds against nonreplicating *Mycobacterium tuberculosis*.
586 *Antimicrobial agents and chemotherapy* 2007, 51, 1380-1385.

587 51. Snewin, V.A.; Gares, M.-P.; ÓGaora, P.; Hasan, Z.; Brown, I.N.; Young, D.B. Assessment of Immunity to
588 Mycobacterial Infection with Luciferase Reporter Constructs. *Infection and Immunity* 1999, 67, 4586-4593.

589 52. Duncan, S.; Glover, L.A.; Killham, K.; Prosser, J.I. Luminescence-based detection of activity of starved and
590 viable but nonculturable bacteria. *Applied and Environmental Microbiology* 1994, 60, 1308-1316.

591 53. Zhang, J.-H.; Chung, T.D.; Oldenburg, K.R. A simple statistical parameter for use in evaluation and
592 validation of high throughput screening assays. *Journal of biomolecular screening* 1999, 4, 67-73.

593 54. S., T.G.; Vojo, D. Mechanisms of action of isoniazid. *Molecular Microbiology* 2006, 62, 1220-1227,
594 doi:doi:10.1111/j.1365-2958.2006.05467.x.

595 55. Heifets, L.; Simon, J.; Pham, V. Capreomycin is active against non-replicating *M. tuberculosis*. *Annals of
596 clinical microbiology and antimicrobials* 2005, 4, 6.

597 56. Gumbo, T.; Louie, A.; Deziel, M.R.; Parsons, L.M.; Salfinger, M.; Drusano, G.L. Selection of a Moxifloxacin
598 Dose That Suppresses Drug Resistance in *Mycobacterium tuberculosis*, by Use of an In Vitro
599 Pharmacodynamic Infection Model and Mathematical Modeling. *The Journal of infectious diseases* 2004, 190,
600 1642-1651, doi:10.1086/424849.

601 57. Bonnett, S.A.; Dennison, D.; Files, M.; Bajpai, A.; Parish, T. A class of hydrazones are active against non-
602 replicating *Mycobacterium tuberculosis*. *PLOS ONE* 2018, 13, e0198059, doi:10.1371/journal.pone.0198059.

603 58. Bonnett, S.A.; Ollinger, J.; Chandrasekera, S.; Florio, S.; O'Malley, T.; Files, M.; Jee, J.-A.; Ahn, J.; Casey, A.;
604 Ovechkina, Y. A target-based whole cell screen approach to identify potential inhibitors of *Mycobacterium*
605 tuberculosis signal peptidase. *ACS infectious diseases* 2016, 2, 893-902.

606 59. Li, Y.-j.; Petrofsky, M.; Bermudez, L.E. Mycobacterium tuberculosis Uptake by Recipient Host
607 Macrophages Is Influenced by Environmental Conditions in the Granuloma of the Infectious Individual
608 and Is Associated with Impaired Production of Interleukin-12 and Tumor Necrosis Factor Alpha. *Infection
609 and Immunity* 2002, 70, 6223-6230, doi:10.1128/iai.70.11.6223-6230.2002.

610 60. Changsen, C.; Franzblau, S.G.; Palittapongarnpim, P. Improved Green Fluorescent Protein Reporter Gene-
611 Based Microplate Screening for Antituberculosis Compounds by Utilizing an Acetamidase Promoter.
612 *Antimicrobial Agents and Chemotherapy* 2003, 47, 3682-3687, doi:10.1128/aac.47.12.3682-3687.2003.

613 61. Yeware, A.; Sarkar, D. Novel red fluorescence protein based microplate assay for drug screening against
614 dormant *Mycobacterium tuberculosis* by using paraffin. *Tuberculosis* 2018, 110, 15-19,
615 doi:<https://doi.org/10.1016/j.tube.2018.02.008>.

616 62. Carroll, P.; Schreuder, L.J.; Muwangizi-Karugaba, J.; Wiles, S.; Robertson, B.D.; Ripoll, J.; Ward, T.H.;
617 Bancroft, G.J.; Schaible, U.E.; Parish, T. Sensitive Detection of Gene Expression in *Mycobacteria* under
618 Replicating and Non-Replicating Conditions Using Optimized Far-Red Reporters. *PLOS ONE* 2010, 5,
619 e9823, doi:10.1371/journal.pone.0009823.

620 63. Parish, T.; Stoker, N.G. Electroporation of mycobacteria. In *Mycobacteria protocols*, Springer: 1998; pp. 129-
621 144.

622 64. Hugh, R.; Leifson, E. THE TAXONOMIC SIGNIFICANCE OF FERMENTATIVE VERSUS OXIDATIVE
623 METABOLISM OF CARBOHYDRATES BY VARIOUS GRAM NEGATIVE BACTERIA. *Journal of*
624 *Bacteriology* **1953**, *66*, 24-26.

625 65. Gomez, J.E.; McKinney, J.D. M. tuberculosis persistence, latency, and drug tolerance. *Tuberculosis* **2004**, *84*,
626 29-44, doi:<https://doi.org/10.1016/j.tube.2003.08.003>.

627 66. Cho, S.; Lee, H.S.; Franzblau, S. Microplate alamar blue assay (MABA) and low oxygen recovery assay
628 (LORA) for *Mycobacterium tuberculosis*. In *Mycobacteria Protocols*, Springer: 2015; pp. 281-292.

629 67. Murphy, D.J.; Brown, J.R. Identification of gene targets against dormant phase *Mycobacterium tuberculosis*
630 infections. *BMC Infectious Diseases* **2007**, *7*, 84, doi:10.1186/1471-2334-7-84.

631 68. Loebel, R.O.; Shorr, E.; Richardson, H.B. The Influence of Foodstuffs upon the Respiratory Metabolism and
632 Growth of Human Tuberle Bacilli. *Journal of Bacteriology* **1933**, *26*, 139-166.

633 69. Sarathy, J.; Dartois, V.; Dick, T.; Gengenbacher, M. Reduced drug uptake in phenotypically resistant
634 nutrient-starved non-replicating *Mycobacterium tuberculosis*. *Antimicrobial Agents and*
635 *Chemotherapy* **2013**, 10.1128/aac.02202-12, doi:10.1128/aac.02202-12.

636 70. Manabe, Y.C.; Bishai, W.R. Latent *Mycobacterium tuberculosis*-persistence, patience, and winning by
637 waiting. *Nature medicine* **2000**, *6*, 1327.

638 71. Hu, Y.; Coates, A.R.M. Transcription of Two Sigma 70 Homologue Genes, sigA and sigB, in Stationary-
639 Phase *Mycobacterium tuberculosis*. *Journal of Bacteriology* **1999**, *181*, 469-476.

640 72. Manganelli, R.; Dubnau, E.; Tyagi, S.; Kramer, F.R.; Smith, I. Differential expression of 10 sigma factor genes
641 in *Mycobacterium tuberculosis*. *Molecular Microbiology* **1999**, *31*, 715-724, doi:doi:10.1046/j.1365-
642 2958.1999.01212.x.

643 73. Hampshire, T.; Soneji, S.; Bacon, J.; James, B.W.; Hinds, J.; Laing, K.; Stabler, R.A.; Marsh, P.D.; Butcher,
644 P.D. Stationary phase gene expression of *Mycobacterium tuberculosis* following a progressive nutrient
645 depletion: a model for persistent organisms? *Tuberculosis* **2004**, *84*, 228-238,
646 doi:<https://doi.org/10.1016/j.tube.2003.12.010>.

647 74. Neijssel, O.; Tempest, D. Bioenergetic aspects of aerobic growth of *Klebsiella aerogenes* NCTC 418 in
648 carbon-limited and carbon-sufficient chemostat culture. *Archives of Microbiology* **1976**, *107*, 215-221.

649 75. Tuomanen, E.; Cozens, R.; Tosch, W.; Zak, O.; Tomasz, A. The rate of killing of *Escherichia coli* by β -lactam
650 antibiotics is strictly proportional to the rate of bacterial growth. *Microbiology* **1986**, *132*, 1297-1304.

651 76. Van Andel, J.; Zoutberg, G.; Crabbendam, P.; Breure, A. Glucose fermentation by *Clostridium butyricum*
652 grown under a self generated gas atmosphere in chemostat culture. *Applied microbiology and biotechnology*
653 **1985**, *23*, 21-26.

654 77. Vulić, M.; Kolter, R. Evolutionary Cheating in *Escherichia coli* Stationary Phase Cultures.
655 *Genetics* **2001**, *158*, 519-526.

656 78. Wiker, H.G.; Harboe, M.; Nagai, S. A localization index for distinction between extracellular and
657 intracellular antigens of *Mycobacterium tuberculosis*. *Microbiology* **1991**, *137*, 875-884.

658 79. Hernandez-Pando, R.; Jeyanathan, M.; Mengistu, G.; Aguilar, D.; Orozco, H.; Harboe, M.; Rook, G.; Bjune,
659 G. Persistence of DNA from *Mycobacterium tuberculosis* in superficially normal lung tissue during latent
660 infection. *The Lancet* **2000**, *356*, 2133-2138.

661 80. Corper, H.; Cohn, M.L. The Viability and Virulence of Old Cultures of Tuberle Bacilli. Studies on Twelve-
662 Year Broth Cultures Maintained at Incubator Temperature. *American Review of Tuberculosis and Pulmonary*
663 *Diseases* **1933**, *28*, 856-874.

664 81. Lyon, R.H.; Lichstein, H.C.; Hall, W.H. Effect of Tween 80 on the growth of tubercle bacilli in aerated
665 cultures. *Journal of Bacteriology* **1963**, *86*, 280-284.

666 82. Mizuno, S.; Tsukamura, M. UTILIZATION OF TWEEN 80 AS CARBON SOURCE FOR GROWTH OF
667 SLOWLY GROWING MYCOBACTERIA. *Kekkaku(Tuberculosis)* **1978**, *53*, 537-540,
668 doi:10.11400/kekaku1923.53.537.

669 83. Brown, G.C. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase.
670 *Biochimica et Biophysica Acta (BBA)-Bioenergetics* **2001**, *1504*, 46-57.

671 84. Flynn, J.L.; Chan, J. Tuberculosis: Latency and Reactivation. *Infection and Immunity* **2001**, *69*, 4195-4201,
672 doi:10.1128/iai.69.7.4195-4201.2001.

673 85. Voskuil, M.I.; Schnappinger, D.; Visconti, K.C.; Harrell, M.I.; Dolganov, G.M.; Sherman, D.R.; Schoolnik,
674 G.K. Inhibition of Respiration by Nitric Oxide Induces a *Mycobacterium tuberculosis*
675 Dormancy Program. *The Journal of Experimental Medicine* **2003**, *198*, 705-713, doi:10.1084/jem.20030205.

676 86. Boon, C.; Dick, T. *Mycobacterium bovis* BCG response regulator essential for hypoxic dormancy. *Journal of*
677 *Bacteriology* **2002**, *184*, 6760-6767.

678 87. Sherman, D.R.; Voskuil, M.; Schnappinger, D.; Liao, R.; Harrel, M.I.; Schoolnik, G.K. Regulation of the
679 *Mycobacterium tuberculosis* hypoxic response gene encoding alpha-chrystallin. *Proc Natl Acad Sci USA*
680 **2001**, *98*, doi:10.1073/pnas.121172498.

681 88. Yuan, Y.; Crane, D.D.; Simpson, R.M.; Zhu, Y.; Hickey, M.J.; Sherman, D.R.; Barry, C.E. The 16-kDa α -
682 crystallin (Acr) protein of *Mycobacterium tuberculosis* is required for growth in macrophages.
683 *Proceedings of the National Academy of Sciences* **1998**, *95*, 9578-9583, doi:10.1073/pnas.95.16.9578.

684 89. Wayne, L.; Hayes, L. Nitrate reduction as a marker for hypoxic shiftdown of *Mycobacterium tuberculosis*.
685 *Tubercle and Lung Disease* **1998**, *79*, 127-132.

686 90. Garbe, T.; Hibler, N.; Deretic, V. Response to Reactive Nitrogen Intermediates in *Mycobacterium*
687 *tuberculosis*: Induction of the 16-Kilodalton α -Crystallin Homolog by Exposure to Nitric Oxide Donors.
688 *Infection and immunity* **1999**, *67*, 460-465.

689 91. Hashimoto, T. Experimental studies on the mechanism of infection and immunity in tuberculosis from the
690 analytical standpoint of streptomycin-dependent tubercle bacilli. 1. Isolation and biological characteristics
691 of a streptomycin-dependent mutant, and effect of streptomycin administration on its pathogenicity in
692 guinea-pigs. *Kekaku:[Tuberculosis]* **1955**, *30*, 4.

693 92. Sala, C.; Dhar, N.; Hartkoorn, R.C.; Zhang, M.; Ha, Y.H.; Schneider, P.; Cole, S.T. Simple Model for Testing
694 Drugs against Nonreplicating *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother* **2010**, *54*, 4150-
695 4158, doi:10.1128/aac.00821-10.

696 93. Dawson, R.; Diacon, A.H.; Everitt, D.; van Niekerk, C.; Donald, P.R.; Burger, D.A.; Schall, R.; Spigelman,
697 M.; Conradie, A.; Eisenach, K. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-
698 824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly
699 randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. *The Lancet*
700 **2015**, *385*, 1738-1747.

701 94. Murray, S.; Mendel, C.; Spigelman, M. TB Alliance regimen development for multidrug-resistant
702 tuberculosis. *The International Journal of Tuberculosis and Lung Disease* **2016**, *20*, S38-S41.