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Summary 
 Conceiving vacuum energy as gravitational particles subject to Heisenberg’s energy-time uncertainty, 
modelled as dipoles in a fluidal space at thermodynamic equilibrium, and interpreting the Bekenstein-
Hawking entropy as the effective amount of spins of those dipoles enclosed within the event horizon 
of the universe, allows the calculation of Milgrom’s acceleration constant. The result is a quantum 
mechanical interpretation of gravity, and dark matter in particular. 
 
Keywords: Milgrom’s acceleration constant; Bekenstein-Hawking entropy; gravitational dipole; dark 
matter. 
 

Introduction 
One of the most outstanding problems in present physics is the search towards the relationship 
between quantum mechanics and gravity. This subject has given rise to a discipline in itself, dubbed as 
quantum gravity. Within this discipline, new concepts are being developed, such as for instance string 
theory. Those new concepts are often denoted as new physics. It is believed that such new concepts 
will reveal certain phenomena in cosmology, such as for instance the dark matter mystery. An 
interesting approach is building new physics emergently from basic principles, such as for instance 
from the entropy concept as known from thermodynamics. Recent proposals in this direction have 
been put forward by Verlinde [1,2], inspired by an idea from Jacobson [3] back in 1993. These proposals 
have resulted in a particular approach to gravity, known as entropic gravity. Verlinde’s theory aims to 
connect entropic gravity with string theoretic principles and information theory. The drawback of this 
approach for a scientist with an interest in the subject is the need to cope with the highly sophisticated 
mathematical mask that seems to be needed for the description of the role of informatics and 
thermodynamic entropy. It is the aim of the author of this article to reverse the argumentation. Rather 
than showing how Einstein’s theory of gravity emerges from basic principles, he wishes to show that 
the basic principles emerge from Einstein’s theory, even to the extent of the role of informatics and 
thermodynamic entropy. It is the author’s belief that this will result in easier understanding of the very 
same principles and in quantitative results that give a better fit to observational evidence. One of the 
results, next to understanding the role of informatics in gravity, is a very clear explanation of the dark 
matter phenomenon, culminating in a quantitative calculation Milgrom’s acceleration constant from 
basic quantum mechanical principles, developed from conceiving  the vacuum energy term in 
Einstein’s equation as the Heisenberg fluctuation on the irrelevant thermal dynamical equilibrium state 
of spatial particles in a virtual fluid.  This turns the empirical modification of Newton’s gravity law into 
a fundamental modification with the same, and even more, strength for successful calculations and 
predictions in cosmology that fit to observational evidence.  
 
Theory 
 
Ultimately, it is the aim in this article to show that Milgrom’s acceleration constant can 

straightforwardly be calculated from the well known entropy expression for black holes as eventually 

established by Hawking as an improvement of Bekenstein’s original formulation. In this respect it is 

not different from like it is in Verlinde’s artcle [2]. The theory, the interpretation and the results, 
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though, are quite different. The Bekenstein-Hawking expression is one of five ingredients for 

calculation.  It reads as [4,5], 
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where c is the vacuum light velocity, G the gravitational constant,  Planck’s (reduced) constant and 

A the black hole’s peripheral area. The peripheral area of a spherical black hole is determined by its 

Schwarzschild radius as, 
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where M is the baryonic mass of the black hole. 

The second ingredient is the well known observation that the event horizon Hct  of the visible universe  

of a “flat” universe equals Schwarzschild radius of the critical mass enclosed within that horizon ( Ht  is 

the Hubble time scale ), [6]. Hence, from  (1), the entropy  within the event horizon of the flat universe 

can be established as 
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The third ingredient is a consideration on the possible vacuum energy of the universe. Let us suppose 

that the origin of gravitational energy is due to the Heisenberg uncertainty of elementary spatial 

particles. These particles are subject to the constrained time-energy product E x t . Usually the 

Heisenberg relationship is expressed as 2/= tE , [7]. In this particular case, E  expresses that 

the spatial particle’s vacuum energy is subject to a 2/E deviation around its thermodynamic 

equilibrium state. This deviation can be interpreted as the vibration energy of the one-body equivalent 

of a two-body quantum mechanical oscillator. The vibration energy can then be modelled as the 

ground state 
2cmeff energy of an effective mass in the centre, thereby considering the energetic 

equilibrium state of the spatial particle as irrelevant. In this model, the two bodies compose a 

gravitational dipole to which a certain dipole moment can be assigned. Let us assign a mass m to each 

of the two bodies and let us assign a spacing d between them. This establishes a dipole moment 

mdp = to each elementary vibrating spatial particle. Let the spacing between the poles be 

determined as tcd = , where t is the time uncertainty subject to the Heisenberg constraint, i.e.,  
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where  is a dimensionless factor that relates the two body masses with the equivalent mass of the 

vibration energy of the spatial particle. The magnitude of  can be estimated from the relationship 
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However, where the effective mass is only halve of the mass of the constituent bodies, the effective 

spatial coordinate of the effective mass is doubled [8].  

Hence, from (3) and (4) 
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where  I  have added a dimensionless gyrometric factor g , expected as being =g 1, to account for 

the uncertainty in the Heisenberg relationship. It will be re-discussed later in this text. This implies so 

far that elementary spatial particles can be modelled by gravitational dipoles with a dipole moment p

as described by  (6). 

The fourth ingredient is the baryonic dipole moment density gP as shows up in the interpretation of 

the impact of the Cosmological Constant on the Newtonian gravity as described in [9] (see note), where 

it is shown that 
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where 0a is Milgrom’s empirical acceleration constant [10]. 

Note: the referenced article is a preprint v3, which has got an update v4. Regrettably, in the update 

the dipole concept has been omitted, because in the article it was not more than a discussion item 

that could be regarded as controversial. In the appendix, the concept is explained again.  

From (5) and (6), we may calculate the amount gN of gravitational  dipoles in the spatial volume V  

enclosed by the event horizon of the universe, as  
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Not all of these gravitational dipoles are baryonic. In terms of the Lamda-CDM nomenclature the 

baryonic share is expressed as B in the relationship 

 ++=+= )(1 DBm ,                                                                                                                (9) 

where DBm   ,,, , respectively are the relative matter density, the relative dark energy matter 

density, the relative baryonic matter density and the relative dark matter density [11]. Where the 

matter distribution between the matter density m (= 0.259) and dark energy density  (= 0.741) is 

largely understood as a consequence from the Friedmann equations [12] that evolve from Einstein’s 

Field Equation under the Friedmann-Lemairtre-Robertson-Walker (FLRW) metric [13], the distribution 

between the baryonic matter density B (= 0.0486) and dark matter density D (= 0.210) is 

empirically established from observation. The quoted values are those as established by the Planck 

Collaboration [11]. Taking this account, the amount of baryonic dipoles in a spatial volume V  is 

established as, 
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These dipoles carry the total amount of baryonic energy. Their spin (=  direction of the dipole moment 

vector) states carry the amount of baryonic information contained in the universe. Because the 

quantum states of the spin can assume two values only, the number BN are bits that represent the 

baryonic  information content of a space with volume V . Hence, both S as defined by (1,2) and BN

as defined by (10) express the entropy of the volume enclosed within the event horizon of the universe. 

Hence, equating S and BN  yields the instrument for the calculation of Milgrom’s acceleration 

constant 0a . Doing so, we find from 
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This result is very similar to the one as derived by me before [14] from  a quite different perspective, 

without invoking the Bekenstein-Hawking relationship and without assigning the vacuum energy to 

the Heisenberg uncertainty. However, making the results identical, imposes to assign a value 2/1  to 

the gyrometric factor .g Doing so, we find, as in [11], with =B 0.0486, =c  3 x 108 m/s and Hubble 

time scale =Ht 13.8 Gyear, the result 0a 1.25 x 10-10 m/s2, which corresponds extremely well with 

observational  evidence [15].  

Discussion 

It will be clear that the beauty of the theory as presented in this text is affected by the required 
modification of the gyrometric factor from the comprehensible value =g 1 to the manipulative =g

1/2π. Although in the quantum theory of electromagnetism some similar manipulation is done with 
the introduction of the gyromagnetic factor, a more satisfactory explanation would be most welcome. 
In this discussion paragraph, I’ll propose one, albeit with some reluctance. The proposition is to accept 
a view on the Bekenstein-Hawking entropy as suggested by Susskind (for explanation purpose) in one 
of his lectures [16]. Susskind has proposed to consider the black hole as a body that captures or 
releases elementary discrete packages of energy == hfM , building its total  mass M as a sum 

of N elementary amounts M . To this end, the Compton wavelength of these elements must equate 

the peripheral circle SR2 of the black hole, such that 
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In Susskind’s explanation model the Bekenstein-Hawking entropy is equated with the ratio, 
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This result shows a 2/1 difference with the canonical expression (1,2) of the Bekenstein-Hawking 
entropy. Curiously, if we would accept the Susskind model, there would be no need to modify the 
gyrometric factor from 1=g to 2/1=g .  It will be clear that this simplified model is in sharp 
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contrast with the detailed mathematical treatment of Hawking. What kind of conclusion should be 
drawn in this respect is up to the reader of this text. However, even if most credit has to be given to 

Hawking’s calculation, the simplicity of 2/1  factor is convincing enough for the conclusion that the 
quantum mechanical calculation of Milgrom’s acceleration constant from the Bekenstein-Hawking 
entropy confirms the earlier calculation, straightforwardly obtained from the Cosmological Constant 
in Einstein’s Equation, as presented in [9,v3,v4] and [14], that Milgrom’s acceleration constant is given 
by, 
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where Ht (13.8 Gyear) is Hubble’s timescale and B (0.0486) is the baryonic share of the 

gravitational energy as given in the Lamda-CDM cosmological Standard Model. It is fair to conclude as 
well that this analysis supports the expected quantum mechanical nature of gravity. This however does 
not mean that the nature of the gravitational energy is fully understood, for instance because no 

instrument is available as yet to calculate the baryonic share B by theory otherwise than assuming 

that Milgrom’s acceleration 0a  is a second gravitational constant next to G .     

 
Appendix: the dipole moment density 

It is well known that, as long as the Cosmological Constant   is supposed to be zero, the Newtonian 

potential field  can be derived as the weak field limit of Einstein’s Field Equation. Although a non-

zero value of  is a major roadblock to derive an expression for a modified Newtonian potential, it can 

be done under particular constraints for the spatial validity range.  Previous studies [9] show that, 

under these conditions, the resulting potential   of cosmological systems with a central pointlike 

mass M  is the solution of the field equation, 
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which in an alternative format can be written as, 
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The constraints mentioned apply to the extreme low end of the spatial range, but also to the extreme 

far end of it. The first constraint is not different from the weak field limitation that has to be imposed 

to derive Poisson’s equation in the case of =  0. The second constraint is required to allow the 

derivation of  from a single metric component in Einstein’s metric tensor. As shown in [9,v4], these 

conditions are met in solar systems as well as in galaxy systems.  

By calculating from (A-2) the gravitational acceleration g of objects, it is shown that the Newtonian 

acceleration Ng is modified in accordance with Milgrom’s heuristic expression toward, 

0agg N= ,                                                                                                                                                    (A-3) 

where 0a is Milgrom’s acceleration constant, such that 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2018                   doi:10.20944/preprints201810.0713.v1

http://dx.doi.org/10.20944/preprints201810.0713.v1


MG

a

5

2
2 02 == .                                                                                                                                          (A-4) 

The striking feature of (A-1) is the + sign associated with 2 . If it were a − sign, the equation would 

be similar to Debije’s  equation for the potential of an electric pointlike charge in an electromagnetic 

plasma [...]. As is well know, the solution of such equation is a shielded Coulomb field, i.e., an electric 

field with an exponential decay. In the gravitational equivalent (with the + sign) the near field is 

enhanced (“antiscreened”), because masses are attracting, while electric charges with the same 

polarity are repelling. The way to solve the equation, though, is similar. Eq. (A-2) can be written as, 

)(42 rG−= , with )()()( 3 rrMr D += ,                                                                             (A-5) 

where, in the Debije process, )(rD is known as polarization charge 
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The polarization charge can be related with the polarization density vector gP , [17,18], such that  
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The polarization density vector is the density of the dipole moment vectors in the polarization 
charge. 
 
Assuming that eventually in static condition the space fluid is fully polarized by the field of the 
pointlike source, )(rPg is a constant 0gP . Hence, from (A-7), 
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Taking into account that to first order, 
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we have from (A-8) and (A-9), 
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From (A-10), (A-6) and (A-4) we have 
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The density of the dipole moment vectors, polarized or not, is therefore expressed by the 

right-hand part of (A-11). Although in this appendix this expression is derived from a 

cosmological system with central mass, it holds for the cosmological space as whole, with its 

distributed mass as well, [14].  
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