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Summary

Conceiving vacuum energy as gravitational particles subject to Heisenberg’s energy-time uncertainty,
modelled as dipoles in a fluidal space at thermodynamic equilibrium, and interpreting the Bekenstein-
Hawking entropy as the effective amount of spins of those dipoles enclosed within the event horizon
of the universe, allows the calculation of Milgrom’s acceleration constant. The result is a quantum
mechanical interpretation of gravity, and dark matter in particular.
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Introduction

One of the most outstanding problems in present physics is the search towards the relationship
between quantum mechanics and gravity. This subject has given rise to a discipline in itself, dubbed as
guantum gravity. Within this discipline, new concepts are being developed, such as for instance string
theory. Those new concepts are often denoted as new physics. It is believed that such new concepts
will reveal certain phenomena in cosmology, such as for instance the dark matter mystery. An
interesting approach is building new physics emergently from basic principles, such as for instance
from the entropy concept as known from thermodynamics. Recent proposals in this direction have
been put forward by Verlinde [1,2], inspired by an idea from Jacobson [3] back in 1993. These proposals
have resulted in a particular approach to gravity, known as entropic gravity. Verlinde’s theory aims to
connect entropic gravity with string theoretic principles and information theory. The drawback of this
approach for a scientist with an interest in the subject is the need to cope with the highly sophisticated
mathematical mask that seems to be needed for the description of the role of informatics and
thermodynamic entropy. It is the aim of the author of this article to reverse the argumentation. Rather
than showing how Einstein’s theory of gravity emerges from basic principles, he wishes to show that
the basic principles emerge from Einstein’s theory, even to the extent of the role of informatics and
thermodynamic entropy. It is the author’s belief that this will result in easier understanding of the very
same principles and in quantitative results that give a better fit to observational evidence. One of the
results, next to understanding the role of informatics in gravity, is a very clear explanation of the dark
matter phenomenon, culminating in a quantitative calculation Milgrom’s acceleration constant from
basic quantum mechanical principles, developed from conceiving the vacuum energy term in
Einstein’s equation as the Heisenberg fluctuation on the irrelevant thermal dynamical equilibrium state
of spatial particles in a virtual fluid. This turns the empirical modification of Newton’s gravity law into
a fundamental modification with the same, and even more, strength for successful calculations and
predictions in cosmology that fit to observational evidence.

Theory

Ultimately, it is the aim in this article to show that Milgrom’s acceleration constant can
straightforwardly be calculated from the well known entropy expression for black holes as eventually
established by Hawking as an improvement of Bekenstein’s original formulation. In this respect it is
not different from like it is in Verlinde’s artcle [2]. The theory, the interpretation and the results,
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though, are quite different. The Bekenstein-Hawking expression is one of five ingredients for
calculation. It reads as [4,5],

C3

S= A
AGh

(1)

where Cis the vacuum light velocity, G the gravitational constant, % Planck’s (reduced) constant and
A the black hole’s peripheral area. The peripheral area of a spherical black hole is determined by its
Schwarzschild radius as,

A=47zR52,RS=22/I—ZG, (2)

where M is the baryonic mass of the black hole.

The second ingredient is the well known observation that the event horizon Ct,, of the visible universe

of a “flat” universe equals Schwarzschild radius of the critical mass enclosed within that horizon (t, is

the Hubble time scale ), [6]. Hence, from (1), the entropy within the event horizon of the flat universe
can be established as

3

4Gn

S:

4r(ct,)?. (3)

The third ingredient is a consideration on the possible vacuum energy of the universe. Let us suppose
that the origin of gravitational energy is due to the Heisenberg uncertainty of elementary spatial
particles. These particles are subject to the constrained time-energy product AE x At. Usually the
Heisenberg relationship is expressed as AEAt =7/2, [7]. In this particular case, AE expresses that
the spatial particle’s vacuum energy is subject to a = AE/2deviation around its thermodynamic
equilibrium state. This deviation can be interpreted as the vibration energy of the one-body equivalent
of a two-body quantum mechanical oscillator. The vibration energy can then be modelled as the
ground state meffczenergy of an effective mass in the centre, thereby considering the energetic

equilibrium state of the spatial particle as irrelevant. In this model, the two bodies compose a
gravitational dipole to which a certain dipole moment can be assigned. Let us assign a mass M to each
of the two bodies and let us assign a spacing d between them. This establishes a dipole moment
p=mdto each elementary vibrating spatial particle. Let the spacing between the poles be

determined as d = CAt, where Atis the time uncertainty subject to the Heisenberg constraint, i.e.,

d:cAt:cEi—m:cE 1 =cﬁ ! —>p=md=—-o, (4)
2 AE

where « is a dimensionless factor that relates the two body masses with the equivalent mass of the
vibration energy of the spatial particle. The magnitude of & can be estimated from the relationship
1 m?> m

meﬁz—:—:—:am—wz:l. (5)
1/m+1/m 2m 2 2
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However, where the effective mass is only halve of the mass of the constituent bodies, the effective
spatial coordinate of the effective mass is doubled [8].

Hence, from (3) and (4)
h
=q—, 6
p=d e (6)

where | have added a dimensionless gyrometric factor ¢, expected as being g =1, to account for

the uncertainty in the Heisenberg relationship. It will be re-discussed later in this text. This implies so
far that elementary spatial particles can be modelled by gravitational dipoles with a dipole moment p

as described by (6).

The fourth ingredient is the baryonic dipole moment density Pg as shows up in the interpretation of

the impact of the Cosmological Constant on the Newtonian gravity as described in [9] (see note), where
it is shown that

_ &
204G’

where a,is Milgrom’s empirical acceleration constant [10].

Note: the referenced article is a preprint v3, which has got an update v4. Regrettably, in the update
the dipole concept has been omitted, because in the article it was not more than a discussion item
that could be regarded as controversial. In the appendix, the concept is explained again.

From (5) and (6), we may calculate the amount Ng of gravitational dipoles in the spatial volume V
enclosed by the event horizon of the universe, as
PV 4
Ny =——;V =—z(ct,)’ (8)
p 3
Not all of these gravitational dipoles are baryonic. In terms of the Lamda-CDM nomenclature the

baryonic share is expressed as 2 in the relationship
1=0, +Q, =(Q; +Q,)+Q,, (9)

where Q_,Q,,Q,,Q, respectively are the relative matter density, the relative dark energy matter
density, the relative baryonic matter density and the relative dark matter density [11]. Where the
matter distribution between the matter density 2, (= 0.259) and dark energy density Q, (= 0.741) is
largely understood as a consequence from the Friedmann equations [12] that evolve from Einstein’s
Field Equation under the Friedmann-Lemairtre-Robertson-Walker (FLRW) metric [13], the distribution
between the baryonic matter density (= 0.0486) and dark matter density (= 0.210) is
empirically established from observation. The quoted values are those as established by the Planck

Collaboration [11]. Taking this account, the amount of baryonic dipoles in a spatial volume V is
established as,
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N, = V =
Q. p 202G gQ,7n 3

These dipoles carry the total amount of baryonic energy. Their spin (= direction of the dipole moment
vector) states carry the amount of baryonic information contained in the universe. Because the

guantum states of the spin can assume two values only, the number NB are bits that represent the

baryonic information content of a space with volume V . Hence, both S as defined by (1,2) and Ny
as defined by (10) express the entropy of the volume enclosed within the event horizon of the universe.

Hence, equating S and NB yields the instrument for the calculation of Milgrom’s acceleration

constant @, . Doing so, we find from

154, °. (11)

This result is very similar to the one as derived by me before [14] from a quite different perspective,
without invoking the Bekenstein-Hawking relationship and without assigning the vacuum energy to
the Heisenberg uncertainty. However, making the results identical, imposes to assign a value 1/ 27 to
the gyrometric factor g.Doing so, we find, as in [11], with Q; =0.0486, C = 3 x 10® m/s and Hubble

time scale t,, =13.8 Gyear, the result a, = 1.25 x 10"°m/s? which corresponds extremely well with

observational evidence [15].
Discussion

It will be clear that the beauty of the theory as presented in this text is affected by the required
modification of the gyrometric factor from the comprehensible value g =1 to the manipulativeg =
1/2n. Although in the quantum theory of electromagnetism some similar manipulation is done with
the introduction of the gyromagnetic factor, a more satisfactory explanation would be most welcome.
In this discussion paragraph, I'll propose one, albeit with some reluctance. The proposition is to accept
a view on the Bekenstein-Hawking entropy as suggested by Susskind (for explanation purpose) in one
of his lectures [16]. Susskind has proposed to consider the black hole as a body that captures or
releases elementary discrete packages of energy AM = hf = 7w, building its total mass M as a sum

of N elementary amounts AM . To this end, the Compton wavelength of these elements must equate
the peripheral circle 27R of the black hole, such that

AM =hf =pLt-he_ _hc _nc (12)
T T 2R, R,

In Susskind’s explanation model the Bekenstein-Hawking entropy is equated with the ratio,

R R
S=N :ﬂz_sM =5
AM  AcC Aic

2 3 3 3
c 2G  2nG 2hG 4 27 4G

This result shows a 1/ 27 difference with the canonical expression (1,2) of the Bekenstein-Hawking
entropy. Curiously, if we would accept the Susskind model, there would be no need to modify the
gyrometric factor from g =1to g =1/2xz. It will be clear that this simplified model is in sharp

d0i:10.20944/preprints201810.0713.v1
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contrast with the detailed mathematical treatment of Hawking. What kind of conclusion should be
drawn in this respect is up to the reader of this text. However, even if most credit has to be given to
Hawking’s calculation, the simplicity of 1/ 27 factor is convincing enough for the conclusion that the
guantum mechanical calculation of Milgrom’s acceleration constant from the Bekenstein-Hawking
entropy confirms the earlier calculation, straightforwardly obtained from the Cosmological Constant
in Einstein’s Equation, as presented in [9,v3,v4] and [14], that Milgrom’s acceleration constant is given
by,

a, :EQBL, (14)
4 t,

where t,, (~13.8 Gyear) is Hubble’s timescale and (), (~0.0486) is the baryonic share of the

gravitational energy as given in the Lamda-CDM cosmological Standard Model. It is fair to conclude as
well that this analysis supports the expected quantum mechanical nature of gravity. This however does
not mean that the nature of the gravitational energy is fully understood, for instance because no

instrument is available as yet to calculate the baryonic share € by theory otherwise than assuming

that Milgrom’s acceleration &, is a second gravitational constant next to G .

Appendix: the dipole moment density

It is well known that, as long as the Cosmological Constant A is supposed to be zero, the Newtonian
potential field @ can be derived as the weak field limit of Einstein’s Field Equation. Although a non-
zero value of A is a major roadblock to derive an expression for a modified Newtonian potential, it can
be done under particular constraints for the spatial validity range. Previous studies [9] show that,
under these conditions, the resulting potential @ of cosmological systems with a central pointlike
mass M is the solution of the field equation,

o? 472GM
F(r(b) + 2 (rd) =—r 2

5%(r), where A2 = 2A, (A-1)

which in an alternative format can be written as,

47GM
C2

V2O + 1°P = — 53(r). (A-2)

The constraints mentioned apply to the extreme low end of the spatial range, but also to the extreme
far end of it. The first constraint is not different from the weak field limitation that has to be imposed
to derive Poisson’s equation in the case of A = 0. The second constraint is required to allow the
derivation of @ from a single metric component in Einstein’s metric tensor. As shown in [9,v4], these
conditions are met in solar systems as well as in galaxy systems.

By calculating from (A-2) the gravitational acceleration ¢ of objects, it is shown that the Newtonian

acceleration g is modified in accordance with Milgrom’s heuristic expression toward,

g=+/0n3, (A-3)

where a, is Milgrom’s acceleration constant, such that
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2 _pp = 2B
5MG

(A-4)

The striking feature of (A-1) is the + sign associated with A”. If it were a —sign, the equation would
be similar to Debije’s equation for the potential of an electric pointlike charge in an electromagnetic
plasma [...]. As is well know, the solution of such equation is a shielded Coulomb field, i.e., an electric
field with an exponential decay. In the gravitational equivalent (with the + sign) the near field is
enhanced (“antiscreened”), because masses are attracting, while electric charges with the same
polarity are repelling. The way to solve the equation, though, is similar. Eq. (A-2) can be written as,

V20 = —47Gp(r), with p(r) = M3 (r) + py (r), (A-3)

where, in the Debije process, o (r) is known as polarization charge

2

471G

Po(r) =-———®(r). (A-6)

The polarization charge can be related with the polarization density vector Pg , [17,18], such that

1d

ppo(r)=-V- Pg=r—za{r2Pg (N} (A-7)

The polarization density vector is the density of the dipole moment vectors in the polarization
charge.

Assuming that eventually in static condition the space fluid is fully polarized by the field of the

pointlike source, P, (r)is a constant P, - Hence, from (A-7),

po() =2 (A

Taking into account that to first order,

M
o)==, (n-9)

we have from (A-8) and (A-9),

2P,
po(r) = MG D(r). (A-10)

From (A-10), (A-6) and (A-4) we have

a
p —=_0
9 204G

(A-11)
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The density of the dipole moment vectors, polarized or not, is therefore expressed by the
right-hand part of (A-11). Although in this appendix this expression is derived from a
cosmological system with central mass, it holds for the cosmological space as whole, with its
distributed mass as well, [14].
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