Preprint
Article

Investigations on the Tribological Performance of A390 Alloy Hybrid Aluminum Matrix Composite

Altmetrics

Downloads

671

Views

236

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 November 2018

Posted:

02 November 2018

You are already at the latest version

Alerts
Abstract
Several challenges stand in the way of production of Metal Matrix Composites (MMCs) such as higher processing temperatures, particulate mixing, particulate-matrix interface bonding issues and ability to process into desired geometrical shapes. Although there are many literatures showing composites with single particulate reinforcements, the studies on composites with multiple reinforcing agents (hybrid composites) are found to be limited. Development of a hybrid particulate composite with optimized mechanical and tribological properties is very significant to suit modern engineering applications. In this study, Al-Si hypereutectic alloy (A390) is used as the matrix and Silicon Carbide (SiC) and Graphite (Gr) and Molybdenum di-Sulphide (MoS2) are used as particulates. Particulate volume (wt%) is varied and sample test castings are made using squeeze casting process through stir casting processing route. The evaluation of mechanical properties indicates that presence of both the hard phase (SiC) and the soft phase has distinct effect on the properties of Hybrid Composite. Composite samples were characterized to understand the performance and to meet the tribological applications. Fractography study indicated an intra-granular brittle fracture for hybrid composites. Wear study shows that Hybrid MMCs has better tribological performance compared to that of A390 alloy.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated