

1 Article

2 **Improvement of Electrical Performance in P-Channel
3 LTPS Thin-Film Transistor with a-Si:H Surface
4 Passivation**5 **K.S. Jang, P.D. Phong, Y.J. Lee, J.H. Park* and J.S. Yi***6 ¹ College of Information and Communication Engineering, Sungkyunkwan University, 2066 Seobu-ro,
7 Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea

8 * Correspondence: jhyun21.park@gmail.com; Tel.: +82-31-8000-6705, junsin@skku.edu; Tel.: +82-31-290-7139

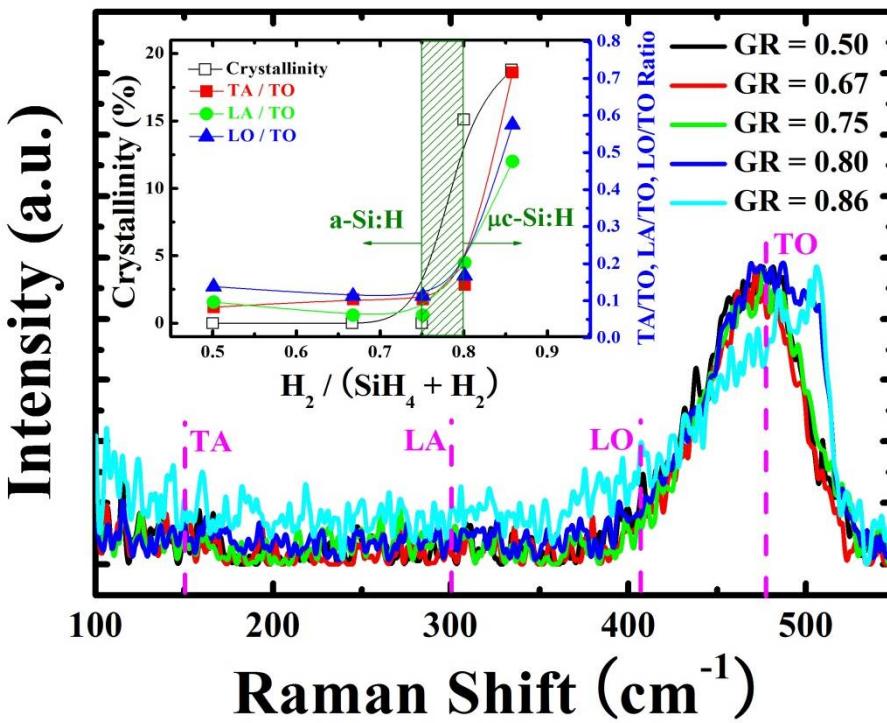
10

11 **Abstract:** We report the effects of surface passivation by depositing a hydrogenated amorphous
12 silicon (a-Si:H) layer on the electrical characteristics of low temperature polycrystalline silicon thin
13 film transistors (LTPS TFTs). The a-Si:H layer was optimized by hydrogen dilution and its
14 structural and electrical characteristics were investigated. The a-Si:H layer in the transition region
15 between a-Si:H and μ c-Si:H resulted in superior device characteristics. Using an a-Si:H passivation
16 layer, the field-effect mobility of the LTPS TFT was increased by 78.4% compared with a
17 conventional LTPS TFT. Moreover, the leakage current measured at a V_{GS} of 5 V was suppressed
18 because the defect sites at the poly-Si grain boundaries were well passivated. Our passivation layer,
19 which allows thorough control of the crystallinity and passivation-quality, should be considered a
20 candidate for high performance LTPS TFTs.21 **Keywords:** poly-Si TFT; FT-IR, Raman, surface passivation; leakage current

22

23 **1. Introduction**24 Currently, the display industry has been widely investigating was to meet new market
25 demands for low-cost, large-size, high-resolution, high-frame-rate, and 3D displays. Thin film
26 transistors (TFTs) as switching or driving devices are one of the most important components. Low
27 temperature polycrystalline silicon (LTPS) TFTs have been widely used because their field effect
28 mobility is higher than that of hydrogenated amorphous silicon (a-Si:H) TFTs, so that high
29 resolution displays with ultra-high densities (3840×2160 , UHD) can be fabricated. Because poly-Si
30 TFTs are very robust under electrical and optical stress, they can be used in various applications [1].
31 However, there are crucial disadvantages of LTPS TFTs, such as high off-state leakage currents
32 originating from defects in the grain boundaries of poly-Si [2]. To reduce leakage currents in poly-Si
33 TFTs, some additional structures have been proposed including lightly doped drain (LDD) and
34 offset gate structures [3]. However, these structures require additional processing and costs, so they
35 have not been fully applied in the display industry. To reduce the off-state leakage current, Kim et al.
36 proposed a simple method based on the insertion of a thin (10 nm) a-Si:H layer [4]. They explained
37 the reason for the reduced leakage current using an energy band diagram and the current paths in
38 the LTPS TFT with an a-Si:H passivation layer and a larger band gap. Inserting a larger band gap
39 material between the active layer and gate insulator can result in a reduced rate of thermionic
40 emission. Thus, the minimum leakage current was successfully reduced and the on/off ratio was
41 improved. However, the field-effect mobility ($12 \text{ cm}^2/\text{V}\cdot\text{s}$) of the LTPS TFT with an a-Si:H
42 passivation layer was remarkably lower than that of a TFT without an a-Si:H passivation layer (58.3
43 $\text{cm}^2/\text{V}\cdot\text{s}$). Although they solved the leakage current problem in LTPS TFTs through the simple
44 insertion of passivation layer with a larger band gap, the field-effect mobility was severely
45 decreased, so that the high performance of poly-Si TFTs disappeared.

46 In this work, we investigated the reduction of leakage current without sacrificing the field-effect
47 mobility. We tried depositing an a-Si:H passivation layer on the poly-Si layer. An a-Si:H passivation
48 layer has been used to achieve a high conversion efficiency in hetero junction solar cells [5-6].
49 However, the use of an a-Si:H passivation layer in poly-Si TFTs has so far not been reported. The
50 optimized a-Si:H layer passivates dangling bonds at the interface and reduces carrier recombination,
51 thus improving the device characteristics. We investigated the deposition of an a-Si:H passivation
52 layer and optimized the dilution gas ratio. Different a-Si:H layers were deposited using different gas
53 ratios of $\text{SiH}_4:\text{H}_2$, and the characteristics of the a-Si:H layers were evaluated by Raman spectroscopy,
54 Fourier transform infrared spectroscopy (FT-IR), and quasi-steady-state photoconductance (QSSPC)
55 measurements to examine their crystallinity (X_c), defects, bonding, and passivation-quality. Finally,
56 LTPS TFTs with different passivation layers were fabricated and their electrical performance was
57 evaluated. The leakage current was successfully reduced without sacrificing the field-effect mobility
58 by using an optimized a-Si:H layer.

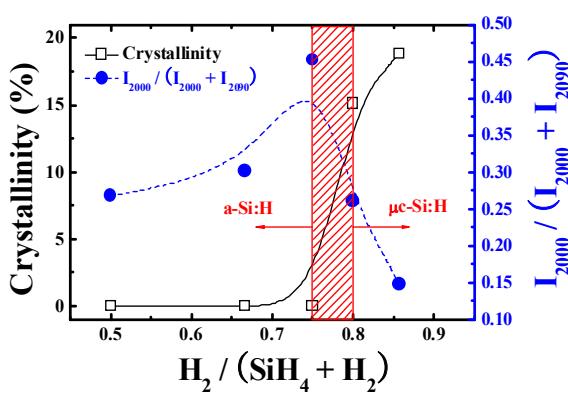

59 2. Device fabrication

60 A 50-nm-thick a-Si:H film was deposited on the 300-nm-thick buffer oxide layer by plasma
61 enhanced chemical vapor deposition (PECVD). The a-Si:H layer was dehydrogenated at 400 °C in a
62 N_2 atmosphere for 10 minutes and then crystallized using a XeCl (308 nm) excimer laser. After the
63 formation of LTPS, the a-Si:H passivation layer was deposited on the LTPS. To investigate the effect
64 of surface passivation on the electrical performance of LTPS TFTs, the 10-nm-thick passivation layers
65 were deposited by PECVD using different silane (SiH_4) and hydrogen (H_2) gas flow rates. Various
66 dilution gases, such as helium (He) and hydrogen, have already been studied for the deposition of
67 a-Si:H [7]. The layer of a-Si:H deposited using He as a dilution gas was found to contain disordered
68 and loose networks. However, the a-Si:H deposited with H_2 dilution gas was found to form a more
69 dense structure, so we used H_2 as the dilution gas in this work. The SiH_4 flow rate was varied from
70 20 sccm to 6 sccm and the H_2 flow rate was varied from 20 sccm to 36 sccm. The gas ratio (GR) of H_2
71 / ($\text{SiH}_4 + \text{H}_2$) was changed from 0.50 to 0.86, while the plasma power density was fixed at 1.27 W/cm^2 .
72 The highest and lowest deposition rates of a-Si:H passivation layers were 2.59 nm/min at GR of 0.75
73 and 0.55 nm/min at GR of 0.5, respectively. The 220-nm-thick SiO_2 gate insulator was deposited on
74 the passivation layer. An aluminium layer was deposited on the gate insulator to serve as the gate
75 metal, and then the substrate was patterned. Source and drain doping with boron was performed
76 using an ion shower. Then, the source and drain regions were activated at 400 °C in a N_2 atmosphere
77 for 4 hours. The channel width and length of the fabricated TFTs were 180 and 50 μm , respectively.
78 The electrical characteristics of the LTPS TFTs with different passivation layers were examined
79 using a semiconductor parameter analyser at room temperature under dark conditions. To further
80 understand the passivation layer's structural and electrical characteristics, Raman spectroscopy,
81 FTIR, and QSSPC measurements were conducted.

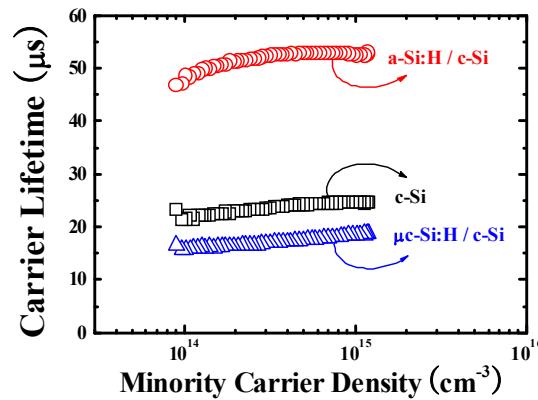
82 3. Results and Discussion

83 Raman spectroscopy is a well-known technique for distinguishing the structural characteristics
84 of thin films. In particular, it can indicate the ordering of an amorphous silicon film. The defects of
85 a-Si:H are mainly detected at low frequency ($300 \text{ cm}^{-1} \sim 400 \text{ cm}^{-1}$). We investigated the use of Raman
86 spectroscopy for evaluating the passivation layer. Fig. 1 shows the Raman spectra of passivation
87 layers deposited using different GR values. The 100-nm-thick passivation layer was deposited on a
88 glass substrate. The measured Raman spectra were decomposed into several gaussian component
89 peaks located at around 150, 300, 410, and 480 cm^{-1} , corresponding to the transverse acoustic (TA),
90 longitudinal acoustic (LA), longitudinal optical (LO), and transverse optical (TO) modes [8-10]. The
91 Raman characteristics of the passivation layers were strongly influenced by the GR. When the GR
92 was increased from 0.5 to 0.75, the ratios of TA/TO, LA/TO and LO/TO were reduced. When the GR
93 was over 0.75, the ratios of TA/TO, LA/TO, and LO/TO rapidly increased. The increase of TA/TO,
94 LA/TO, and LO/TO has been related to the enhanced generation of defects in passivation layers
95 [8-10]. The inset shows the ratios of TA/TO, LA/TO, and LO/TO at different GR values. Furthermore,

96 the crystallinity (X_c) of the passivation layer was calculated using the Raman peak ratio of the broad
 97 band at 480 cm^{-1} (a-Si:H) and the strong band at 520 cm^{-1} (c-Si). A Raman spectrum characteristic of
 98 $\mu\text{-Si:H}$ was observed at GR values above 0.75 and the X_c sharply increased.



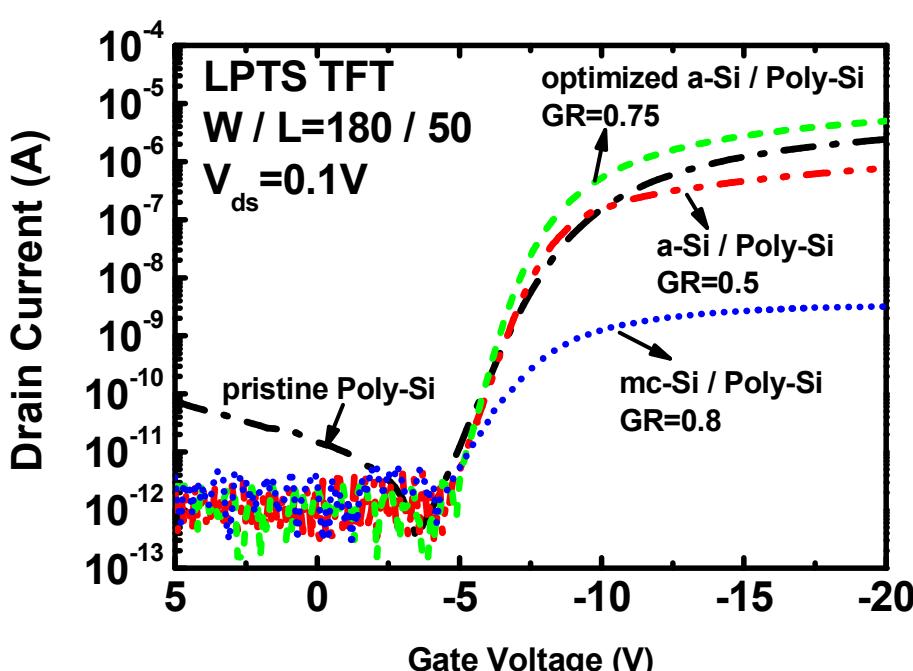
99
 100 Fig. 1. The Raman spectra of passivation layers as a function of GR. The inset shows the dependence
 101 of the Raman characteristic parameters and crystallinity on GR.


102
 103 To further understand the silicon hydrogen bonds, we performed FT-IR measurements, which
 104 can easily detect the incorporation of Si and H. To analyze the FT-IR spectra, a 100-nm-thick
 105 passivation layer was deposited on c-Si. Fig. 2(a) shows the microstructure parameter (R^*) of the
 106 passivation layers deposited by at different GR values. The FT-IR absorption of a-Si:H and $\mu\text{-Si:H}$
 107 provides specific information about the type of bonds present between Si and H [11-12]. In this
 108 study, two kinds of bonds with a stretching vibrational mode were observed to investigate the
 109 structural properties of the passivation layers, such as Si-H bonds with a peak at around 2000 cm^{-1}
 110 and Si=H₂ bonds with a peak at around 2090 cm^{-1} . As the GR was increased to 0.75, I_{2000} also
 111 increased. But, I_{2000} decreased for GR values over 0.8. For calculating the properties of the passivation
 112 layer, the quantity R^* was introduced. R^* was defined as $I_{2000} / (I_{2000} + I_{2090})$. The Si=H₂ bonding factor
 113 representing the quality of layer was regarded as a measure of defects or voids. As Si=H₂ bonding
 114 increased, many defects remained in the thin film. The R^* value gradually increased from 0.27 at a
 115 GR of 0.5 to 0.45 at a GR of 0.75 and sharply decreased to 0.15 at a GR of 0.86. Based on the
 116 correlation with Raman results, the highest R^* value and the transition region from a-Si:H to $\mu\text{-Si:H}$
 117 were well matched.

118 To investigate the passivation ability of different passivation layers, QSSPC measurements
 119 were conducted for a-Si:H on a single crystalline silicon wafer (c-Si) (a-Si:H/c-Si), $\mu\text{-Si:H}$ on c-Si
 120 ($\mu\text{-Si:H/c-Si}$), and a pure c-Si sample. Fig. 2(b) shows the carrier lifetime characteristics of the
 121 passivation layers formed using different $H_2 / (SiH_4 + H_2)$ gas ratios. This measurement is widely
 122 used in the contactless characterization of solar cells. Many thin films such as a-Si:H and Al₂O₃ have
 123 been employed to passivate the interface or bulk defects [13-14]. The system is based on a radio
 124 frequency bridge with an inductive coil that generates electromagnetic fields in the wafer. The
 125 interfaces of a silicon substrate represent a severe discontinuity in its crystalline structure. The
 126 poly-Si, especially at the interface, has many dangling bonds, so that a large density of defect levels

127 could be found within the bandgap near the interface. By using an appropriate surface passivation
 128 layer, such as an optimized a-Si:H film, these dangling bonds in poly-Si grain boundaries could be
 129 passivated, thus reducing the interface trap state [15]. Flash lamp was irradiated on semiconductor
 130 surface. The excessive electron and hole pairs were generated, and then generated carriers were
 131 decayed. The minority carrier lifetime, τ can be considered as the amount of time carriers remain at
 132 defect sites of the Si surface. Because the τ of a thin film could be dominantly influenced by surface
 133 conditioning, it can be useful for evaluating the passivation quality. In this study, a c-Si substrate
 134 without a passivation layer was used as a reference with a τ value of 22.23 μ s. The τ of a-Si:H/c-Si
 135 with a GR of 0.75 was highest at 51.77 μ s and the τ of μ c-Si:H/c-Si with a GR over 0.75 was reduced
 136 below the reference τ . By using the optimized a-Si:H (GR=0.75) passivation layer, the lowest
 137 interface trapped charge density was expected.
 138

(a)


(b)

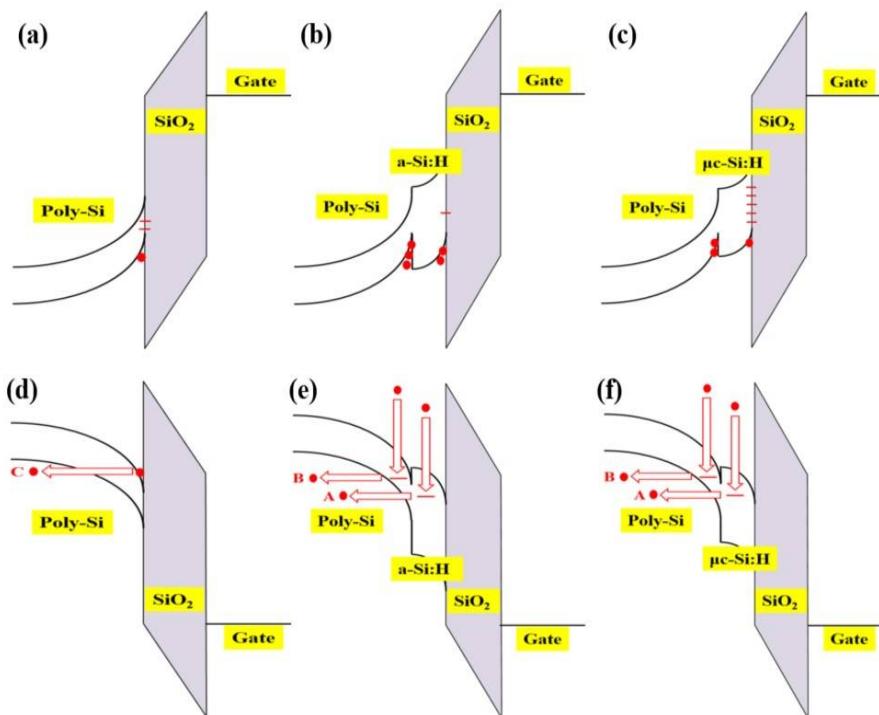
141 Fig. 2. The characteristics of the passivation layers as function of GR. (a) The calculated crystallinity by Raman
 142 spectroscopy and microstructure by FT-IR (b) Carrier lifetime characteristics of passivation layers.

143 Fig. 3 shows the electrical properties obtained from transfer curves of the p-channel LTPS TFTs
 144 with and without passivation layers on the poly-Si layer. The width and length of the p-channel
 145 poly-Si TFTs were 180 μ m and 50 μ m, respectively (width/length = 3.6). The transfer curves were
 146 measured at a drain bias of -0.1 V. The extracted electrical properties of the p-channel LTPS TFTs
 147 with and without passivation layers are displayed in Table I. The field effect mobility (μ) was
 148 calculated by the maximum transconductance method at $V_{DS} = -0.1$ V and the threshold voltage was
 149 observed at the (Width/Length) $\times V_{GS}$ at drain current density of 10 nA. The leakage current ($I_{D,Leakage}$)
 150 was measured at a V_{GS} of 5 V. The LTPS TFT without a passivation layer had the following electrical
 151 properties: μ of $49.58 \text{ cm}^2/\text{V}\cdot\text{s}$, subthreshold swing (S.S.) of 0.91V/dec, and the $I_{D,Leakage}$ of 7.62×10^{-11}
 152 A/cm^2 . When the GR was 0.75, the LTPS TFT with a passivation layer exhibited a μ of $88.53 \text{ cm}^2/\text{V}\cdot\text{s}$,
 153 S.S. of 0.58V/dec and $I_{D,Leakage}$ of $2.46 \times 10^{-12} \text{ A}/\text{cm}^2$. Moreover, the threshold voltage was considerably
 154 reduced. These improved TFT characteristics were attributed to the fact that the optimized a-Si:H
 155 layer can easily passivate the poly-Si interface with a high trap density. Especially, it is known that
 156 the improved threshold voltage (V_{TH}) and S.S. are related to deep defect states. The characteristics of
 157 poly-Si TFTs fabricated at low temperature are dominated by interface and grain boundary defect
 158 states. It is clear that the amount of trap states between the poly-Si layer and the gate oxide layer was
 159 reduced due to the optimized a-Si:H layer, as proven by FT-IR and QSSPC measurements. The
 160 leakage current was also reduced by the passivation layer. Significant band-bending occurs between
 161 the channel and drain region because of the reversely biased p-n junction, where the leakage current
 162 can flow via the defect sites at the poly-Si grain boundary [16]. The optimized passivation layer was
 163 effective at reducing the number of such defect sites. To express this numerically, the interface defect
 164 sites between SiO_2 and poly-Si were estimated by the Levison and Proano method [17-18]. The
 165 number of defect sites can be expressed as
 166

167
$$N_T = \left[\left(\frac{S.S.}{\ln 10} \right) \left(\frac{q}{kT} \right) - 1 \right] \left(\frac{C_{ox}}{q} \right) \quad (1)$$

 168
 169 where S.S. is subthreshold swing, q is unit charge, T is absolute temperature, and C_{ox} is the
 170 capacitance of the gate oxide.

171 The number of interface defect sites was successfully reduced by using a passivation layer. But,
 172 the on characteristics were quite different. In the case of LTPS TFTs with μ -Si:H passivation layers,
 173 the electrical properties were degraded with a higher S.S and a lower field-effect mobility. The most
 174 likely reason for this degradation is the creation of new dangling bonds on the poly-Si layer by
 175 highly diluted hydrogen. Our passivation process can supply additional hydrogen for the
 176 passivation, but it could also create new dangling bonds [19]. Therefore, the dilution gas ratio for
 177 the passivation layer was carefully controlled to avoid creating new dangling bonds.
 178


179
 180 Fig. 3. Transfer characteristics of LTPS TFTs with and without passivation layers.
 181

182 **Table 1.** Comparison of electrical characteristics of p-channel LTPS TFTs with and without
 183 passivation layers on glass substrates.

Parameter	Without passivation layer	With passivation layer		
		a-Si:H (GR=0.5)	Opt. a-Si:H (GR=0.75)	μ -Si:H (GR=0.8)
μ (cm ² /Vs)	49.58	18.2	88.53	1.3
S.S. (V/dec)	0.91	0.72	0.58	1.19
N_T (cm ⁻²)	7.38×10^{12}	5.50×10^{12}	4.61×10^{12}	1.01×10^{13}
V_{TH} (V)	-6.75	-6	-5.9	-6.4
$I_{d,leak}$ (A/cm ²)	7.62×10^{-11}	2.3×10^{-12}	2.46×10^{-12}	3.68×10^{-12}

184 Fig. 4 shows a schematic diagram of the energy bands of p-channel LTPS TFTs with and
 185 without passivation layers under negative and positive gate bias based on the energy band

186 difference, defect density, and current paths. When a negative gate voltage was applied to the LTPS
 187 TFTs, the energy band diagram is represented in Fig. 4(a) for 'only poly-Si', (b) 'a-Si:H/poly-Si', and
 188 (c) μ c-Si:H/poly-Si. Compared to the diagram in (a), the a-Si:H/poly-Si layers resulted in a bandgap
 189 difference between a-Si:H ($E_g=1.88$ eV) and poly-Si ($E_g=1.12$ eV), and the channel carrier mobility was
 190 enhanced due to the improved interface quality. In the case of μ c-Si:H ($E_g=1.2$ eV) /poly-Si, the effect
 191 of this bandgap difference was smaller and resulting in degraded interface quality. When the gate
 192 voltage is positive, the energy band diagram can be represented as in Fig. 4 (d) for 'only poly-Si', (e)
 193 'a-Si:H/poly-Si', and (f) μ c-Si:H/poly-Si. In the case of (d), when the gate voltage was positive, the
 194 carriers flowed from the drain to the source via poly-Si. In the case of the poly-Si with a passivation
 195 layer, when the gate voltage was positive, the carriers flowed from the drain to the source via the
 196 passivation layer and/or passivation layer/poly-Si/buffer. The field emission, denoted by path C, for
 197 the SiO_2 /poly-Si TFT was suppressed by the presence of a wide band gap passivation. Therefore, the
 198 dominant current path may be A or B as depicted in Fig. 4(d), (e) and (f). Path A represents the
 199 thermionic field emission in the passivation region and path B represents the thermionic field
 200 emission in the poly-Si due to the weakened electric field in the poly-Si due to the presence of the
 201 passivation layer.

202

203 **Fig. 4.** The schematic energy band diagram of p-channel LTPS TFTs with and without passivation
 204 layers under negative and positive gate bias based on the energy band difference, defect density, and
 205 current paths. (a) Only poly-Si under negative gate bias, (b) a-Si:H/poly-Si under negative gate bias,
 206 (c) μ c-Si:H/poly-Si under negative gate bias, (d) only poly-Si under positive gate bias, (e)
 207 a-Si:H/poly-Si under positive gate bias, and (f) μ c-Si:H/poly-Si under positive gate bias.

208

209 4. Conclusions

210 We fabricated p-channel LTPS TFTs with a a-Si:H passivation layer to reduce the leakage
 211 current without sacrificing field effect mobility. Poly-Si TFTs have excellent and reliable electrical
 212 reliable characteristics, but they still suffer from leakage currents under off state bias. To suppress
 213 the leakage current, many techniques have been tried, but they were frustrated a field effect
 214 mobility reduction. In this work, we proposed a new method, which was the insertion of a thin
 215 a-Si:H passivation layer on the poly-Si with a wide band gap and high passivation-quality on the

216 LTPS layer. The a-Si passivation layer was optimized by controlling the dilution gas ratio and its
217 structural and electrical characteristics were reported. The on state and off state characteristics of
218 the poly-Si TFTs with an optimized a-Si:H passivation layer were considerably improved because
219 the defect sites at the poly-Si grain boundaries were well passivated. Based on the findings of this
220 study, the use of passivation layer with high passivation-quality and a large band gap should be
221 considered as potential candidates for high performance LTPS TFTs.

222 **Acknowledgements:** This research was supported by Basic Science Research Program through the National
223 Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT & Future Planning
224 (NRF-2017R1D1A1B03034984). This research was supported by Basic Science Research Program through the
225 National Research Foundation (NRF) of Korea funded by the Ministry of Education (NRF-2010-0020210).

226 References

1. Serikawa, T.; Shirai, T.; Okamoto, T.; Suyama, S.; Low temperature fabrication of high mobility poly-Si TFT's for Large-Area LCD's. *IEEE Transactions On Electron Devices* **1989**, *36*, 1929-33. DOI: 10.1109/DISPL.1988.11316.
2. Lih, J.; Sung, C.; Li, C.; Hsiao, T.; Lee, H.; Comparison of a-Si and poly-Si for AMOLED displays. *Journal of Society for Information Display* **2012**, *12*, 367-71. DOI: 10.1889/1.1847734
3. Orouji, A.A.; Jagadeshi, M.; Leakage current reduction techniques in poly-Si TFTs for active matrix liquid crystal displays: A comprehensive study. *IEEE Transactions On Device And Materials Reliability* **2006**, *6*, 315-25. DOI: 10.1109/TDMR.2006.876608
4. Kim, K.W.; Cho, K.S.; Jang, J.; A polycrystalline silicon thin-film transistor with a thin amorphous buffer. *IEEE Electron Device Letters* **1999**, *20*, 560-62. DOI: 10.1109/55.798043
5. Lozac'h, M.; Nunomura, S.; Sai, H.; Matsubara, K.; Passivation property of ultrathin SiOx:H / a-Si:H stack layers for solar cell applications. *Solar Energy Materials and Solar Cells* **2018**, *185*, 8-15. DOI: 10.1016/j.solmat.2018.05.004
6. Kanneboina, V.; Madaka, R.; Agarwal, P.; High open circuit voltage c-Si/a-Si:H heterojunction solar cells: Influence of hydrogen plasma treatment studied by spectroscopic ellipsometry. *Solar Energy Materials and Solar Cells* **2018**, *166*, 255-266, DOI: 10.1016/j.solener.2018.03.068
7. Lee, S.W.; Heo, D.C.; Kang, J.K.; Park, Y.B.; Rhee, S.W.; Microcrystalline Silicon Film Deposition from H₂-He-SiH₄ Using Remote Plasma Enhanced Chemical Vapor Deposition. *Journal of Electrochemical Society* **1998**, *145*, 2900-2904. DOI: 10.1149/1.1838733
8. Sakata, I.; Okazaki, S.; Yamanaka, M.; Hayashi, Y.; Raman Scattering Studies on Hydrogenated Amorphous Silicon Prepared under High Deposition Rate Conditions. *Japanese Journal of Applied Physics* **1985**, *24*, L428-30. DOI: 10.1143/JJAP.24.L428
9. Morell, G.; Katiyar, R.S.; Weisz, S.Z.; Balberg, I.; Characterization of the silicon network disorder in hydrogenated amorphous silicon carbide alloys with low carbon concentrations. *Journal of Non-Crystalline Solids* **1996**, *194*, 78-84. DOI: 10.1016/0022-3093(95)00459-9
10. Park, J.; Iftiquar, S.M.; Kim, Y.K.; Park, S.M.; Lee, S.W.; Kim, J.D.; Yi, Spectroscopic Ellipsometry Analysis of Amorphous Silicon Thin Films for Si-Nanocrystals. *Journal of Nanoscience and Nanotechnology* **2012**, *12*, 3228-32. DOI: 10.1166/jnn.2012.5561
11. Liao, N.M.; Li, W.; Liu, Z.; Jiang, Y.D.; Ma, N.; Li, Y.; Wu, Z.M.; Li, S.B.; Effects of irradiation with electrons of different energies on the dark conductivity and the network of hydrogenated amorphous silicon films. *Philosophical Magazine Letters* **2008**, *88*, 871-77. DOI: 10.1080/09500830802468211
12. Funde, A.M.; Bakr, N.A.; Kamble, D.K.; Hawaldar, R.R.; Amalnerkar, D.P.; Jadkar, S.R.; Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD). *Solar Energy Materials and Solar Cells* **2008**, *92*, 1217-23. DOI: 10.1016/j.solener.2018.03.068 DOI: 10.1016/j.solmat.2008.04.012
13. Angermann, H.; Conrad, E.; Korte, L.; Rappich, J.; Schulze, T.F.; Schmidt, M.; Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer. *Materials Science and Engineering: B* **2009**, *159*, 219-23. DOI: 10.1016/j.mseb.2008.10.044
14. Werner, F.; Veith, B.; Zielke, D.; Kuhnemund, L.; Tegenkamp, C.; Seibt, M.; Brendel, R.; Schmidt, J.; Electronic and chemical properties of the c-Si/Al₂O₃ interface. *Journal of Applied Physics*, **2011**, *109*, 113701. DOI: 10.1063/1.3587227

269 15. Kim, S.K.; Lee, J.C.; Park, S.J.; Kim Y.J.; Yoon, K.H.; Effect of hydrogen dilution on intrinsic a-Si:H layer
270 between emitter and Si wafer in silicon heterojunction solar cell. *Solar Energy Materials and Solar Cells* **2008**,
271 92, 298-301. DOI: 10.1016/j.solmat.2007.09.007

272 16. Park, J.; Jang, K.S.; Shin, D.G.; Shin. M.; Yi, J.S.; Gate-induced drain leakage current characteristics of
273 p-type polycrystalline silicon thin film transistors aged by off-state stress. *Solid-State Electronics* **2018**, 148,
274 20-6. DOI: 10.1016/j.sse.2018.07.009

275 17. Proano, R.E.; Misage, R.S.; Ast, D.G.; Development and electrical properties of undoped polycrystalline
276 silicon thin-film transistors, *IEEE transactions on Electron Devices*. **1989**, 36, 1915-22. DOI: 10.1109/16.34270

277 18. Levinson, J.; Shepherd, F.R.; Scanlon, P.J.; Westwood, W.D.; Este, G.; Rider, M.; Conductivity behavior in
278 polycrystalline semiconductor thin film transistors. *Journal of Applied Physics* **1982**, 53, 1193. DOI:
279 10.1063/1.330583

280 19. Kuo, Y.; Plasma enhanced chemical vapor deposited silicon nitride as a gate dielectric film for amorphous
281 silicon thin film transistors—a critical review. *Vacuum* **1998**, 51, 741-45. DOI :
282 10.1016/S0042-207X(98)00282-6. DOI: 10.1016/S0042-207X(98)00282-6