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Abstract: A classical model is presented for persistent currents in superconductors. Their existence is
argued to be warranted because their decay would violate the second law of thermodynamics. This
conclusion is achieved by analyzing comparatively Ohm’s law and the Joule effect in normal metals
and superconducting materials. Whereas Ohm’s law applies in identical terms in both cases, the Joule
effect is shown to cause the temperature of a superconducting sample to decrease. An experiment is
proposed to check the validity of this work in superconductors of both types I and II.
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1. introduction

The prominent signature of superconductivity, i.e. the property to sustain persistent currents[1–3]
in vanishing electric field, has remained unexplained, since its discovery[4], as stressed by Ashcroft
and Mermin[1] (see[1] p.750, 1st paragraph, line 1) : the property for which the superconductors are named
is the most difficult to extract from the microscopic (i.e. BCS[5]) theory. This is all the more disturbing, since
the mainstream narrative on superconductivity relies heavily on the phenomenological equations,
proposed by London[6] and Ginzburg and Landau[7], for which the existence of persistent currents is
merely assumed.

In order to understand why this long-standing riddle has withstood every attempt[8] at
elucidating it so far, it is helpful to recall the basic tenets of electric conductivity in normal conductors[1].
The applied electric field E accelerates the electrons in the conduction band, which gives rise to a
current j. Eventually, the driving force ∝ E is counterbalanced by a friction one ∝ j, exerted by the
lattice, as conveyed by Ohm’s law :

j = σE , σ =
c0e2τ

m
, (1)

where σ, c0, e, m, τ stand for the conductivity, the electron concentration, the electron charge, its effective
mass, and the decay time of j due to friction, respectively. Simultaneously, the work performed by
the electric force is entirely transformed into heat, to be released in the lattice, through the Joule
effect. As a consequence of Eq.(1), the observation[4] of j 6= 0 despite E = 0 seemed indeed to
suggest τ → ∞⇒ σ→ ∞. However, it is well-known nowadays that both τ, σ are finite, provided the
measurement is carried out with an ac current, as emphasized by Schrieffer[9] (see[9] p.4, 2nd paragraph,
lines 9, 10): at finite temperature, there is a finite ac resistivity for all frequencies > 0. For instance, the
conductivity, measured in YBa2Cu307 below the critical temperature Tc, has been reported[10,11] to be
such that σ ≈ 105σn, where σn stands for the normal conductivity, measured just above Tc. Additional
evidence is provided by commercial microwave cavity resonators, made up of superconducting
materials, displaying a very high, albeit finite conductivity (see[3] lowest line in p.38). Besides, the
observable consequences of finite σ, regarding the skin[12,13] and Meissner[6,14] effects, have been
discussed recently[15,16].
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Therefore the issue of persistent currents will be tackled here from quite different a starting point.
Likewise we shall show how the very properties of the BCS state[5] cause the Joule dissipation to be
thwarted in a superconductor, undergoing no electric field. This goal will be achieved by making a
comparative study of Ohm’s law and the Joule effect in normal and superconducting metals, based on
Newton’s law and the two laws of thermodynamics.

The outline is as follows : the conditions for a superconductor to be in thermal equilibrium are
discussed in sections II, while stressing the different properties of the BCS state[5] versus those of the
Fermi gas[1]; Ohm’s law and the Joule effect are studied in sections III and IV, respectively; a necessary
condition for the existence of persistent currents is worked out in section V, while an experiment,
enabling one to check the validity of this analysis in superconducting materials of both kinds, is
described in section VI. Our observable predictions will turn out to concur very well with a conjecture
by De Gennes[17]. The results of this work are summarized in the conclusion.

2. the two-fluid model

The conduction properties of a superconducting material will be analyzed within the two-fluid
model[2,3,9,17]. In this framework, the conduction electrons make up a homogeneous mixture, in
thermal equilibrium, of normal and superconducting electrons, in concentration cn, cs, respectively.

All of the electronic properties of the normal state are governed by the Fermi-Dirac statistics, and
thence accounted for within the Fermi gas[1] model. In particular, its Helmholz free energy per unit
volume Fn depends on two parameters, the temperature T and the Fermi energy EF, defined[1,18] as
the chemical potential of independent electrons, i.e. EF = ∂Fn

∂cn
.

By contrast, the BCS wave-function[5] describes the motion of superconducting electrons, as a
many-body bound state, which entails that the BCS energy per unit volume Es depends only on the
concentration of superconducting electrons cs. Because Es is T-independent, the BCS state[5], unlike
the Fermi gas, is inferred to carry no entropy[1–3], so that its free energy is equal to Es (this property is
confirmed experimentally by the weak thermal conductivity[1–3], measured in superconductors, in
marked contrast with the high one, typical of normal metals). Thus the chemical potential µ of the BCS
state reads µ = ∂Es

∂cs
.

The equilibrium, achieved in the two-fluid model, stems from Gibbs and Duhem’s law[18], which
requires the free energy of the whole electron system Fe = Fn(T, cn) + Es(cs) to be minimum with
respect to cn, cs, under the constraints cn + cs = c0 (c0 refers to the total concentration) and T kept
constant, and thence leads to

EF(T, cn) = µ(cs) . (2)

The peculiar properties of the Joule effect, taking place in a BCS state, will appear below to be solely
determined by the sign of ∂µ

∂cs
= ∂2Es

∂c2
s

.
An early, phenomenological attempt[19], aimed at explaining the specific heat data, measured

in superconducting materials, made use of Eq.(2) too. However our approach differs from that one,
inasmuch as it refrains from assuming specific, but arbitrary expressions for Fn(T, cn), Es(cs), so that
our conclusions do not suffer from any loss of generality.

3. Ohm’s law

Owing to Fermi-Dirac statistics and T << TF = EF
kB
≈ 3× 104K (kB stands for the Boltzmann

constant), the electrons in a normal metal make up a degenerate Fermi gas[1], for which each
one-electron state, with energy ranging from the bottom of the conduction band up to EF, is doubly
occupied (due to the two spin directions), whereas those states with energy > EF remain empty.
The corresponding one electron dispersion curve ε(k) has been projected onto the direction of the
applied electric field E, as pictured in Fig.1. Since the electron velocity[1] is equal to ∂ε(k)

h̄∂k and thanks
to ε(k) = ε(−k), the resulting current jn vanishes.
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Figure 1. schematic projected one
electron dispersion ε(k) of occupied
states (ε(k) ∈ [0, EF]) for jn = 0 as a solid
line
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Figure 2. schematic projected one
electron dispersion ε(k) for jn 6= 0 in the
laboratory frame; the solid line represents
most of electrons, which contribute
nothing to jn, whereas the dashed
line corresponds to the few electrons
responsible for jn 6= 0; actually jn is
proportional to the length of the dashed
line but the tiny difference ε1 − ε2 has
been hugely magnified for the reader’s
convenience, that is ε1 ≈ ε2 ≈ EF; the
dotted line represents empty one electron
states; the arrows illustrate electron
transitions, from occupied (dashed line)
back to empty (dotted line) states, driven
by the friction force
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The applied field E arouses a finite current jn 6= 0 by accelerating δcn of electrons (δcn << cn)

from their initial wave-vector −kF up to their final one kF, with kF being such that ε(kF) = EF.
Therefore all electrons, contributing to jn, have about the same velocity vF = ∂ε(kF)

h̄∂k , so that the resulting
current reads jn = 2δcnevF (see the dashed line in Fig.2). Inversely, the friction force, exerted by the
lattice on those electrons making up jn, tends to bring 2 δcn

τn
of electrons per unit time from kF back

to −kF, where τn, showing up in Eq.(1) as τ, represents the average time between two successive
scattering events[1] (see the arrows pointing to the dotted line in Fig.2). As the momentum change
rate, involved in this process, is equal to

δp
τn

= −2
mvFδcn

τn
= − m

eτn
jn ,

Newton’s law reads[15,16] finally

m
e

djn
dt

= cneE− m
eτn

jn . (3)

Because the inertial force m
e

djn
dt has been shown to be negligible[15,16], the electric force cneE and the

friction one − m
eτn

jn cancel each other, so that Eq.(3) boils down to Ohm’s law, as expressed in Eq.(1).
Ohm’s law will be worked out now for a superconductor by proceeding similarly as hereabove.

The js = 0 superconducting state (js refers to the superconducting current) is assumed to consist in two
subsets, each of them comprising the same number of electrons. It ensues, from the very properties
of the BCS state[5], flux quantization and Josephson’s effect[1,2,20], that the electrons in each subset
are organized in pairs, moving in opposite directions with respective velocity vs,−vs, which ensures
js = 0. The driving field E causes δcs of electrons (δcs << cs) to be transferred from one subset to the
other, which results into a finite current js = 2δcsevs. The friction force is responsible for the reverse
mechanism, whereby an electron pair is carried from the majority subset of concentration cs + δcs back
to the minority one of concentration cs − δcs. Hence if τ−1

s is defined as the transfer probability per
time unit of one electron pair, the electron transfer rate is equal to

cs + δcs − (cs − δcs)

τs
= 2

δcs

τs
.

Newton’s law entails again that the electric force cseE and the friction force −2 mvsδcs
τs

= −mjs
eτs

cancel
each other, which yields the searched result, identical to Eq.(1)

cseE =
m
eτs

js ⇒ js = σsE , σs =
cse2τs

m
. (4)

Although Ohm’s law displays the same expression for normal and superconducting metals as
well, it should be noted that τs >> τn[10,11]. Furthermore by contrast with a normal metal, for which
Eq.(1) is valid for djn

dt = 0 and djn
dt 6= 0 as well, Eq.(4) holds in a superconducting material only if djs

dt 6= 0,

because djs
dt = 0 defines conversely the persistent current case, for which the friction force is no longer

active[15,16].

4. the Joule effect

Because no electron contributes to jn, but the few ones in concentration 2δcn with ε(k) ≈ EF,
showing up as the dashed line in Fig.2, they are also the only ones to be instrumental in the Joule effect.
Besides all of them have the same velocity vF. Thus, the well-known formula of the power released by
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the Joule effect, ẆJ =
dWJ
dt (t refers to time), ensues from Ohm’s law jn = σnE, which implies that the

friction force equals 2δcneE, as

ẆJ = (2δcneE)× vF = Ejn =
j2n
σn

, (5)

for which we have made use of jn = 2δcnevF.
The Joule effect takes place via two different processes in a superconductor. The calculation of the

Joule power Ẇ1, released through process I, is identical to that one leading to Eq.(5)

Ẇ1 =
m
eτs

jsv =
j2s
σs

, (6)

where v is the mass center velocity of superconducting electrons (⇒ js = csev) and advantage has been
taken of Ohm’s law in Eq.(4) to express the resulting friction force (= m

eτs
js), exerted on the mass center

of superconducting electrons.
However, the calculation of the Joule power Ẇ2, released through process II, proceeds otherwise

because the superconducting electrons make up a many-body bound state[5], exhibiting very different
properties from those of a Fermi gas[1]. Accordingly, while any electron in a normal metal may lose,
due to Pauli’s principle, an energy randomly distributed from 0 up to ε1− ε2 (see Fig.2), conversely the
corresponding energy change, experienced by the BCS electrons, due to the scattering of one electron
pair, is uniquely defined, as will be shown hereafter.

In case of js 6= 0, the chemical potential of majority (minority) electrons, characterized by the
average velocity vs (−vs) reads µ(cs + δcs) (µ(cs − δcs)). During each elementary scattering process, a
single pair is brought back from the majority subset to the minority one, which results into δEs, the
energy lost by the BCS electrons to the lattice, reading

δEs = µ(cs + δcs)− µ(cs − δcs) = 2
∂µ

∂cs
δcs .

Since the transfer rate is equal to 2 δcs
τs

, the Joule power Ẇ2 = 2 δcs
τs

δEs reads finally, due to js = 2δcsevs

Ẇ2 = 4
∂µ

∂cs

δc2
s

τs
=

j2s
σJ

, σJ =
(evs)2τs

∂µ
∂cs

. (7)

The result in Eq.(7) is noteworthy in two respects :

• even though Ẇ2 is still proportional to j2s as Ẇ1 in Eq.(6), the conductivity σs, deduced from
Ohm’s law in Eq.(4), differs from σJ

σs =
cse2τs

m
6= (evs)2τs

∂µ
∂cs

= σJ ;

• unlike σs > 0, the sign of σJ , which sets whether the Joule heat Ẇ2 will flow from the conduction
electrons towards the lattice (⇔ Ẇ2 > 0), as is always the case in a normal conductor, or
conversely will flow into the reverse direction (⇔ Ẇ2 < 0), is to be determined by the sign of ∂µ

∂cs
.

As a matter of fact, the searched criterion for the existence of persistent currents will be worked
out by taking advantage of this peculiarity.

It is worth elaborating upon the striking differences, regarding the Joule effect, between a normal
metal and a superconducting one, which stem from σs 6= σJ . ẆJ reads in general

ẆJ = ∑
i

fivi , (8)
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where the sum is carried out on every electron in the conduction band, labeled by the index i, moving
with velocity vi and undergoing the friction force fi. Owing to Ohm’s law, which implies that the
resulting friction force equals 2δcneE, and vi = vF for all electrons contributing to jn = 2δcnevF, Eq.(8)
can be recast as

ẆJ = ∑
i

fivi =

(
∑

i
fi

)
vF = 2δcneE

jn
2δcne

=
j2n
σn

,

which is seen to be identical to Eq.(5). Hence the fact, that the same conductivity σn shows up in both

expressions of Ohm’s law jn = σnE and the Joule effect ẆJ =
j2n
σn

, is realized to result from the typical
property of a degenerate Fermi gas, that all electrons, contributing to jn, have the same and one velocity
vF.

However this is no longer true for a many-body bound state, such as the BCS one. Accordingly, the
whole Joule power, reading as ẆJ = Ẇ1 + Ẇ2 = j2s

(
σ−1

s + σ−1
J

)
, can be recast, with help of v, the

mass center velocity of superconducting electrons, as

ẆJ = ∑
i

fivi = ∑
i

fi (vi − v) +

(
∑

i
fi

)
v ,

which enables us to identify both contributions Ẇ1, Ẇ2 as

Ẇ1 = (∑i fi) v = mjs
eτs

js
cse = j2s

σs

Ẇ2 = ∑i fi (vi − v) = j2s
σJ

,

because of ∑i fi =
mjs
eτs

and js = csev.

5. prerequisite for the existence of persistent currents

The applied field E gives rise to the total current j = jn + js, where jn = σnE and js = σsE, as
required by Ohm’s law. After E has vanished, jn is quickly destroyed by the Joule effect. However
whether js will decay down to 0 or conversely will turn to a persistent current, will be shown hereafter
to depend solely upon the sign of ẆJ = j2s

(
σ−1

s + σ−1
J

)
.

If ẆJ > 0, the Joule effect will cause eventually js = 0 and the associated kinetic energy will
be converted into heat, to be dissipated in the lattice, as occurs in a normal metal. Inversely in case
ẆJ < 0, which requires both σJ < 0 ⇔ ∂µ

∂cs
< 0 (see Eq.(7)) and σJ + σs > 0, the Joule heat is seen to

be bound to flow from the lattice towards the BCS state, which will cause the lattice temperature to
decrease. However, since such a spontaneous cooling of the system, comprising all of electron and lattice
degrees of freedom, which can furthermore exchange neither heat, nor work with the outer world due to E = 0,
would cause its whole entropy to decrease, and would thence be tantamount to violating the second law of
thermodynamics, the searched criterion is deduced to say that persistent currents can be observed, only
if both following conditions are fulfilled

∂2Es
∂c2

s
= ∂µ

∂cs
< 0⇒ σJ < 0

σJ + σs > 0
. (9)

That those conditions in Eqs.(9) are necessary, but by no means sufficient ones, can be understood
by looking back at Eq.(2). The equilibrium of the mixture of normal and superconducting electrons
will be stable provided

∂EF
∂cn

+
∂µ

∂cs
> 0 .

Both stable and instable cases are illustrated in Figs.3,4, where EF(T, cn), µ(cs) have been plotted
versus cn, cs, respectively. Note that ∂EF

∂cn
≈ ρ(EF)

−1 > 0 where ρ(ε) is the density of one electron states
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in the conduction band[1]. The infinite slope ∂EF
∂cn

(cn → 0) → ∞ is then typical of a 3 dimensional
van Hove singularity[1], associated with the bottom of the conduction band, where ρ(ε→ 0) ∝

√
ε.

The inequality in Fig.3, EF(Ti, cn) < EF(Tf , cn), ∀cn with Ti > Tf , ensues from ∂ρ
∂EF

(EF) > 0 via the
Sommerfeld integral[1], which will be shown elsewhere to be another prerequisite for the occurrence
of superconductivity. At last in case cs → 0, there is Es ≈ εc

2 cs where εc refers to the Cooper pair
energy[21], which entails that µ(0) = ∂Es

∂cs
(0) = εc

2 .
The experiment, to be discussed below, is aimed primarily at bringing evidence of the anomalous

(σJ < 0⇒ ẆJ < 0) Joule effect, associated with a BCS state. Since every superconducting material is
claimed here to be characterized by ẆJ < 0, the experimental procedure will look for evidence of the
sample temperature being lowered by the Joule effect.

There are in general two ways to have a current flowing through any conductor, i.e. either directly
by feeding an externally controlled, time-dependent current I(t) into the sample, or indirectly by
inducing the current js via a time-dependent magnetic field H(t) according to Faraday’s law[12].
Though the latter has been overwhelmingly favored[2,3,8,14,17] so far in experiments involving
superconductors, the former procedure should be given preference for two reasons :

• as the Meissner effect[16] gives rise to a spatially inhomogeneous current js(t, r) with r referring
to the local coordinate inside the sample, the Joule power ẆJ(t, r) will thereby vary with r,
whereas both js(t), ẆJ(t) will remain r-independent within the former procedure;
• because of an irreversible consequence[16] of the finite conductivity σs, there can be no one-to-one

correspondence between the applied magnetic field H(t) and js(t, r), so that the current
distribution remains unknown, by contrast with js(t) =

I(t)
S , ∀t (S refers to the sample section)

within the former procedure.

6. experimental discussion

Hence consider a thermally isolated, superconducting sample, taken in its initial state Ti = T(t =
0) < Tc, I(t = 0) = 0 (see A in Fig.3). Then let a direct current I(t) flow through this sample. I(t)
grows from I(0) = 0 up to its maximum value I(tM), reached at t = tM, such that I(tM) = Ic(T(tM)),
with Ic(T(tM)) standing for the maximum persistent current[2] at T = T(tM), which causes the sample
to go normal at t = tM (see B in Fig.3). Then I(t > tM) decreases from I(tM) = Ic(T(tM)) back to
I(t f ) = 0, corresponding to the final state, reached at t = t f and characterized by Tf = T(t f ), I(t f ) = 0
(see C in Fig.3).

The work W(t f ), performed by the external electric field during the thermodynamical process,
described hereabove and pictured as a dashed-dotted line in Fig.3, is then given by

W(t f ) =
∫ t f

0
U(u)I(u)du , (10)

with U(t) designating the measured voltage drop across the sample. Since the sample is thermally
isolated, applying the first law of thermodynamics to the two-fluid system, driven from A to C via B
through an adiabatic process, yields then

Q2 =
∫ Tf

Ti

(
Cφ(T) + Cs(T)

)
dT −W(t f ) , (11)

with W(t f ) being defined in Eq.(10). Cφ(T), Cs(T) stand for the respective contributions[1] to the
specific heat of the phonons (Debye), which is I independent, and of the conduction electrons, the

latter being measured at T ≤ Tc, I = 0. Besides, Q2 = V
∫ t f

0
j2s (t)

σJ
dt = V

S2

∫ t f
0

I2(t)
σJ

dt and V are the Joule
heat released via process II and the sample volume, respectively (js(t), being r-independent, warrants
js(t) =

I(t)
S , ∀t and Q2 ∝ V).
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Ps 

Figure 3. schematic plots of EF(Ti, cn),
EF(Tf , cn) and µ(cs) as dotted, solid and

dashed lines, respectively, in case ∂µ
∂cs

<

0, ∂EF
∂cn

+
∂µ
∂cs

> 0; ∂µ
∂cs

has been taken
to be constant for simplicity; the origin
EF = µ = 0 is set at the bottom of
the conduction band; the crossing points
A, C of EF(Ti, cn), EF(Tf , cn), respectively,
with µ(cs), exemplify stable solutions of
Eq.(2); the tiny differences EF(Tf , cn) −
EF(Ti, cn), EF(Ti, cn) − µ(c0 − cn) have
been hugely magnified for the reader’s
convenience; the dashed-dotted line,
linking A, B, C together illustrates the
adiabatic process, discussed in section VI;
the points Pn, Ps and the arrow linking
them illustrate a superconducting-normal
transition in progress (i.e. cn(Tf ) <

cn(Pn) < c0, 0 < cs(Ps) < cs(Tf )), taking
place at Tf , under the constraint cn + cs =

c0

cs 

cn c0

c0 0 

0

EF 



c / 2 
E

Figure 4. schematic plots of EF(T, cn)

(solid line) and µ(cs) (dotted line) in case
∂µ
∂cs

< 0 and ∂EF
∂cn

+
∂µ
∂cs

< 0; the crossing
point E of EF(T, cn) with µ(cs) represents
an instable solution of Eq.(2)
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As, due to σJ < 0 and σJ + σs > 0 (see Eqs.(9)), the Joule effect is expected to cool down the

sample, we predict that Eq.(11) will be fulfilled with Q2 < 0 and Ṫ
(

t ∈
[
0, t f

])
< 0⇒ Tf < TM < Ti,

in full agreement with a remark by De Gennes[17] (see[17] footnote in p.18) : if one passes from the
superconducting state to the normal one in a thermally isolated specimen, the temperature of the sample
decreases. Although this experiment could be done as well with I(tM) < Ic(T(tM)), the condition
I(tM) = Ic(T(tM)) secures the largest Ti − Tf , because it maximizes |js| and thence

∣∣Ẇ2
∣∣. Furthermore,

the low value of Tc, encountered in first kind superconductors, ensures that Cs(T ≤ Tf ) is known
accurately. Conversely, for second kind superconductors, which includes all high-Tc compounds,
Cs(T) is negligible[1] with respect to Cφ(T), so that Eq.(11) gets simpler

Q2 ≈
∫ Tf

Ti

Cφ(T)dT −W(t f ) . (12)

Due to Cφ(T) being I independent, unlike Cs(T), taking the time derivative of Eq.(12) yields in addition

V
S2

I2(t)
σJ(t)

= Cφ(T)Ṫ(t)−U(t)I(t) ,

which enables one to assess σJ(t) < 0 for t ∈
[
0, t f

]
and thence to check σJ(t) + σs(t) > 0, the

necessary conditions for the existence of persistent currents (see Eqs.(9)), provided σs has been

measured independently[10,11] (the t dependences of σs =
cse2τs

m and σJ =
(evs)2τs

∂µ
∂cs

are both mediated

by the js dependence of cs(t), as demonstrated hereafter in the concluding section).
Although Tf < Ti entails that the entropy of the two-fluid system decreases, the second law of

thermodynamics is thereby not violated, because the electrons remain coupled with the outer world via
I(t) during the experiment. At last, note that the state, illustrated by B in Fig.3, refers to a metastable
equilibrium, because the stable position at Tf is rather inferred to be at C in Fig.3, as required by Eq.(2).
However, were the electron system to go spontaneously from B to C, e.g. along the dashed-dotted line,
this process would result[16] into djs

dt 6= 0, due to js 6= 0 at B versus js = 0 at C, while the accompanying
Joule effect would give rise to a negative entropy variation ∆SB→C < 0, at odds with the second law of
thermodynamics, as noted hereabove.

7. conclusion

The anomalous Joule effect is characterized by σs 6= σJ , i.e. the conductivity σs, deduced from
Ohm’s law, should differ from σJ , the conductivity pertaining to the Joule power released through
process II. In addition, it can be observed solely in a many-body bound state, such as the BCS one.
Likewise, the existence of persistent currents is warranted as a consequence of σJ < 0 and σJ + σs > 0
(see Eqs.(9)), because the resulting Joule dissipation ẆJ < 0 would run afoul at the second law of
thermodynamics, which lends itself to an experimental check, as discussed above.

Besides, the property σs 6= σJ implies that Eq.(2) can never be fulfilled in presence of a persistent
current js 6= 0. Here is a proof : consider the electron system in the equilibrium state, defined by
T = Tf , js = 0 and represented by C in Fig.3, for which Eq.(2) is fulfilled. As js grows from 0 up
to its maximum value, the electron system shifts away from C : the Fermi gas, represented by Pn

in Fig.3, moves, along the solid line, towards D, corresponding to cn = c0, while the BCS state,
represented by Ps, goes, along the dashed line, towards the single Cooper pair state, characterized by
µ (cs = 0) = εc

2 , provided the sample remains connected to a heat bath at Tf . Meanwhile, whenever the
thermodynamical state of the two-fluid system is represented by the pair {Pn, Ps} in Fig.3, Eq.(2) is no
longer fulfilled because of EF(Tf , cn(Pn)) > µ(cs(Ps) = c0− cn(Pn)), which demonstrates the first order
nature of the js-driven superconducting-normal transition[2,3,9,17], by contrast with the second order
transition, observed at Tc with js = 0, for which Eq.(2) is indeed fulfilled, i.e. EF(Tc, c0) = µ(0) = εc

2 .
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