

1 The antioxidant effect of beta-alanine or carnosine 2 supplementation on exercise- induced oxidative 3 stress: a systematic review and meta-analysis

4 Elias de França¹, Fábio Santos Lira², Marcio Flávio Ruaro¹, Vinicius Barroso Hirota³,
5 Paula A. Faria Waziry^{4,5}, André Rinaldi Fukushima^{1,6}, Maria Luiza de Jesus Miranda¹,
6 Érico Chagas Caperuto^{1*}

7 ¹ GEPAME – Metabolism of exercise Research and Study group, Department of Physical Education, São Judas
8 University, São Paulo, Brazil

9 ² Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State
10 University (UNESP), Presidente Prudente, Brazil

11 ³ Universidade Estácio de Sá, Carapicuiba, Brazil

12 ⁴ Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida,
13 United States of America

14 ⁵ Veterans Affairs Medical Center, Miami, Florida, United States of America

15 ⁶ Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São
16 Paulo, Brazil.

17 * Correspondence: ericocaperuto@gmail.com

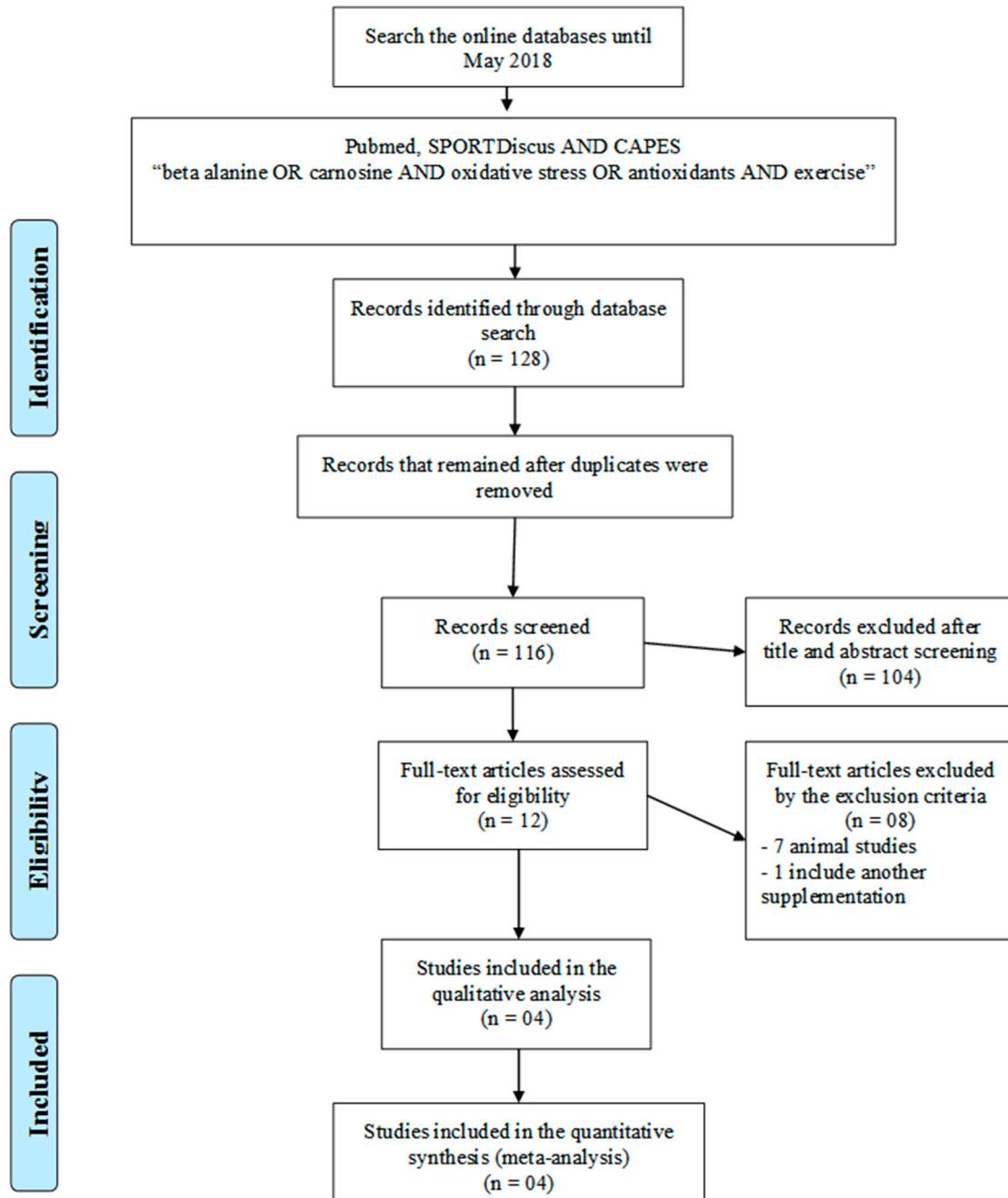
18 **Abstract:** The objective of this study was to perform a systematic review and meta-analysis of the
19 articles that addressed the effect beta-alanine (BA) or carnosine supplementation on Physical
20 exercise (PE)-induced oxidative stress (OS). We searched throughout PubMed, CAPES Periodic and
21 SPORTDiscus human model peer review, randomized control studies with chronic BA or carnosine
22 supplementation on PE-induced OS. We search papers published before May 2018. A total of 128
23 citations were found. Only four articles met criteria for inclusion. All four studies used healthy
24 young (21y) sedentary, recreationally active or athletic participants. After a chronic BA (~30 days)
25 or carnosine (14 days) supplementation, the studies evaluated PE-induced OS both immediately
26 and several hours after exercise (0.5 to 48 h). In response to PE-induced OS, BA/carnosine
27 supplementation increased total antioxidant capacity (TAC) and glutathione concentrations while
28 decreased pro-oxidant markers and superoxide dismutase (SOD) activity. BA or carnosine
29 supplementation did not prevent the increase in peroxidation markers (e.g. 8-isoprostanate, protein
30 carbonyl or malonaldehyde). In humans, following PE-induced OS, initial treatment trials of BA or
31 carnosine supplementation seemed to increase TAC and GSH concentrations, while decreasing SOD
32 activity. Also, albeit mitigating the acute increase in pro-oxidants, treatment did not decrease
33 measured values of peroxidation markers.

35 **Keywords:** beta-alanine, carnosine, oxidative stress, antioxidant

36 37 1. Introduction

38 The It is well known that carnosine is a potent and safe antioxidant [1]. Recent animal models
39 and humans (with type 2 diabetes) studies has been shown that carnosine supplementation can
40 restore glutathione peroxidase (GPx) to normal levels, increase total antioxidant capacity (TAC),
41 catalase (CAT), superoxide dismutase (SOD) activity and reduce lipid peroxidation (LP) [1-4]. All of
42 these changes are important for improvement of anti-oxidant system and simultaneous reduction of
43 oxidative stress (OS) [5].

45 Acute physical exercise (PE) is known to induce high reactive oxygen species (ROS) production
46 and consequently to promote an acute OS milieus [6,7]. Studies with healthy humans [8-10] and animal
47 models [11,12] have investigated whether increased carnosine in the body [induced by carnosine or
48 beta-alanine (BA) supplementation] mitigates the high ROS production (as well as acute OS milieus
49 condition) during exercise. In animal studies, carnosine and BA supplementation were shown to
50 effectively mitigate the OS produced by exercise [11-13]. However, in human studies, the findings
51 were unclear. For instance, both recreationally active men [9] and women [8] who received BA
52 supplementation had reduced OS after an acute bout of physical exercise (when compared to baseline,
53 but not to placebo condition). The improvement in antioxidant system seemed to occur only in
54 women when compared to the baseline [8]. Although, in other studies with male athletes, carnosine
55 [14] and BA [10] supplementation did not change/mitigate the LP values after an acute bout of PE,
56 despite increasing the GSH (Glutathione) antioxidant potential when compared to pre-treatment
57 condition.


58 Conditions for alterations in the antioxidant system and OS due to BA or carnosine
59 supplementation were tested using different physical exercise interventions and enrolled participants
60 with different physical fitness levels. In addition, different assessment times were used for PE-
61 induced ROS and OS markers [7], also, different types of ROS, LP or antioxidant system markers
62 assessed might have influenced the study's results [7].

63 In this sense, it is necessary to maintain the highest standards in relation to BA/carnosine
64 supplementation on PE-induced ROS production and OS milieus. Thus, the purpose of this review to
65 carry out a systematic meta-analysis of the randomized controlled studies that investigated the effects
66 of BA or carnosine supplementation on antioxidant system, ROS and OS markers that are induced
67 by PE in healthy individuals.

68 2. Methods

69 2.1. Search Criteria

70 Materials We searched throughout PubMed, CAPES Periodicals and SPORTDiscus peer reviewed
71 studies that involved human subjects and were published before May 2018. The following MeSH
72 terms were used: beta-alanine OR carnosine AND oxidative stress OR antioxidants AND exercise
73 (Supplemental material 1). Independently, two authors (E.F and M.R.) verified titles, abstracts, and
74 full text for the articles identified to verify eligibility for inclusion in the present review.
75 Discrepancies were resolved by group discussion. For the articles that were fully accessed, we
76 searched among the references for potential studies for inclusion in the analysis. In addition, we
77 searched Google citations for potential articles that could meet the criteria of this review. A flow
78 diagram for publications inclusion criteria represented in Fig 1.
79

80

81 **Figure 1.** Flow diagram for the strategy of searching for the studies

82

83 **2.2. Inclusion/Exclusion Criteria**

84 The inclusion criteria for the articles were (1) studies with randomized and controlled samples,
 85 (2) language of publication either English, Portuguese or Spanish, (3) studies that performed
 86 intervention with chronic BA or carnosine supplementation followed by acute PE (to induce OS). We
 87 excluded studies that underwent other interventions in addition to BA (or carnosine)
 88 supplementation and PE (e.g., chemotherapy, drugs or other types of antioxidant supplementation).

89 **2.3. Identification of Eligible Studies**

90 Human subjects that underwent chronic supplementation of BA or Carnosine (≥ 28 days for BA
 91 and 14 days for carnosine) and acute PE for induction of OS.

92 *2.4. Data Extraction*

93 Table 1 describes information on: participants descriptive information such as sex, age, training
94 status. Participants described as Trained or Athletes were defined as those with regular training, with
95 at least one year of experience. Participants were described as Recreational if they practiced PE at
96 least 2-3 times per week and Sedentary if their level of PE practice was less than 1 time per week.
97 Table 1 describes the training program (when provided); whether the study had parallel design (two
98 groups) or the same participants (crossover); the number of participants in each group; intervention
99 duration; daily dose supplementation and type of vehicle (i.e. capsules, tablets), dosage distribution
100 over the course of the day and finally the moment of assessment of PE-induced pro-oxidant and OS
101 as well as the evaluation site (intra- or extra-cellular).

102 *2.5. Effect Size Calculation*

103 For antioxidant system, pro-oxidant and peroxidation markers outcome, an effect size (ES) was
104 calculated to represent the pre-exercise–post-exercise change, divided by the pre-exercise standard
105 deviation (SD). A small sample bias adjustment was applied to each ES. The variance around each
106 ES was calculated using the sample size in each study and mean ES across all studies [15]. ES were
107 classified as trivial (<0.2), small (≥ 0.2 to ≤ 0.6), moderate (≥ 0.6 to ≤ 1.2), large (≥ 1.2) [16]

108 *2.6. Statistical Analyses Results*

109 Calculations was performed using a random effects method. Data is displayed as mean
110 difference with random effects, inverse of variance and 95% confidence interval. Statistical
111 heterogeneity of the treatment effects among studies were assessed using Cochran's Q test and the
112 inconsistency I^2 test, in which values above 25% and 50% were considered indicative of moderate and
113 high heterogeneity, respectively. Review manager 5.3 was used to build the Forest plot graphs and
114 used to carry out the statistical analysis.

115 When sample size was not limited, statistical heterogeneity was explored (with Review manager
116 5.3) by sub-group analysis: the time of assessment (immediately vs. 0.5 to 48 hours after the exercise
117 test). Also, multiple linear regressions throughout the stepwise method (using SPSS v. 24) were
118 performed. For this purpose, we used ES from antioxidant system and indirect OS markers outcome
119 as the dependent variable. The independent variables were: (1) training status, (2) sex, (3) moment of
120 assessment, (4) antioxidant and indirect OS markers type, (5) supplementation condition (placebo,
121 BA or carnosine), (6) exercise intensity or duration. The statistical significance level was set at $P <$
122 0.05.

123

124 *3. Search results*

125 The search of PubMed, SPORTDiscus and CAPES periodic provided a total of 128 citations (titles
126 and abstracts were accessed). 116 articles were removed (both duplicates and articles that met the
127 exclusion criteria). We examined the full text of the remaining 12 articles and only four articles [8-
128 10,14] were included in the review (Fig 1).

129 Seven out of eight studies excluded did not meet the criteria of human subjects (animal models
130 were rats and mice). Two of the excluded studies involved chronic training [4]. One study evaluated
131 acute injected BA [17]. Two studies evaluated PE-induced OS, but had other antioxidants combined
132 with BA [18] or carnosine [13] supplementation. One human study [19] was excluded because it used
133 others AO combined with BA. Three other animal studies who were also excluded which evaluated
134 PE-induced OS after BA/carnosine supplementation [11-13] and were therefore were used in the
135 discussion of this review. (Fig 1).

136 *3.1. Participant and Intervention Characteristics*

137 All studies used healthy young adults (21y) who were sedentary, recreationally active or trained
138 participants. Only one study used women as subjects. Only one study used carnosine

139 supplementation, while the other three studies used BA supplementation. All supplementation
 140 protocols employed chronic treatment, being 28 days for BA supplementation and 14 days for
 141 carnosine supplementation (Table 1).

142 Exercise-induce EO involved classic Wingate test (short all-out high-intensity repeated bouts),
 143 moderate endurance-running (70-75% of VO₂max) and short high-intensity one bout (2000-m run
 144 time trial type) exertion. All physical exercise interventions successfully and significantly induced
 145 EO (Table 1).

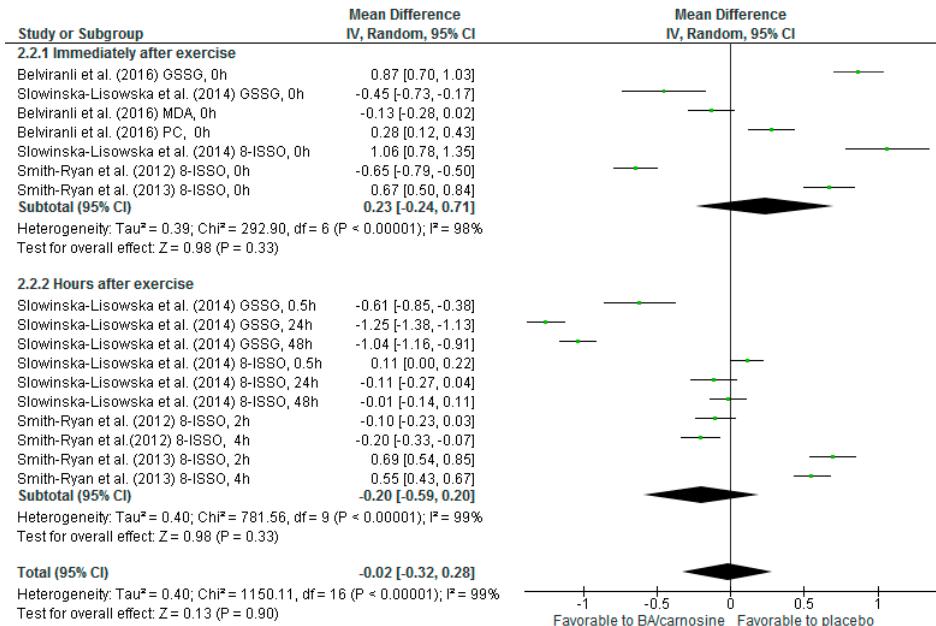
146 Table 1. Description of studies in the systematic review and meta-analysis.

Study	Experimental design	Exercise training or Exercise induce OS	OS and AO markers
Belviranli at al. [10]	44 healthy sedentary males (age 21.7 ± 1.9 y, height 175.9 ± 5.9 cm, and body weight 70.9 ± 7.9 kg) randomly assigned to one of 4 groups: PL, BA (1,6g/d 2x day; powder), Creatine (Cr; 10g/d) or BA+Cr supplementation for 22 consecutive days, then four times per day for the following 6 days. Blood plasma OS markers were analyzed before and after Wingate test (WTs) sessions.	Three bouts of 30s Wingate test (all out, against a resistance of 75 g.kg ⁻¹ body weight) with a 2 -minute rest between bouts. The WTs session was performed before and after the period of supplementation	GSSG, PC and MDA; SOD, TAC and GSSG
Smith- Ryan et al. [9]	25 healthy recreationally active males (age, 21.9 ± 3.4 y; height, 177.6 ± 5.4 cm; weight, 78.8 ± 9.7 kg) randomly assigned to 28 days of PL or BA (1,6g 3x day, sustained release) supplementation. Blood plasma OS markers were analyzed immediately after, and at 2 and 4 hours after exercise.	40 min on a treadmill at a velocity corresponding to 70%-75% of their measured peak velocity before and after the period of supplementation.	8-ISSO; SOD, TAC, and GSH
Smith- Ryan et al. [8]	26 healthy recreationally active women (age, 21.7 ± 1.9 y; height, 165.0 ± 5.7 cm; weight, 61.9 ± 6.7 kg) randomly assigned to 28 days of PL or BA (1,6g 3x day, sustained release) supplementation. Blood plasma OS markers were analyzed immediately after, and at 2 and 4 hours after exercise.	40 min on a treadmill at a velocity corresponding to 70%-75% of their measured peak velocity before and after the period of supplementation	8-ISSO and SOD, TAC and GSH
Slowinska- Lisowska et al. [14]	14 elite kayakers and canoeists athletes (age, 21.2 ± 1.3 y; height, 177.4 ± 7.9 cm; weight, 78.9 ± 8.9 kg) in a crossover way assigned to 14 days of PL and Carnosine (2g 2x day) supplementation. Washout was four weeks. Blood plasma OS markers were analyzed immediately after (IP), and at 30min and 24h and 48h after exercise.	During supplementation period athletes underwent a 5day/wk structured schedule training (60% aerobic and 40% strength training). After supplementation athlete performer 2000-m run on kayak or canoe ergometer (exercise induce OS).	GSSG, 8- ISSO, PC, NO, H ₂ O ₂ and 3-Nitro; TAC, SOD and GSH

147 Note: 3-Nitro, 3-nitrotyrosine; 8-ISO, 8-isoprostane; BA, beta-alanine; GSH, glutathione; GSSG, oxidized
 148 glutathione; H₂O₂, Hydrogen peroxide; MDA, malondialdehyde; OS, oxidative stress; PC, protein carbonyl; PL,
 149 placebo; SOD, superoxide dismutase; TAC, total antioxidant capacity.

151 3.2. *Antioxidant and Pro-oxidants assessment after BA or carnosine supplementation in exercise-induced*
 152 *oxidative stress*

153 All Pro-oxidants (3-Nitro, 3-nitrotyrosine; H₂O₂, Hydrogen peroxide and nitric oxide),
 154 peroxidation (8-ISO, 8-isoprostan; MDA, malondialdehyde and; PC, protein carbonyl) and
 155 antioxidant (GSH, glutathione; GSSG, oxidized glutathione; SOD, superoxide dismutase and; TAC,
 156 total antioxidant capacity) markers were assessed from blood samples. DNA (8-ISO), protein (PC)
 157 and cell damage (3-Nitro) as well as lipid peroxidation (MDA), indirect markers of OS were assessed.
 158 H₂O₂ and NO were assessed as direct OS markers. SOD was assessed as endogenous AO; TAC, GSH
 159 and GSSG were assessed as exogenous AO. All four studies evaluated PE-Induced OS post-
 160 supplementation immediately after exercise. Three out of four studies repeated the assessment after
 161 s 30 min [14], 2h, 4h [8,9], 24h and 48h [14] post exercise (Table 1).


162

163 3.3. *Meta-analysis*

164 3.3.1. *Oxidants*

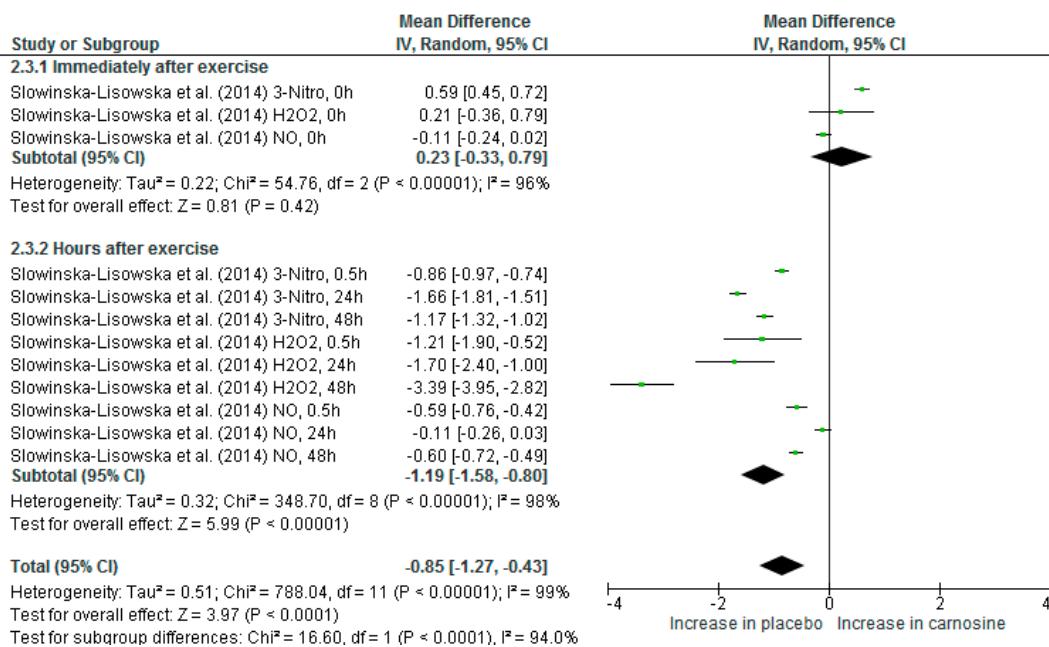
165 Exercise induced moderate increase in pro-oxidants markers (PC, MDA, 8-ISO and GSSG) in
 166 both conditions (BA/carnosine ES= -0.78, 95% CI -0.19 to-1.37; placebo ES= -0.60, 95% CI -0.12 to -1.08).
 167 Comparisons between conditions revealed that immediately after exercise there was a small increase,
 168 but not significant, in pro-oxidants markers in the BA/carnosine group (difference ES: 0.23, 95% CI -
 169 0.24 to 0.71, p= 0.33). However, a small decrease, but not significant, on peroxidation markers that
 170 were observed hours after exercise was favorable to the BA/carnosine condition (difference ES: -0.20,
 171 95% CI -0.59 to 0.20, p= 0.33). Sub-group analysis (immediately after exercise vs. hours after exercise)
 172 suggests a moderate heterogeneity ($I^2= 47\%$, p= 0.17) among peroxidation markers depending on the
 173 time of assessment (see Fig 2).

174

175

176 **Figure 2.** Forest plot of the peroxidation markers induced by physical exercise after BA/carnosine or
 177 placebo supplementation. Acronyms: 3-Nitro, 3-nitrotyrosine; 8-ISO, 8-isoprostan; GSSG, oxidised
 178 glutathione; MDA, malondialdehyde; PC, protein carbonyl.

179

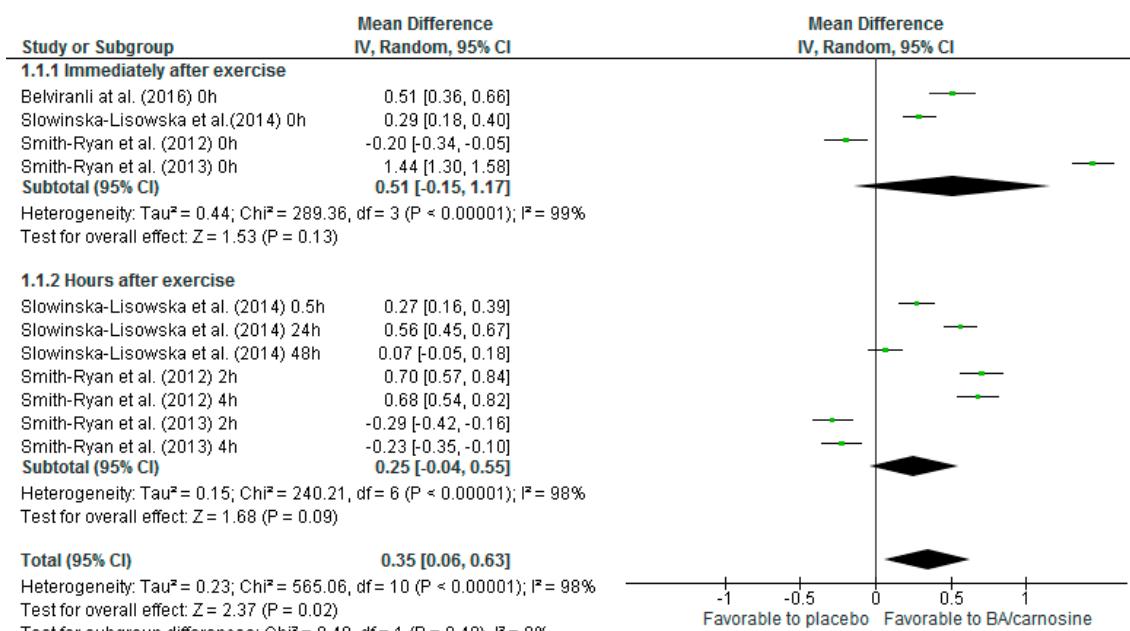

180 Independent analysis suggests large and moderate decreases in GSSG concentrations following
 181 PE (BA/carnosine ES= 1.84, 95% CI -0.63 to 4.31; placebo ES= 1.33, 95% CI -0.73 to 3.39, respectively).
 182 Between group comparison showed no difference immediately after PE (difference ES= 0.21, 95% CI,
 183 -1.08 to 1.51, $p= 0.75$, $I^2= 98\%$), but a lower GSSG concentration hours after PE in BA/carnosine
 184 condition (difference ES= -0.99, 95% CI, -1.28 to -0.69, $p< 0.01$, $I^2= 76\%$). Sub-group analysis
 185 (immediately after exercise vs. hours after exercise) indicates a significant effect of time of assessment
 186 ($I^2= 83.7\%$, $p= 0.01$).

187 Independent analysis of 8-ISSO showed a large increase in immediately after PE in both
 188 condition (BA/carnosine ES= -2.15, 95% CI -6.91 to 2.60; placebo ES= -1.79, 95% CI -4.56 to 0.98,
 189 respectively) and a moderate decrease in both conditions following hours after PE (BA/carnosine ES=
 190 0.62, 95% CI -0.12 to 1.35; placebo ES= 0.54, 95% CI -0.35 to 1.45). Between condition comparison
 191 reveal a small and not significant increase in 8-ISSO immediately after exercise for BA/carnosine
 192 (difference ES= 0.36, 95% CI -0.70 to 1.42, $p= 0.51$, $I^2= 99\%$) and trivial decrease that was measured
 193 hours after exercise (difference ES: 0.07, 95% CI -0.59 to 0.45, $p= 0.79$, $I^2= 97\%$). Sub-group analysis
 194 suggests no effect of time of assessment ($I^2= 0\%$, $p= 0.48$), however when we exclude the Smith et al.
 195 [8] study (00 hour post exercise), there is a significant effect of time of assessment ($I^2= 87.2\%$, $p< 0.01$).
 196

197 Due to insufficient data, PC and MDA independent analysis was not performed.

198 Only the study by Slowinska-Lisowska et al. [14] performed direct OS markers assessment.
 199 Data reanalysis of this study (Fig 3) suggests that immediately after PE, carnosine supplementation
 200 condition (when compared to placebo) did not mitigate the increase in pro-oxidants production
 201 (difference ES: 0.23, 95% CI -0.33 to 0.79, $p= 0.42$, $I^2= 96\%$; see Fig 3). On the other hand, when we
 202 compared the conditions involving the later hours after the exercise, carnosine was shown to
 203 mitigates the increase in pro-oxidants (difference ES= -1.19, 95% CI -1.48 to -0.80, $p< 0.01$, $I^2= 98\%$).
 204 There is a significant sub-group (immediately after exercise vs. hours after exercise) difference ($I^2= 94\%$,
 204 $p<0.01$) on pro-oxidant markers, see Fig 3.

205


206

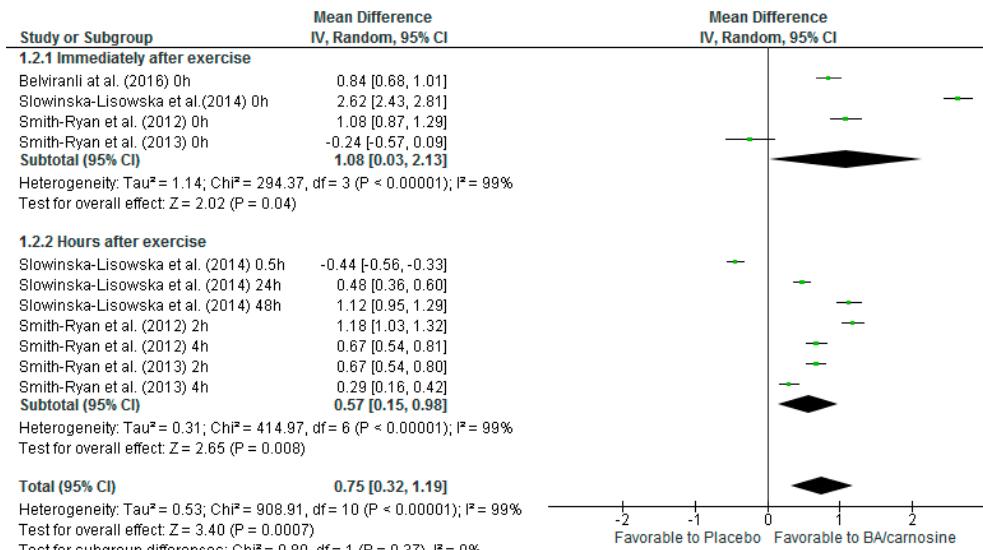
207 **Figure 3.** Forest plot of the pro-oxidants induced by physical exercise after carnosine or placebo
 208 supplementation. Acronyms: 3-Nitro, 3-nitrotyrosine; H2O2, Hydrogen peroxide; NO, nitric
 209 oxide.

210

211 3.3.2. Antioxidants

212 ES suggests that there was a moderate increase in TAC concentration in BA/carnosine
 213 supplementations (ES= -0.66, 95% CI -1.44 to 0.12), whereas a trivial decrease occurred in placebo
 214 supplementation was observed (ES= 0.08, 95% CI -0.78 to 0.95) immediately after exercise, but without
 215 significant difference between them (difference ES= 0.51, 95% CI -0.15 to 1.17, $p=0.13$, $I^2=99\%$). Hours
 216 after exercise BA/carnosine presented a trivial increase (ES= -0.13, 95% CI -0.78 to 0.52) and a similar
 217 small decrease occurred in the placebo condition (ES= 0.12, 95% CI -0.42 to 0.66) which showed a tend
 218 to difference between then (difference ES= -0.25, 95% CI -0.04 to 0.55, $p= 0.09$, $I^2=98\%$). Overall
 219 between conditions comparison (pooled ES) suggests that BA/carnosine supplementation increases
 220 overall TAC (difference ES= 0.35, 95% CI 0.06 to 0.65, $p= 0.02$, $I^2= 99\%$; Fig 4) in response to exercise.
 221

222

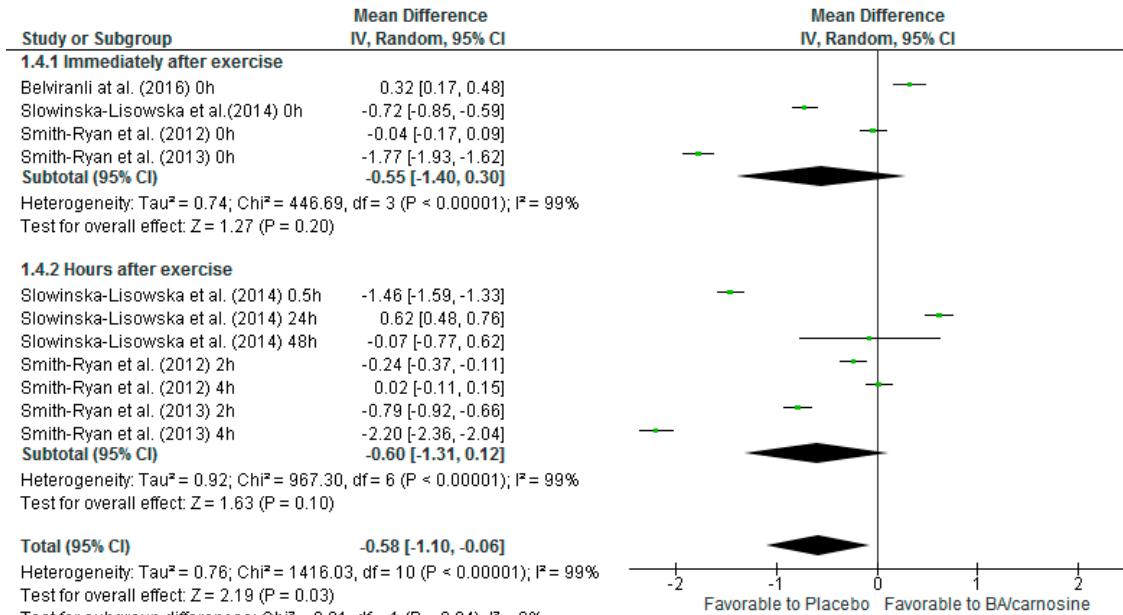

223 **Figure 4.** Forest plot of the total antioxidant capacity change by physical exercise after BA/carnosine
 224 or placebo supplementation.

225

226

227 Immediately after exercise there were a trivial and a large GSH decreases in both conditions
 228 (BA/carnosine ES= 0.16, 95% CI -4.68 to 4.99; placebo ES= 1.23, 95% CI -2.00 to 4.44, respectively).
 229 There were also a moderate and a trivial increase following hours after exercise (BA/carnosine ES= -
 230 0.69, 95% CI -1.61 to 0.22; placebo ES= -0.12, 95% CI -0.99 to 0.77, respectively). Between conditions
 231 comparison presented a significant difference in GSH concentration (favorable to BA condition) both
 232 immediately after and several hours following exercise [Overall ES difference= 0.75, 95% CI 0.32 to
 233 1.19, $p= 0.0007$, $I^2= 99\%$ (Fig 5a)].

234


235

236 **Figure 5.** Forest plot of the glutathione change by physical exercise after BA/carnosine or placebo
237 supplementation.

238

239 Immediately after exercise, there were a trivial and a small increase in SOD activity in both
240 conditions (BA/carnosine ES= -0.02, 95% CI -1.15 to 1.12; placebo ES= -0.50, 95% CI -1.29 to 0.30,
241 respectively). Following hours after exercise, there were large increases in SOD activity for both
242 conditions (BA/carnosine ES= -1.39, 95% CI -4.21 to 1.41; placebo ES= -1.72, 95% CI -4.39 to 0.96).
243 Overall between conditions comparison showed that the placebo presented a moderate and
244 significantly greater SOD activity (differences ES= -0.58, 95% CI -1.10 to -0.06, $p = 0.03$, $I^2 = 99\%$; Fig 6)
245 when compared to BA/carnosine supplementation.

246

247

248 **Figure 6.** Forest plot of the Superoxide Dismutase change by physical exercise after BA/carnosine or
249 placebo supplementation.

250

251 3.3.3. *Heterogeneity studies and multiple linear regression analysis*252 Multiple linear regression shows that in peroxidation markers (8-ISO, MDA, GSSG and PC) the
253 time of assessment, pro-oxidant marker type evaluated, exercise type and training status could
254 explain 65% of ES variation ($R^2= 0.650$, $p= 0.000$). Sex and supplementation conditions (BA or
255 carnosine) were excluded from the model.256 Furthermore, 39% ($R^2= 0.389$, $p= 0.000$) of ES variation from antioxidant (SOD, TAC, GSH) results
257 were related to time of assessment, exercise test, training status and anti-oxidant marker type
258 evaluated. Sex and supplementation conditions were excluded from the model.259 It was not possible to perform multiple linear regression for pro-oxidant direct markers (H_2O_2 ,
260 3-Nitro and NO) due to insufficient data.261 **4. Discussion**262 The four studies included in this review observed significant increases in OS after acute physical
263 exercise bouts. Our analyses suggest that immediately after PE-induce OS, BA or carnosine
264 supplementation did not undermine the increase in pro-oxidants (H_2O_2 , 3-Nitro and NO) or
265 peroxidation (8-ISSO, MDA, and PC) markers that were produced. Monitoring their levels during
266 hours after exercise (0.5 to 48h), BA or carnosine did not appear to impose a greater decrease in 8-
267 ISSO ($p> 0.05$) when compared to placebo supplementation. Interestingly, monitoring OS levels after
268 hours (0.5 to 48h) of PE-induced, carnosine treatment mitigated the increase of H_2O_2 , 3-Nitro and NO
269 production. It is important to mention that pro-oxidants (H_2O_2 , 3-Nitro and NO) data were obtained
270 from only one study (Slowinska-Lisowska et al. 2014), but such data were in accordance with
271 previous in vitro studies [20,21].272 Evidence suggests that the largest post-exercise changes involving lipid, protein, glutathione
273 and DNA oxidation occurred 1-4 days after PE (when compared with blood samples of resting
274 condition) [7]. For instance, in an animal study that assessed exercise-induce OS after 24h, it was
275 shown that BA or carnosine supplementation decreased LP (thiobarbituric acid reactive substances
276 and MDA markers) in skeletal muscle tissue [11,12]. The only publication that evaluated 24h post-
277 exercise was the Slowinska- Lisowska et al. [14] study. Therefore, studies with a long follow-up
278 period [days to weeks, therefore with sufficient time to resolve an acute inflammation caused by
279 moderate-intense exercise [22]] are needed to verify whether BA or carnosine may promote clinical
280 changes in the peroxidation markers.281 Previous reviews [1] and recent animal studies [2-4] had already presented an antioxidant role
282 of carnosine. When compared to placebo, our data suggested that previous BA or carnosine
283 supplementation increased TAC ($ES= 0.35$, 95% CI 0.06 to 0.65, $p= 0.02$; Fig 4) and increase GSH (GSH,
284 $ES= 0.75$, 95% CI 0.32 to 1.19, $p= 0.0007$) after PE-induced OS. These data corroborate with an animal
285 study [12] submitted to PE-induced OS. Such study reported increased in GSH and decreased
286 glutathione peroxidase (GPx) and glutathione reductase after exercise, suggesting that carnosine has
287 buffering the H_2O_2 production. The effect of BA and carnosine supplementation on GSSG
288 concentrations is conflicting. Belviranli et al. [10] reported increased GSSG after PE induces OS in
289 sedentary individuals supplemented with BA (suggesting GSH oxidation); on the other hand,
290 Slowinska-Lisowska et al. [14] reported decreased GSSG concentrations in trained individuals
291 supplemented with carnosine (suggesting a carnosine antioxidant effect). More researcher is needed
292 to highlight the effect of BA/carnosine on GSH/GSSG ratio.293 Our data suggests that BA or carnosine supplementation can mitigate the increase of SOD
294 activity ($ES= -0.58$, $p= 0.03$), a well-know superoxide scavenger. It is plausible that this attenuated
295 increase of SOD activity occurs due to carnosine antioxidant effect (e.g., O_2^- clearance). In vitro
296 studies has been showed that carnosine plays an effective role in decreasing ROS and reactive
297 nitrogen species (e.g. H_2O_2 , superoxide and NO) [20,21]. Studies with animal training also has
298 demonstrated that carnosine or BA supplementation decreased SOD [23] and GPx [12] activity,
299 when compared to control conditions. These data are contrary to untrained animal studies [2,3].
300 Therefore, it appears that BA or Carnosine supplementation might mitigate the increase in SOD and

301 GPx activity induced by exercise. Further studies are needed to verify if chronic BA supplementation
302 might down-regulate the endogenous antioxidant system during physical training.

303 The results observed in this review suggest that an acute PE increase of SOD activity is mitigated,
304 probably due to the ability of carnosine to directly decrease ROS concentrations. Interestingly,
305 carnosine supplementation associated with endurance training (in rats) decreased exercise tolerance
306 (at 2 wks of training) and both SOD and lactate dehydrogenase activity in the skeletal muscle (at 4
307 wks of training) [23]. Therefore, future studies are needed to verify (both in an acute and chronic
308 settings) if the changes promoted, such as increased gene expression of enzymes from the
309 endogenous antioxidant system induced by physical exercise [24], are mitigated in the presence of
310 BA or carnosine supplementation, as it is observed in studies with chronic [6] or acute antioxidant
311 supplementation [17]. Moreover, BA supplementation is a well-known ergogenic agent in anaerobic
312 exercises, but not in endurance exercises [25,26]. For instance, early evidence in human studies
313 suggest that BA supplementation delayed lactate production, but reduce aerobic capacity [27].
314 Therefore, it is important to investigate if BA or Carnosine supplementation might influences
315 negatively endurance adaptations because of their antioxidant effects [28].

316 Our ES evaluations (both antioxidant and prooxidant) showed a high heterogeneity. This meta-
317 analysis pooled together studies with participants from different fitness level, enrolled in different
318 PE-induced OS, also, different time point of pro- or antioxidant markers were pooled in the same ES
319 analysis. It is well-known that time-point assessment of PE-induced OS as well as the resining in blood
320 plasma of pro- or antioxidant markers type are also time-dependent and this might influence our
321 results [7]. Our sub-group analysis (immediately after exercise vs. hours after exercise- 0.5 to 48
322 hours) showed that the moment of assessment for peroxidation (Fig 3) and pro-oxidant (Fig 4)
323 markers is an important confounding variable. Also, multivariable regression shows that time of
324 assessment, the pro-oxidant marker type evaluated, the exercise type and training status can explain
325 65% of ES variation ($R^2= 0.650$, $p= 0.000$). Sub-groups analysis for antioxidant (TAC, SOD, and GSH)
326 markers did not show significant influence of time of assessed. But, multivariable regression shows
327 that only 39% ($R^2= 0.389$, $p< 0.000$) of ES variation from antioxidant results were from time of
328 assessment, exercise test, training status and anti-oxidant type evaluated. This suggest that other
329 variables (e.g. nutritional status or antioxidant system status) may be influencing this heterogeneity
330 in antioxidant results [28]. For example, no study included in this meta-analysis mentioned that
331 their samples were homogenized for pro- or antioxidant status (deficient in oxidant status or not), so
332 future studies with antioxidants supplementation need to homogenize their samples as deficient or
333 not for the antioxidant system [28].

334 4.1. Limitations

335 This meta-analysis has several limitations. First there are only four studies, two of which are
336 from the same laboratory, decreasing the validity and reliability of the results. Second, we included
337 in the same analysis BA and carnosine studies, the results of the carnosine study significantly
338 influence our TAC results, but do not significantly alter the results of SOD, GSH or pro-oxidant
339 markers, in addition, meta-regression excluded the type of supplement (i.e., BA or carnosine) used
340 as a source of heterogeneity, so BA or carnosine is not a source of heterogeneity. Third, the high
341 heterogeneity found in this study because the studies analyzed different levels of fitness, sex and
342 different exercise intensity/volume also decrease the reproducibility of these data, but give further
343 evidences that these variables differ in responses to PE-induced OS.

344 5. Conclusions

345 In conclusion, following PE-induced OS previous BA or carnosine supplementation seems to
346 increase TAC and improve GHS/GSSG ratio, but decrease SOD activity. Also, albeit to mitigate the
347 acute increase in pro-oxidant, it does not decrease peroxidation markers.

348 **Supplementary Materials:** The following are available online.

349 **Author Contributions:** Paper conceptualization, E.F., M.L.J.M. and E.C.C.; data extraction and methodology
350 design, M.F.R., E.F., M.L.J.M and E.C.C.; Statistical analysis, E.F. and E.C.C.; writing—original draft preparation,
351 E.F., F.S.F., M.L.J.M. and E.C.C.; writing—review and editing, A.R.F., P.A.F.W; supervision, E.C.; project
352 administration, E.F. and E.C..

353 **Acknowledgments:** The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
354 (CAPES) for scholarship support.

355 **Conflicts of Interest:** The authors report no conflicts of interest associated with this manuscript.

356

357

358 **References**

359

- 360 1. Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of
361 carnosine. *Physiological reviews* **2013**, *93*, 1803-1845.
- 362 2. Kim, M.Y.; Kim, E.J.; Kim, Y.-N.; Choi, C.; Lee, B.-H. Effects of α -lipoic acid and
363 L-carnosine supplementation on antioxidant activities and lipid profiles in rats.
364 *Nutrition research and practice* **2011**, *5*, 421-428.
- 365 3. Ma, X.; Jiang, Z.; Lin, Y.; Zheng, C.; Zhou, G. Dietary supplementation with
366 carnosine improves antioxidant capacity and meat quality of finishing pigs. *Journal*
367 *of animal physiology and animal nutrition* **2010**, *94*.
- 368 4. Schaal, M.F.; Ramadan, B.K.; Abd Elwahab, A.H. Synergistic effect of carnosine
369 on browning of adipose tissue in exercised obese rats; a focus on circulating irisin
370 levels. *Journal of cellular physiology* **2018**, *233*, 5044-5057.
- 371 5. Turunen, M.; Olsson, J.; Dallner, G. Metabolism and function of coenzyme Q.
372 *Biochimica et Biophysica Acta (BBA)-Biomembranes* **2004**, *1660*, 171-199.
- 373 6. He, F.; Li, J.; Liu, Z.; Chuang, C.-C.; Yang, W.; Zuo, L. Redox mechanism of reactive
374 oxygen species in exercise. *Frontiers in Physiology* **2016**, *7*.
- 375 7. Nikolaidis, M.G.; Jamurtas, A.Z.; Paschalis, V.; Fatouros, I.G.; Koutedakis, Y.;
376 Kouretas, D. The effect of muscle-damaging exercise on blood and skeletal muscle
377 oxidative stress. *Sports Medicine* **2008**, *38*, 579-606.
- 378 8. Smith, A.; Stout, J.; Kendall, K.; Fukuda, D.; Cramer, J. Exercise-induced oxidative
379 stress: the effects of β -alanine supplementation in women. *Amino Acids* **2012**, *43*, 77-
380 90.
- 381 9. Smith-Ryan, A.E.; Fukuda, D.H.; Stout, J.R.; Kendall, K.L. The influence of β -
382 alanine supplementation on markers of exercise-induced oxidative stress. *Applied*
383 *Physiology, Nutrition, and Metabolism* **2013**, *39*, 38-46.
- 384 10. Belviranli, M.; Okudan, N.; Revan, S.; Balci, S.; Gokbel, H. Repeated supramaximal
385 exercise-induced oxidative stress: effect of β -alanine plus creatine supplementation.
386 *Asian journal of sports medicine* **2016**, *7*.
- 387 11. Dawson Jr, R.; Biasetti, M.; Messina, S.; Dominy, J. The cytoprotective role of
388 taurine in exercise-induced muscle injury. *Amino acids* **2002**, *22*, 309-324.
- 389 12. Bortolatto, G.P. Efeito da carnosina e da β -alanina no dano produzido pelo exercício
390 intenso no músculo sóleo de ratos. Universidade Estadual Paulista Júlio de Mesquita
391 Filho, 2015.
- 392 13. Seifullina, N.; Kovalev, I.; Rozhkova, E.; Paniushkin, V. [Effect of carnosine and its
393 combination with essentiale on lipid peroxidation and work capacity of experimental
394 animals]. *Eksperimental'naia i klinicheskaiia farmakologiia* **2004**, *68*, 44-46.
- 395 14. Slowinska-Lisowska, M.; Zembron-Lacny, A.; Rynkiewicz, M.; Rynkiewicz, T.;
396 Kopec, W. Influence of l-carnosine on pro-antioxidant status in elite kayakers and
397 canoeists. *Acta Physiologica Hungarica* **2014**, *101*, 461-470.

398 15. Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. *Introduction to meta-*
399 *analysis*; John Wiley & Sons: 2011.

400 16. Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies
401 in sports medicine and exercise science. *Medicine+ Science in Sports+ Exercise*
402 **2009**, *41*, 3.

403 17. Vereshchaka, I.V.; Bulgakova, N.V.; Maznychenko, A.V.; Gonchar, O.O.;
404 Prylutskyy, Y.I.; Ritter, U.; Moska, W.; Tomiak, T.; Nozdrenko, D.M.; Mishchenko,
405 I.V., et al. C60 Fullerenes Diminish Muscle Fatigue in Rats Comparable to N-
406 acetylcysteine or β -Alanine. *Frontiers in Physiology* **2018**, *9*,
407 doi:10.3389/fphys.2018.00517.

408 18. Pence, B.D.; Gibbons, T.E.; Bhattacharya, T.K.; Mach, H.; Ossyra, J.M.; Petr, G.;
409 Martin, S.A.; Wang, L.; Rubakhin, S.S.; Sweedler, J.V. Effects of exercise and dietary
410 epigallocatechin gallate and β -alanine on skeletal muscle in aged mice. *Applied
411 Physiology, Nutrition, and Metabolism* **2015**, *41*, 181-190.

412 19. Rozhkova, E.; Ordzhonikidze, Z.; Druzhinin, A.; Seifulla, N.; Paniushkin, V.;
413 Kuznetsov, I. Using carnosine and natural antioxidants for the prophylaxis of acute
414 post-loading oxidative stress. *Eksperimental'naia i klinicheskaiia farmakologiiia* **2007**,
415 *70*, 44-46.

416 20. Nicoletti, V.G.; Santoro, A.M.; Grasso, G.; Vagliasindi, L.I.; Giuffrida, M.L.;
417 Cuppari, C.; Purrello, V.S.; Stella, A.M.G.; Rizzarelli, E. Carnosine interaction with
418 nitric oxide and astroglial cell protection. *Journal of neuroscience research* **2007**, *85*,
419 2239-2245.

420 21. Miceli, V.; Pampalone, M.; Fazziano, G.; Grasso, G.; Rizzarelli, E.; Ricordi, C.;
421 Casu, A.; Iannolo, G.; Conaldi, P.G. Carnosine protects pancreatic beta cells and islets
422 against oxidative stress damage. *Molecular and Cellular Endocrinology* **2018**, *474*,
423 105-118, doi:<https://doi.org/10.1016/j.mce.2018.02.016>.

424 22. Ho, A.T.V.; Palla, A.R.; Blake, M.R.; Yucel, N.D.; Wang, Y.X.; Magnusson, K.E.G.;
425 Holbrook, C.A.; Kraft, P.E.; Delp, S.L.; Blau, H.M. Prostaglandin E2 is essential for
426 efficacious skeletal muscle stem-cell function, augmenting regeneration and strength.
427 *Proceedings of the National Academy of Sciences* **2017**, *114*, 6675-6684,
428 doi:10.1073/pnas.1705420114.

429 23. Lee, K.-N.; Hue, J.-J.; Miga, M.; Kang, B.S.; Kim, J.-S.; Nam, S.Y.; Yun, Y.W.;
430 Jeong, J.-H.; Lee, B.J. Effects of Carnosine on Exercise Capacity in ICR Mice.
431 *Laboratory Animal Research* **2008**, *24*, 617-622.

432 24. Henríquez-Olgún, C.; Díaz-Vegas, A.; Utreras-Mendoza, Y.; Campos, C.; Arias-
433 Calderón, M.; Llanos, P.; Contreras-Ferrat, A.; Espinosa, A.; Altamirano, F.;
434 Jaimovich, E. NOX2 inhibition impairs early muscle gene expression induced by a
435 single exercise bout. *Frontiers in physiology* **2016**, *7*, 282.

436 25. Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.;
437 Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L. International society of sports
438 nutrition position stand: Beta-Alanine. *Journal of the International Society of Sports
439 Nutrition* **2015**, *12*, 1-14.

440 26. Brisola, G.M.P.; Redkva, P.E.; Pessôa Filho, D.M.; Papoti, M.; Zagatto, A.M. Effects
441 of 4 weeks of β -alanine supplementation on aerobic fitness in water polo players.
442 *PloS one* **2018**, *13*, e0205129.

443 27. Jordan, T.; Lukaszuk, J.; Misic, M.; Umoren, J. Effect of beta-alanine
444 supplementation on the onset of blood lactate accumulation (OBLA) during treadmill
445 running: Pre/post 2 treatment experimental design. *Journal of the International
446 Society of Sports Nutrition* **2010**, *7*, 20-20, doi:10.1186/1550-2783-7-20.

447 28. Margaritelis, N.V.; Paschalis, V.; Theodorou, A.A.; Kyparos, A.; Nikolaidis, M.G.
448 Antioxidants in Personalized Nutrition and Exercise. *Advances in Nutrition* **2018**.