

1

2 **The antioxidant effect of beta-alanine or carnosine**3 **supplementation on exercise- induced oxidative stress:**4 **a systematic review and meta-analysis**5 **Elias de França^a, Fábio Santos Lira^b, Marcio Flávio Ruaro^a, Vinicius Barroso Hirota^a,**6 **Paula A. Faria Waziry^{c,d}, André Rinaldi Fukushima^{a,e}, Maria Luiza de Jesus Miranda^a,**7 **Érico Chagas Caperuto^{a*}**8 ^a GEPAME – Metabolism of exercise Research and Study group, Department of Physical Education, São Judas

9 University, São Paulo, Brazil

10 ^b Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University

11 (UNESP), Presidente Prudente, Brazil

12 ^c Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States

13 of America

14 ^d Veterans Affairs Medical Center, Miami, Florida, United States of America15 ^e Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo,

16 Brazil.

17

18 * Correspondence: Human Movement Laboratory, São Judas Tadeu University (USJT), Rua Taquari 546,

19 03166-000 São Paulo, SP, Brazil. E-mail: ericocaperuto@gmail.com

20

21

22

23

24

25

26

27

28

29 **The antioxidant effect of beta-alanine or carnosine**
30 **supplementation on exercise- induced oxidative stress: a**
31 **systematic review and meta-analysis**

32 **Abstract:** The objective of this study was to perform a systematic review and meta-analysis of the articles
33 that addressed the effect BA or carnosine supplementation on physical exercise (PE)-induced oxidative stress
34 (OS). Before May 2018 we searched throughout PubMed, CAPES Periodic and SPORTDiscus human model
35 peer review, randomized control studies with chronic BA or carnosine supplementation on PE-induced OS. A
36 total of 128 citations were found. Only four articles met criteria for inclusion. All four studies used healthy
37 young sedentary, recreationally active or athletic participants. After a chronic BA or carnosine
38 supplementation, the studies evaluated PE-induced OS both immediately and several hours after exercise (0.5
39 to 48 h). In response to PE-induced OS, when compared to placebo, BA/carnosine supplementation increased
40 total antioxidant capacity [TAC; Effect Size (ES)= 0.35, 95% Confidence Interval (CI) 0.06 to 0.65, p=0.02]
41 and glutathione (GSH; ES= 0.75, 95% CI 0.32 to 1.19, p=0.0007) concentrations while decreased direct OS
42 markers (ES= -1.19, 95% CI -1.48 to -0.80, p< 0.01) and superoxide dismutase (SOD) activity (ES= -0.58,
43 95% CI -1.10 to -0.06, p= 0.03). BA or carnosine supplementation did not prevent the increase in indirect OS
44 markers (ES: 0.06, 95% CI -0.38 to 0.500, p=0.80). In humans, following PE-induced OS, initial treatment
45 trials of BA or carnosine supplementation seemed to increase TAC and GSH concentrations, while decreasing
46 SOD activity. Also, albeit mitigating the acute increase in direct OS markers (reactive nitrogen and oxygen
47 species), treatment did not decrease measured values of indirect OS markers (peroxidation or molecule
48 oxidation).

49

50 **Keywords:** beta-alanine, carnosine, oxidative stress, antioxidant

51

52

53

54 **1. Introduction**

55 It is well known that carnosine is a potent and safe antioxidant [1]. Recent animal models and humans
56 (with type 2 diabetes) studies has been shown that carnosine supplementation can restore glutathione peroxidase
57 (GPx) to normal levels, increase total antioxidant capacity (TAC), catalase (CAT), superoxide dismutase (SOD)
58 activity and reduce lipid peroxidation (LP) [1-4]. All of these changes (in CAT, GPx and SOD) are important
59 for improvement of antioxidant system and simultaneous reduction of oxidative stress (OS) [5]. Antioxidant
60 supplementation is commonly prescribed in disease that presents elevated ROS and RNS (reactive oxygen and
61 nitrogen species, respectively) production, with the intention to improve the antioxidant system and decrease
62 the OS. However, both ROS and RNS are necessary to cellular function, although its high production is
63 detrimental, at the same time their low production is also detrimental to cellular function [6]. Therefore, the
64 prescription of antioxidants cannot be indiscriminate.

65 Acute physical exercise (PE) is known to induce high ROS/RNS production and consequently to promote
66 an acute OS milie [7, 8]. Recent evidence has suggested that the acute increase in ROS/RNS production during
67 PE is necessary to promote adaptations (e.g., improve athletic performance and VO₂max) and the improvement
68 in the antioxidant system itself [9, 10]. It is also suggested that the use of exogenous antioxidants may be
69 counterproductive in individuals who already have a balanced oxidant/antioxidant system [11]. However, beta-
70 alanine (BA; a rate-limiting precursor in the synthesis of carnosine) and carnosine supplementation are popular
71 ergogenic aids and also prescribed indiscriminately as antioxidant for athletic population. Studies with healthy
72 humans [12-14] and animal models [15, 16] have investigated whether increased carnosine in the skeletal
73 muscle (induced by carnosine or BA supplementation) mitigates the high ROS/RNS production (as well as
74 acute OS milie condition) during exercise. In animal studies, carnosine and BA supplementation were shown
75 to effectively mitigate the OS produced by exercise [15-17]. However, in human studies, the finding were
76 unclear. For instance, both recreationally activity men [13] and women [12] who received BA
77 supplementation had reduced LP after an acute bout of physical exercise (wen compared to pre-
78 supplementation, but not to placebo condition). Although, in other studies with male athletes, carnosine [18]
79 and BA [14] supplementation did not change/mitigate the increase in LP values after an acute bout of PE,
80 despite increasing the GSH (Glutathione) antioxidant potential when compared to pre-treatment condition. Such
81 studies from the same laboratory showed that improvement in antioxidant system seemed to occur only in
82 women when compared to the pre-supplementation condition [12, 13], instead other laboratories shown
83 improvement in men [14, 18]. Therefore, it is necessary to systematize and meta-analyze studies with humans
84 to evaluate the effectiveness of BA or carnosine supplementation as an antioxidant during PE-induced OS. If

85 BA or carnosine is an efficient antioxidant, this results can shed light to the controversial results such as
86 impairments in endurance physical capacity [19] and VO₂máx [20, 21] found in some endurance exercise
87 studies.

88 However, conditions for alterations in the antioxidant system and OS due to BA or carnosine
89 supplementation were tested using different physical exercise interventions and enrolled participants with
90 different physical fitness levels. In addition, different assessment times were used for PE-induced ROS/RNS
91 and OS markers [8], also, different types of ROS, LP or antioxidant system markers assessed might have
92 influenced the study's results [8]. In this sense, it is necessary to maintain the highest standards in relation to
93 BA/carnosine supplementation on PE-induced ROS/RNS production and OS milieus. Thus, the purpose of this
94 review to carry out a systematic meta-analysis of the randomized controlled studies that investigated the effects
95 of BA or carnosine supplementation on antioxidant system, ROS and OS markers that are induced by PE in
96 healthy individuals.

97 **2. Methods**

98 *2.1. Search Criteria*

99 We searched throughout PubMed, CAPES Periodicals and SPORTDiscus peer reviewed studies that
100 involved human subjects and were published before May 2018. The following MeSH terms were used: beta-
101 alanine OR carnosine AND oxidative stress OR antioxidants AND exercise (Appendix 1). Independently, two
102 authors (E.F and M.R.) verified titles, abstracts, and full text for the articles identified to verify eligibility for
103 inclusion in the present review. Discrepancies were resolved by group discussion. For the articles that were
104 fully accessed, we searched among the references for potential studies for inclusion in the analysis. In addition,
105 we searched Google citations for potential articles that could meet the criteria of this review. A flow diagram
106 for publications inclusion criteria represented in Fig 1.

107

108

109

Figure 1. Flow diagram for the strategy of searching for the studies.

110

111 *2.2. Inclusion/Exclusion Criteria*

112 The inclusion criteria for the articles were (1) studies with randomized and controlled samples, (2)
 113 language of publication either English, Portuguese or Spanish, (3) studies that performed intervention with
 114 chronic BA (≥ 28 days) or carnosine (> 14 days) supplementation followed by acute PE (to induce OS). We
 115 excluded studies that underwent other interventions in addition to BA (or carnosine) supplementation and PE
 116 (e.g., chemotherapy, drugs or other types of antioxidant supplementation).

117 *2.3. Identification of Eligible Studies*

118 Randomized controlled studies with health human subjects that underwent chronic supplementation of BA
119 or Carnosine (≥ 28 days for BA and >14 days for carnosine)[22] and have accessed OS or AO markers after
120 acute PE. Dosage were ≥ 1.2 to ≤ 6.4 g daily for BA [23] and ≥ 4 g daily for carnosine supplementation [24],
121 known as an athletic ergogenic dosage.

122 *2.4. Data Extraction*

123 Table 1 describes participants information such as sex, age, training status. Participants described as
124 Trained or Athletes were defined as those with regular training, with at least one year of experience. Participants
125 were described as Recreational if they practiced PE at least 2-3 times per week and Sedentary if their level of
126 PE practice was less than 1 time per week. Also, Table 1 describes the training program (when provided);
127 whether the study had parallel design (two groups) or the same participants (crossover); the number of
128 participants in each group; intervention duration; daily dose supplementation and type of vehicle (i.e. capsules,
129 tablets), dosage distribution over the course of the day and finally the moment of assessment of PE-induced
130 ROS/RNS production and OS as well as the evaluation site (intra- or extra-cellular).

131 *2.5. Effect Size Calculation*

132 For antioxidant system and OS markers (ROS/RNS, peroxidation and oxidation markers) outcome, effect
133 size (ES) was calculated to represent the pre-exercise–post-exercise change, divided by the pre-exercise
134 standard deviation (SD). A small sample bias adjustment was applied to each ES [25]. The following formula
135 was used to calculate the ES with sample bias adjustment:

$$136 \quad d = \left(1 - \frac{3}{4(\text{Number of subjects} - 1) - 1}\right) \left(\frac{\text{Mean pre} - \text{Mean post}}{\text{Pre test standard deviation}} \right)$$

137 The variance around each ES was calculated using the sample size in each study and mean ES across all
138 studies [26]. ES were classified as trivial (<0.2), small (≥ 0.2 to ≤ 0.6), moderate (≥ 0.6 to ≤ 1.2), large (≥ 1.2)
139 [27].

140 *2.6. Statistical Analyses Results*

141 Conditions description (pre- vs. post-treatment change) are presented as mean ES followed by 95%
142 confidence interval (CI).

143 Between conditions comparisons were performed using a random effects method. Data is displayed as
144 mean difference with random effects, inverse of variance and 95% CI. Statistical heterogeneity of the treatment
145 effects among studies were assessed using Cochran's Q test and the inconsistency I^2 test, in which values above
146 25% and 50% were considered indicative of moderate and high heterogeneity, respectively. Review manager
147 5.3 was used to build the Forest plot graphs and used to carry out the statistical analysis.

148 When sample size was not limited, statistical heterogeneity was explored (with Review manager 5.3) by
149 sub-group analysis: the time of assessment (immediately vs. 0.5 to 48 hours after the exercise test). Also,
150 multiple linear regressions throughout the stepwise method (using SPSS v. 24) were performed. For this
151 purpose, we used ES from antioxidant system and indirect OS markers outcome as the dependent variable. The
152 independent variables were: (1) training status, (2) sex, (3) moment of assessment, (4) antioxidant and indirect
153 OS markers type, (5) supplementation condition (BA or carnosine), (6) exercise intensity or duration. The
154 statistical significance level was set at $P < 0.05$.

155 Also, multiple sensitivity analyses were performed to determine if any of the results were influenced by
156 the studies that were removed.

157

158

159 **3. Search results**

160 The search of PubMed, SPORTDiscus and CAPES periodic provided a total of 128 citations (titles and
161 abstracts were accessed). 116 articles were removed (both duplicates and articles that met the exclusion criteria).
162 We examined the full text of the remaining 12 articles and only four articles [12-14, 18] were included in the
163 review (Fig 1).

164 Seven out of eight studies excluded did not meet the criteria of human subjects (animal models were rats
165 and mice). One study involved chronic training [4] or evaluated acute injected BA [28]. Two studies evaluated
166 PE-induced OS, but had other antioxidants combined with BA [29] or carnosine [17] supplementation. One
167 human study [30] was excluded because it used others AO combined with BA. Three other animal studies who
168 were also excluded which evaluated PE-induced OS after BA/carnosine supplementation [15-17] and were
169 therefore were used in the discussion of this review (Fig 1).

170

171 *3.1. Participant and Intervention Characteristics*

172 All studies used healthy young adults (mean age from four studies: 21y) who were sedentary,
 173 recreationally active or trained participants. Only one study used women as subjects. Only one study used
 174 carnosine supplementation, while the other three studies used BA supplementation. All supplementation
 175 protocols employed chronic treatment, being 28 days for BA supplementation and 16 days for carnosine
 176 supplementation (Table 1).

177 Exercise-induce EO involved classic Wingate test (short all-out high-intensity repeated bouts), moderate
 178 endurance-running (70-75% of VO₂max) and short high-intensity one bout (2000-m run time trial type)
 179 exertion. All physical exercise interventions successfully and significantly induced OS (Table 1).

180

181 *3.2. Antioxidant, direct and indirect OS assessment after BA or carnosine supplementation in exercise-
 182 induced oxidative stress*

183 As direct OS markers were ROS and RNS (i.e., H₂O₂, Hydrogen peroxide, 3-Nitro, 3-nitrotyrosine and
 184 nitric oxide) and PL or molecules oxidation markers as indirect OS (i.e., 8-ISO, 8-isoprostan; MDA,
 185 malondialdehyde and; PC, protein carbonyl, GSSG, oxidized glutathione). Antioxidant markers were GSH
 186 (glutathione), SOD (superoxide dismutase) and TAC (total antioxidant capacity. All assessment were from
 187 blood samples. Therefore, DNA (8-ISO), protein (PC) and cell damage (3-Nitro) as well as lipid peroxidation
 188 (MDA) were assessed as indirect markers of OS. H₂O₂ and NO were assessed as direct OS markers. SOD was
 189 assessed as endogenous AO; TAC, GSH and GSSG were assessed as exogenous AO. All four studies evaluated
 190 PE-Induced OS post-supplementation immediately after exercise. Three out of four studies repeated the
 191 assessment after 30 min [18], 2h, 4h [12, 13], 24h and 48h [18] post exercise (Table 1).

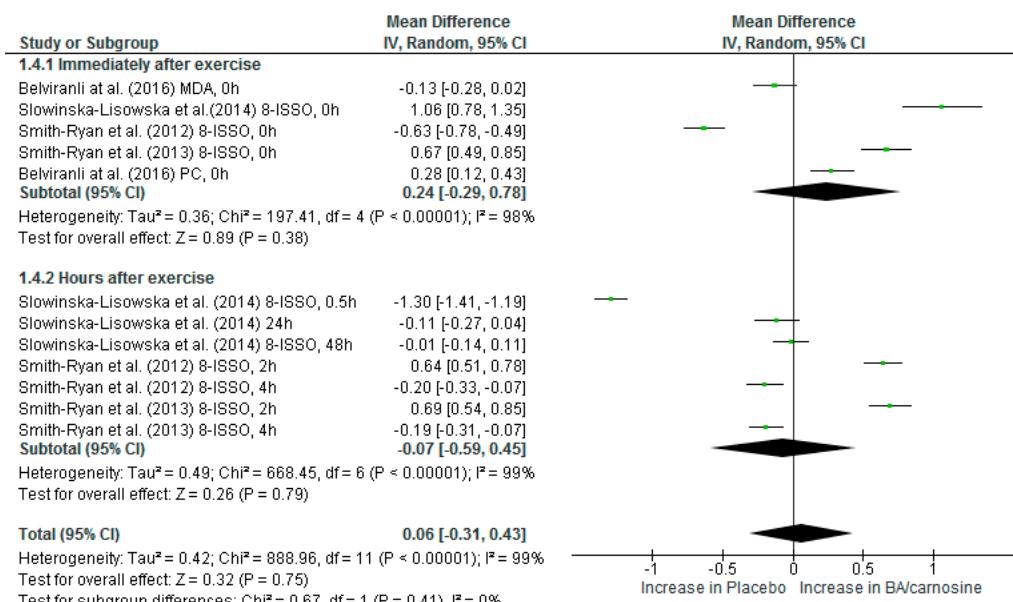
192 Table 1. Description of studies in the systematic review and meta-analysis.

Study	Experimental design	Exercise training or Exercise induce OS	OS or AO markers (method of assessment)
Belviranli at al. [14]	44 healthy sedentary males (age 21.7 ± 1.9 y, height 175.9 ± 5.9 cm, and body weight 70.9 ± 7.9 kg) randomly assigned to one of 4 groups: PL, BA (1,6g/d 2x day; powder), Creatine (Cr; 10g/d) or BA+Cr supplementation for 22 consecutive days, then four times per day for the following 6 days. Blood	Three bouts of 30s Wingate test (all out, against a resistance of 75 g.kg-1 body weight) with a 2 -minute rest between bouts. The WTs session was performed before and after the	GSSG, PC and MDA, SOD; SOD, TAC and GSSG (colorimetric assay)*

		plasma OS and AO markers were analyzed before and after Wingate test (WTs) sessions.	period of supplementation
Smith-Ryan et al. [13]	25 healthy recreationally active males (age, 21.9 ± 3.4 y; height, 177.6 ± 5.4 cm; weight, 78.8 ± 9.7 kg) randomly assigned to 28 days of PL or BA (1,6g 3x day, sustained release) supplementation. Blood plasma OS and AO markers were analyzed immediately after, and at 2 and 4 hours after exercise.	40 min on a treadmill at a velocity corresponding to 70%–75% of their measured peak velocity before and after the period of supplementation.	8-ISSO (ELISA)*; SOD, TAC, and GSH (colorimetric assay)*
Smith-Ryan et al. [12]	26 healthy recreationally active women (age, 21.7 ± 1.9 y; height, 165.0 ± 5.7 cm; weight, 61.9 ± 6.7 kg) randomly assigned to 28 days of PL or BA (1,6g 3x day, sustained release) supplementation. Blood plasma OS and AO markers were analyzed immediately after, and at 2 and 4 hours after exercise.	40 min on a treadmill at a velocity corresponding to 70%–75% of their measured peak velocity before and after the period of supplementation	8-ISSO (ELISA)*; SOD, TAC and GSH (colorimetric assay)*
Slowinska-Lisowska et al. [18]	14 elite kayakers and canoeists athletes (age, 21.2 ± 1.3 y; height, 177.4 ± 7.9 cm; weight, 78.9 ± 8.9 kg) in a crossover way assigned to 16 days of PL and Carnosine (2g 2x day) supplementation. Washout was four weeks. Blood plasma OS and AO markers were analyzed immediately after (IP), and at 30min and 24h and 48h after exercise.	During supplementation period athletes underwent a 5day/wk structured schedule training (60% aerobic and 40% strength training). After supplementation athlete performer 2000-m run on kayak or canoe ergometer (exercise induce OS).	GSH#, GSSG#, TAC#, NO#, H ₂ O ₂ # and SOD* (colorimetric assay); 8-ISSO* and 3-Nitro# (ELISA).

193 **Note:** 3-Nitro, 3-nitrotyrosine; 8-ISO, 8-isoprostane; BA, beta-alanine; GSH, glutathione; GSSG, oxidized
 194 glutathione; H₂O₂, Hydrogen peroxide; MDA, malondialdehyde; OS, oxidative stress; PC, protein carbonyl; PL,
 195 placebo; SOD, superoxide dismutase; TAC, total antioxidant capacity. Symbols (*, #) represent the same fabricant
 196 commercial assay kit.

197


198 *3.3. Meta-analysis*

199 *3.3.1. Oxidative stress markers*

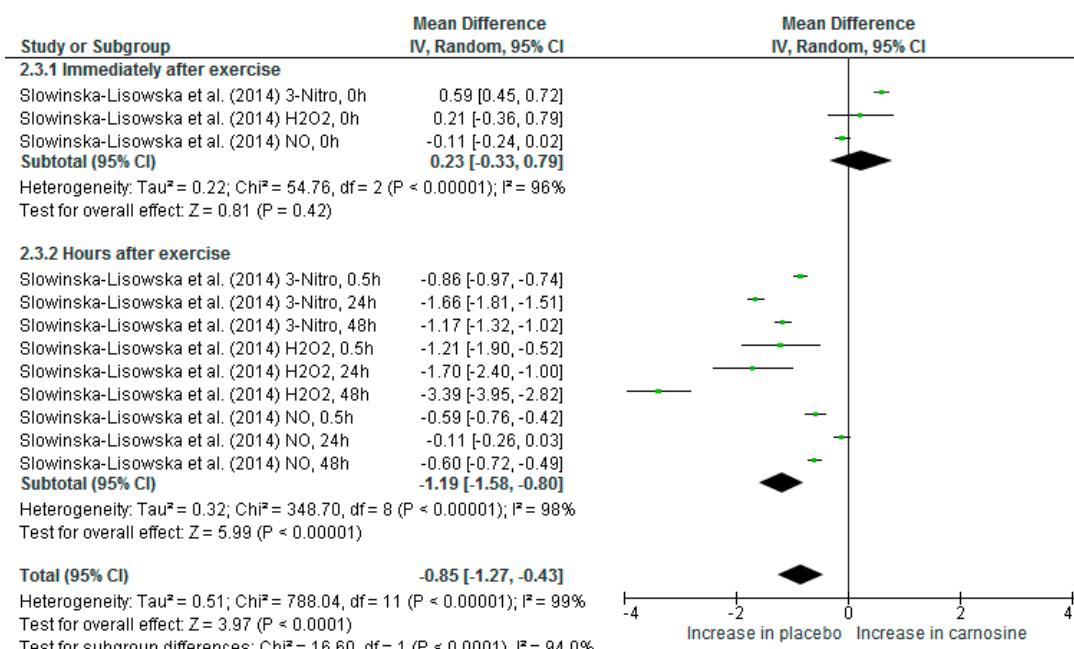
200 Exercise induced large increase in indirect OS markers (PC, MDA, 8-ISO) in both conditions, immediately
 201 after exercise (BA/carnosine ES= -1.32, 95% CI -3.52 to 0.88; placebo ES= -1.07, 95% CI -2.63 to 0.49) and
 202 moderate decrease hours after exercise (BA/carnosine ES= 0.61, 95% CI -0.12 to 1.35; placebo ES= 0.54, 95%
 203 CI -0.35 to 1.44). Overall between conditions comparison (pooled ES) suggest no difference between
 204 conditions (difference ES= 0.06, 95% CI -0.38 to 0.50, p= 0.80, $I^2= 99\%$) in response to exercise. Also, there

205 is no difference immediately after exercise (difference ES: 0.24, 95% CI -0.29 to 0.78, $p= 0.38$) or hours after
 206 exercise (difference ES: -0.07, 95% CI -0.59 to 0.45, $p= 0.79$).

207

208

209 **Figure 2.** Forest plot of the indirect oxidative stress markers induced by physical exercise after
 210 BA/carnosine or placebo supplementation. Acronyms: 3-Nitro, 3-nitrotyrosine; 8-ISSO, 8-isoprostanate;
 211 MDA, malondialdehyde; PC, protein carbonyl. Note: Autor's name and year of study publication is
 212 followed by the oxidative stress marker and moment (hours) of assessment after exercise.


213

214 Independent analysis of 8-ISSO showed a large increase in immediately after PE in both condition
 215 (BA/carnosine ES= -2.15, 95% CI -6.91 to 2.60; placebo ES= -1.79, 95% CI -4.56 to 0.98, respectively) and a
 216 moderate decrease in both conditions following hours after PE (BA/carnosine ES= 0.62, 95% CI -0.12 to 1.35;
 217 placebo ES= 0.54, 95% CI -0.35 to 1.45). Between condition comparison reveal non-significant immediately
 218 after exercise (difference ES= 0.36, 95% CI -0.70 to 1.42, $p= 0.51$, $I^2= 99\%$) or hours after exercise (difference
 219 ES: 0.07, 95% CI -0.59 to 0.45, $p= 0.79$, $I^2= 97\%$). Sub-group analysis suggests no effect of time of assessment
 220 ($I^2= 0\%$, $p= 0.48$), however when we exclude the Smith et al. [12] study (00 hour post exercise), there is a
 221 significant effect of time of assessment ($I^2= 87.2\%$, $p < 0.01$), indicating a decrease in plasma 8-ISSO
 222 concentration hours after exercise.

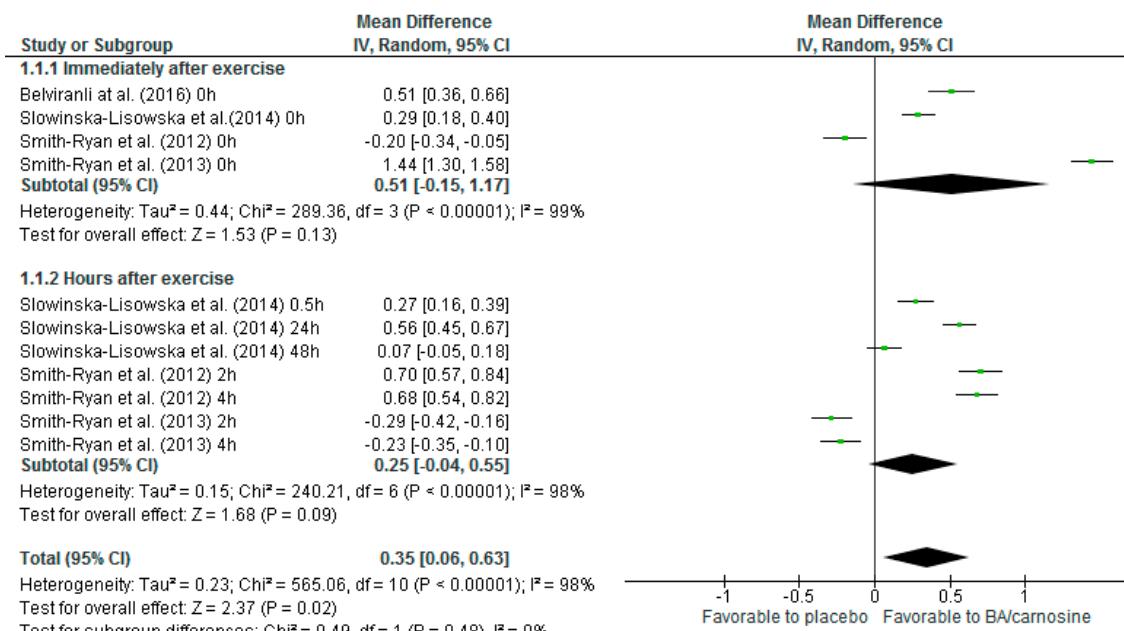
223 Due to insufficient data, PC and MDA independent analysis was not performed.

224 Only the study by Slowinska-Lisowska et al. [18] performed direct OS markers assessment immediately
 225 after plasma collection. Data reanalysis of this study (Fig 3) suggests that exercise induced large increase in

226 direct OS markers (ROS/RNS) in both conditions, immediately after exercise (BA/carnosine ES= -1.22, 95%
 227 CI -1.77 to -0.68; placebo ES= -0.89, 95% CI -1.48 to -0.29). However, hours after exercise increase in
 228 ROS/RNS were moderate for carnosine and large for placebo condition (BA/carnosine ES= -1.02, 95% CI -
 229 1.49 to -0.46; placebo ES= -1.74, 95% CI -2.12 to -1.36). Comparisons between conditions suggested that
 230 carnosine did not mitigate the increase in ROS/RNS production immediately after exercise (difference ES: 0.23,
 231 95% CI -0.33 to 0.79, $p= 0.42$, $I^2= 96\%$; see Fig 3). On the other hand, when we compared the conditions
 232 involving the later hours after the exercise, carnosine was shown to mitigate the increase in ROS/RNS
 233 (difference ES= -1.19, 95% CI -1.48 to -0.80, $p< 0.01$, $I^2=98\%$). There is a significant sub-group (immediately
 234 after exercise vs. hours after exercise) difference ($I^2= 94\%$, $p<0.01$) on ROS/RNS markers, see Fig 3.

235

236 **Figure 3.** Forest plot of the plasma reactive oxygen and nitrogen species induced by physical exercise
 237 after carnosine or placebo supplementation. Acronyms: 3-Nitro, 3-nitrotyrosine; H2O2, Hydrogen
 238 peroxide; NO, nitric oxide. Note: Autor's name and year of study publication is followed by the oxidative
 239 stress marker and moment (hours) of assessment after exercise.


240

241 3.3.2. Antioxidants

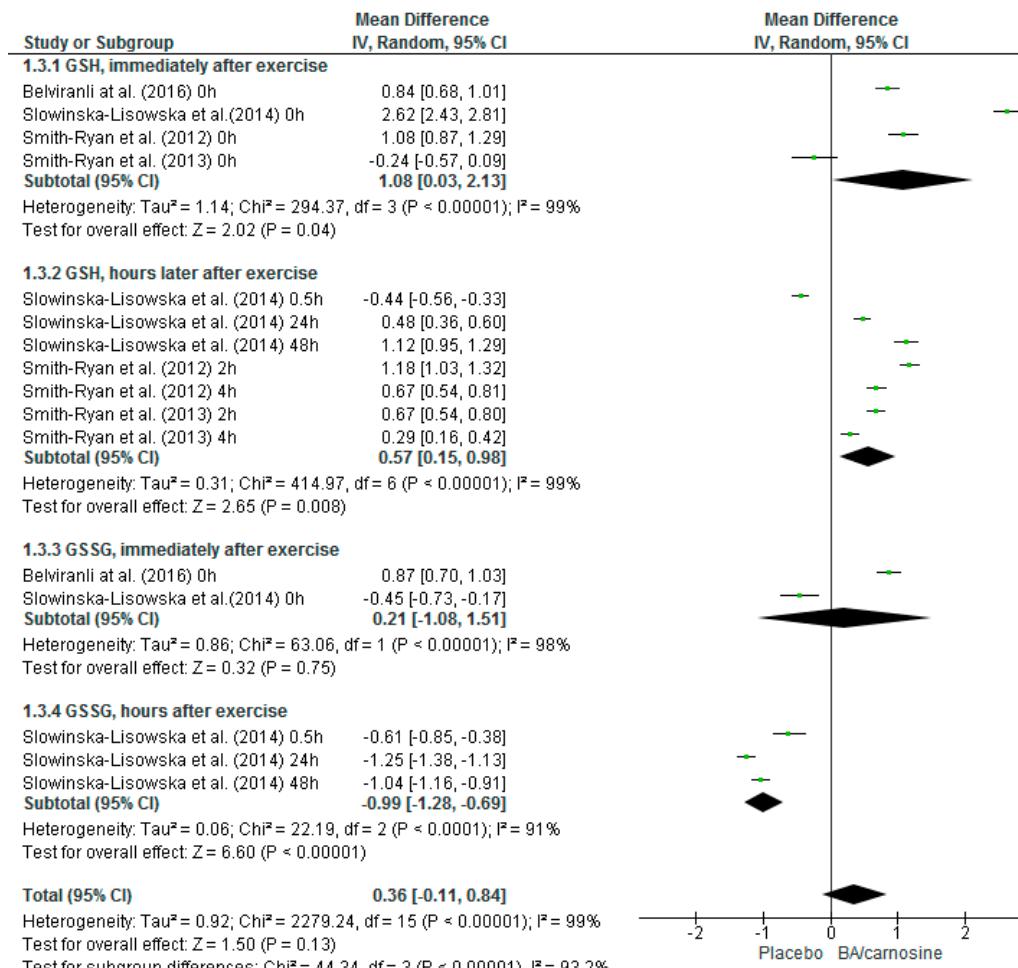
242 ES suggests that there was a moderate increase in TAC concentration in BA/carnosine supplementations
 243 (ES= -0.66, 95% CI -1.44 to 0.12), whereas a trivial decrease occurred in placebo supplementation (ES= 0.08,
 244 95% CI -0.78 to 0.95) immediately after exercise, but without significant difference between them (difference

245 ES= 0.51, 95% CI -0.15 to 1.17, p= 0.13, I²=99%). Hours after exercise BA/carnosine presented a trivial
 246 increase (ES= -0.13, 95% CI -0.78 to 0.52) and a similar small decrease occurred in the placebo condition (ES= 0.12, 95% CI -0.42 to 0.66) which showed a tend to difference between then (difference ES= -0.25, 95% CI -0.04 to 0.55, p= 0.09, I²=98%). Overall between conditions comparison (pooled ES) suggests that BA/carnosine
 247 supplementation increases overall TAC (difference ES= 0.35, 95% CI 0.06 to 0.65, p= 0.02, I²= 99%; Fig 4) in
 248 response to exercise.

251

252

253 **Figure 4.** Forest plot of the total antioxidant capacity (TAC) change by physical exercise after
 254 BA/carnosine or placebo supplementation. Note: Autor's name and year of study publication is followed
 255 by the moment (hours) of assessment after exercise.

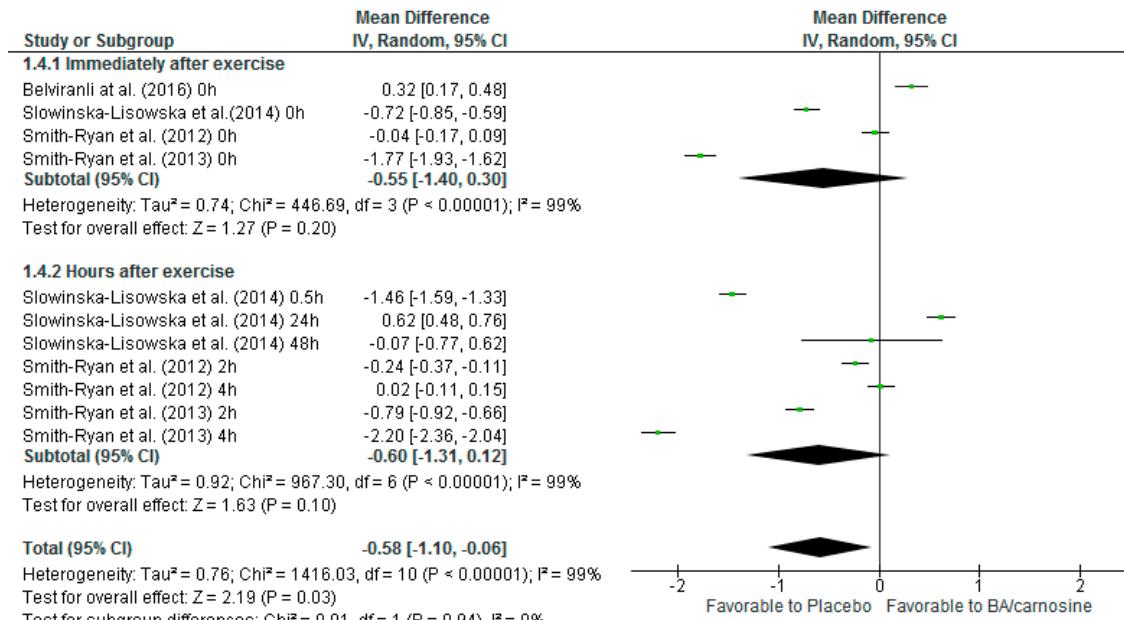

256

257 Immediately after exercise there were a trivial and a large GSH decreases in both conditions (BA/carnosine
 258 ES= 0.16, 95% CI -4.68 to 4.99; placebo ES= 1.23, 95% CI -2.00 to 4.44, respectively). There were also a
 259 moderate and a trivial increase following hours after exercise (BA/carnosine ES= -0.69, 95% CI -1.61 to 0.22;
 260 placebo ES= -0.12, 95% CI -0.99 to 0.77, respectively). Between conditions comparison presented a significant
 261 difference in GSH concentration (favorable to BA condition) both immediately after and several hours
 262 following exercise [Overall ES difference= 0.75, 95% CI 0.32 to 1.19, p= 0.0007, I²= 99% (Fig 5)].

263 Also, GSSG independent analysis suggests large and moderate decreases in GSSG concentrations
 264 following PE (BA/carnosine ES= 1.84, 95% CI -0.63 to 4.31; placebo ES= 1.33, 95% CI -0.73 to 3.39,
 265 respectively). Between group comparison showed no difference immediately after PE (difference ES= 0.21,

266 95% CI, -1.08 to 1.51, $p= 0.75$, $I^2= 98\%$), but a significant lower GSSG concentration hours after PE in
 267 BA/carnosine condition (difference ES= -0.99, 95% CI, -1.28 to -0.69, $p< 0.01$, $I^2= 76\%$). Sub-group analysis
 268 (immediately after exercise vs. hours after exercise) indicates a significant effect of time of assessment [$I^2=$
 269 83.7%, $p= 0.01$ (Fig 5)].

270 Test for subgroup difference ($p< 0.00001$, $I^2= 93.2\%$) indicates a change in GHS/GSSG ratio (Fig 5)
 271 favorable to BA/carnosine condition.


272 Test for subgroup differences: $Chi^2= 44.34$, $df= 3$ ($P < 0.00001$), $I^2= 93.2\%$

273 **Figure 5.** Forest plot of the glutathione (GSH) and oxidised glutathione (GSSG) ratio change by
 274 physical exercise after BA/carnosine or placebo supplementation. Note: Autor's name and year of study
 275 publication is followed by the moment (hours) of assessment after exercise.

276

277 Immediately after exercise, there were a trivial and a small increase in SOD activity in both conditions
 278 (BA/carnosine ES= -0.02, 95% CI -1.15 to 1.12; placebo ES= -0.50, 95% CI -1.29 to 0.30, respectively).
 279 Following hours after exercise, there were large increases in SOD activity for both conditions (BA/carnosine
 280 ES= -1.39, 95% CI -4.21 to 1.41; placebo ES= -1.72, 95% CI -4.39 to 0.96). Overall between conditions

281 comparison showed that the placebo presented a moderate and significantly greater SOD activity (differences
 282 ES= -0.58, 95% CI -1.10 to -0.06, $p= 0.03$, $I^2= 99\%$; Fig 6) when compared to BA/carnosine supplementation.
 283

284
 285 **Figure 6.** Forest plot of the superoxide dismutase change by physical exercise after BA/carnosine
 286 or placebo supplementation. Note: Autor's name and year of study publication is followed by the moment
 287 (hours) of assessment after exercise.

288

289 **3.3.3. Heterogeneity studies, multiple linear regression analysis and risk of bias.**

290 Multiple linear regression shows that in indirect OS markers (8-ISO, MDA, GSSG and PC) the time of
 291 assessment, marker type evaluated, exercise type and training status could explain 65% of ES variation ($R^2=$
 292 0.650, $p= 0.000$). Sex and supplementation conditions (BA or carnosine) were excluded from the model.

293 Furthermore, 39% ($R^2= 0.389$, $p= 0.000$) of ES variation from antioxidant (SOD, TAC, GSH) results were
 294 related to time of assessment, exercise test, training status and antioxidant marker type evaluated. Sex and
 295 supplementation conditions were excluded from the model.

296 It was not possible to perform multiple linear regression for ROS/RNS direct markers (H_2O_2 , 3-Nitro and
 297 NO) due to insufficient data.

298 The four studies present less than three reported high or unclear risk domains (Appendix 2). Two studies
299 (two high risk) are from the same laboratory and was unable to bling for BA condition (due to paresthesia
300 effect).

301 **4. Discussion**

302 The four studies included in this review observed significant increases in OS after acute physical exercise
303 bouts. Our analyses suggest that immediately after PE-induced OS, BA or carnosine supplementation did not
304 undermine the increase in both ROS an RNS (H_2O_2 , 3-Nitro and NO) or peroxidation (8-ISSO, MDA, and PC)
305 markers that were produced. Monitoring their levels during hours after exercise (0.5 to 48h), BA or carnosine
306 did not appear to impose a greater decrease in 8-ISSO ($p > 0.05$) when compared to placebo supplementation.
307 Interestingly, monitoring OS levels after hours (0.5 to 48h) of PE-induced OS, carnosine treatment mitigated
308 the increase of H_2O_2 , 3-Nitro and NO production. It is important to mention that ROS/RNS (H_2O_2 , 3-Nitro and
309 NO) data were obtained from only one study (Slowinska-Lisowska et al. 2014), but such data were in
310 accordance with previous in vitro studies [31, 32].

311 Evidence suggests that the largest post-exercise changes involving lipid, protein, glutathione and DNA
312 oxidation occurred 1-4 days after PE (when compared with blood samples of resting condition) [8]. For instance,
313 in an animal study that assessed PE-induced OS after 24h, it was shown that BA or carnosine supplementation
314 decreased LP (thiobarbituric acid reactive substances and MDA markers) in skeletal muscle tissue [15, 16].
315 The only publication that evaluated 24h post-exercise was the Slowinska- Lisowska et al. [18] study. Therefore,
316 studies with a long follow-up period (days to weeks), thus with sufficient time to resolve an acute inflammation
317 caused by moderate-intense exercise [33] are needed to verify whether BA or carnosine may promote clinical
318 changes in the peroxidation markers.

319 Previous reviews [1] and recent animal studies [2-4] had already presented an antioxidant role of
320 carnosine. When compared to placebo, our data suggested that previous BA or carnosine supplementation
321 increased TAC (ES= 0.35, 95% CI 0.06 to 0.65, $p = 0.02$; Fig 4) and increase GSH (GSH, ES= 0.75, 95% CI
322 0.32 to 1.19, $p = 0.0007$) after PE-induced OS. These data corroborate with an animal study [16] submitted to
323 PE-induced OS. Such study reported increased in GSH and decreased glutathione peroxidase (GPx) and
324 glutathione reductase after exercise, suggesting that carnosine has buffering the H_2O_2 production. The effect
325 of BA and carnosine supplementation on GSSG concentrations is conflicting. Belviranli et al. [14] reported
326 increased GSSG after PE-induced OS in sedentary individuals supplemented with BA (suggesting GSH
327 oxidation); on the other hand, Slowinska-Lisowska et al. [18] reported decreased GSSG concentrations in

328 trained individuals supplemented with carnosine (suggesting a carnosine antioxidant effect). More research is
329 needed to highlight the effect of BA/carnosine on GSH/GSSG ratio.

330 Both plasma TAC and GSH presented a large variation in the studies [12-14, 18], as evidenced by high
331 heterogeneity (see Fig 4 and 5). Plasma antioxidants evaluation such as GSH and TAC after exercise practice
332 yields conflicting results [8], however, analyzing the results from the four studies, it seems that the increase in
333 muscle carnosine concentration influences these changes. GSH can be delivered to plasma from several tissues
334 and this is influenced by the type of activity exerted as well as by the nutritional status of the participants [8],
335 so, future human studies need to asses GSH from specific tissues known for its large pools of carnosine (such
336 as the skeletal muscle) [16]. TAC assays have a limited capacity to measure the total antioxidant system
337 capacity, excluding, for instance, the contribution of antioxidant enzymes and metal binding proteins, so
338 changes in the TAC values probably does not reflect the carnosine antioxidant content activity in the organism.

339 Our data suggests that BA or carnosine supplementation can mitigate the increase of SOD activity (ES= -
340 0.58, p= 0.03), a well-known superoxide scavenger. It is plausible that this attenuated increase of SOD activity
341 occurs due to carnosine antioxidant effect (e.g., O₂⁻ clearance). In vitro studies have shown that carnosine
342 plays an effective role in decreasing ROS and RNS (e.g. H₂O₂, superoxide and NO) [31, 32]. Studies with
343 animal training also has demonstrated that carnosine or BA supplementation mitigated SOD [19] and GPx [16]
344 activity, when compared to control conditions. Such data are contrary to untrained animal studies [2, 3], which
345 showed increased activity of these enzymes and decrease in PL. Such discrepancy suggest that carnosine/BA
346 supplementation enhance antioxidant system at rest condition (*i.e.*, sedentary life style), but not during/after
347 acute exercise. Therefore, it appears that BA or Carnosine supplementation might mitigate the increase in SOD
348 and GPx activity induced by exercise, but has opposite effect in rest condition. Further studies are needed to
349 explore these conflicting results. Also, further studies are needed to verify if chronic BA supplementation might
350 down-regulate the endogenous antioxidant system during physical training.

351 The results observed in this review suggest that increase SOD activity (induced by PE) is mitigated, this
352 occur probably due to the ability of carnosine to directly decrease ROS concentrations. Interestingly, carnosine
353 supplementation associated with endurance training (in rats) decreased exercise tolerance (at 2 wks of training)
354 and both SOD and lactate dehydrogenase activity in the skeletal muscle (at 4 wks of training) [19]. Therefore,
355 future studies are needed to verify (both in an acute and chronic settings) if the changes promoted, such as
356 increased gene expression of enzymes from the endogenous antioxidant system induced by physical exercise
357 [9] are mitigated in the presence of BA or carnosine supplementation, as it is observed in studies with chronic
358 [7] or acute antioxidant supplementation [28]. Moreover, BA supplementation is a well-known ergogenic agent

359 in anaerobic exercises, but not in endurance exercises [20, 34]. For instance, early evidence in human studies
360 suggest that BA supplementation delayed lactate production, but reduce aerobic capacity [21]. Therefore, it is
361 important to investigate if BA or Carnosine supplementation might influences negatively endurance adaptations
362 because of their antioxidant effects [11].

363 Our ES evaluations (with antioxidant and oxidative stress markers) showed high heterogeneity. This meta-
364 analysis pooled together studies with participants from different fitness level, enrolled in different PE-induced
365 OS, also, different time points of different oxidative stress markers or antioxidant markers were pooled in the
366 same ES analysis. It is well-known that time-point assessment of PE-induced OS as well as the rising in blood
367 plasma of both oxidative stress markers or antioxidant markers are also time-dependent and this might influence
368 our results [8]. Our sub-group analysis (immediately after exercise vs. hours after exercise- 0.5 to 48 hours)
369 showed that the moment of assessment for both indirect (Fig 3) and direct (Fig 4) OS markers is an important
370 confounding variable. Also, multivariable regression shows that time of assessment, the OS marker type
371 evaluated, the exercise type and training status can explain 65% of ES variation ($R^2= 0.650$, $p= 0.000$). Sub-
372 groups analysis for antioxidant (TAC, SOD, and GSH) markers did not show significant influence of time
373 assessment. But, multivariable regression shows that only 39% ($R^2= 0.389$, $p< 0.000$) of ES variation from
374 antioxidant results were from time of assessment, exercise test, training status and anti-oxidant type evaluated.
375 This suggest that other variables (e.g. nutritional status or antioxidant system status) may be influencing this
376 heterogeneity in antioxidant results [11]. For example, no study included in this meta-analysis mentioned that
377 their samples were homogenized for OS or antioxidant status (deficient in oxidant status or not), so future
378 studies with antioxidants supplementation need to homogenize their samples as deficient or not for the
379 antioxidant system [11].

380 Practical applications can be drawn from this review. Data from this review suggests that of BA/carnosine
381 supplementation is effective in improving the GSH/GSSG ratio, increasing TAC and decreasing ROS/RNS after
382 PE. Therefore, by identifying these deficiencies in the antioxidant system, supplementation with these
383 substances can help this system to suppress the exacerbate OS induced by PE. Also, future research with
384 BA/carnosine supplementation needs to first check whether its volunteers have antioxidant system deficiencies,
385 as this may affect the ruggeness of the study [11].

386 4.1. Limitations

387 This meta-analysis has several limitations. First there are only four studies, two of which are from the
388 same laboratory, decreasing the validity and reliability of the results. Second, we included in the same analysis

389 BA and carnosine studies, the results of the carnosine study significantly influence our TAC results, but do not
390 significantly alter the results of SOD, GSH or OS markers, in addition, meta-regression excluded the type of
391 supplement (i.e., BA or carnosine) used as a source of heterogeneity, so BA or carnosine is not a source of
392 heterogeneity. Third, the high heterogeneity found in this study because the studies analyzed different levels of
393 fitness, sex and different exercise intensity/volume also decrease the reproducibility of these data, but give
394 further evidences that these variables differ in responses to PE-induced OS. And finally, all four studies that
395 performed the assessment of both antioxidant and OS markers in the plasma did it with the assumption that
396 plasma measurements would reflect systemic changes [8]. Animal studies have found consistent changes in the
397 antioxidant/oxidant ratio (in the exercise-induced ROS production) in the skeletal muscle after BA or carnosine
398 supplementation [15-17], as the main stores of carnosine in humans are in the skeletal muscle (99%) [1], future
399 studies need to verify such change at skeletal muscle level.

400 **5. Conclusions**

401 In conclusion, BA or carnosine supplementation seems to increase TAC and improve GSH/GSSG ratio,
402 but decrease SOD activity following PE-induced OS. Also, albeit it mitigates the acute increase in ROS/RNS,
403 it does not decrease peroxidation markers.

404 **Acknowledgments:** The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for
405 scholarship support.

406 **Conflicts of Interest:** The authors report no conflicts of interest associated with this manuscript.

407

408 **References**

409

410 [1] Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine.
411 Physiological reviews. 2013;93:1803-45.

412 [2] Kim MY, Kim EJ, Kim Y-N, Choi C, Lee B-H. Effects of α -lipoic acid and L-carnosine
413 supplementation on antioxidant activities and lipid profiles in rats. Nutrition research and
414 practice. 2011;5:421-8.

415 [3] Ma X, Jiang Z, Lin Y, Zheng C, Zhou G. Dietary supplementation with carnosine
416 improves antioxidant capacity and meat quality of finishing pigs. Journal of animal
417 physiology and animal nutrition. 2010;94.

418 [4] Schaal MF, Ramadan BK, Abd Elwahab AH. Synergistic effect of carnosine on
419 browning of adipose tissue in exercised obese rats; a focus on circulating irisin levels. Journal
420 of cellular physiology. 2018;233:5044-57.

421 [5] Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochimica
422 et Biophysica Acta (BBA)-Biomembranes. 2004;1660:171-99.

423 [6] Tan DQ, Suda T. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators
424 of Stem Cell Fate and Function. Antioxidants & Redox Signaling. 2018;29:149-68.

425 [7] He F, Li J, Liu Z, Chuang C-C, Yang W, Zuo L. Redox mechanism of reactive oxygen
426 species in exercise. Frontiers in Physiology. 2016;7.

427 [8] Nikolaidis MG, Jamurtas AZ, Paschalis V, Fatouros IG, Koutedakis Y, Kouretas D. The
428 effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress. Sports
429 Medicine. 2008;38:579-606.

430 [9] Henríquez-Olguín C, Díaz-Vegas A, Utreras-Mendoza Y, Campos C, Arias-Calderón M,
431 Llanos P, et al. NOX2 inhibition impairs early muscle gene expression induced by a single
432 exercise bout. Frontiers in physiology. 2016;7:282.

433 [10] Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, et
434 al. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting
435 redox interindividual variability. Acta Physiologica. 2018;222:e12898.

436 [11] Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidants
437 in Personalized Nutrition and Exercise. Advances in Nutrition. 2018.

438 [12] Smith A, Stout J, Kendall K, Fukuda D, Cramer J. Exercise-induced oxidative stress:
439 the effects of β -alanine supplementation in women. Amino Acids. 2012;43:77-90.

440 [13] Smith-Ryan AE, Fukuda DH, Stout JR, Kendall KL. The influence of β -alanine
441 supplementation on markers of exercise-induced oxidative stress. Applied Physiology,
442 Nutrition, and Metabolism. 2013;39:38-46.

443 [14] Belviranli M, Okudan N, Revan S, Balci S, Gokbel H. Repeated supramaximal exercise-
444 induced oxidative stress: effect of β -alanine plus creatine supplementation. Asian journal of
445 sports medicine. 2016;7.

446 [15] Dawson Jr R, Biasetti M, Messina S, Dominy J. The cytoprotective role of taurine in
447 exercise-induced muscle injury. Amino acids. 2002;22:309-24.

448 [16] Bortolatto GP. Efeito da carnosina e da β -alanina no dano produzido pelo exercício
449 intenso no músculo sóleo de ratos: Universidade Estadual Paulista Júlio de Mesquita Filho;
450 2015.

451 [17] Seifulla N, Kovalev I, Rozhkova E, Paniushkin V. [Effect of carnosine and its
452 combination with essential amino acids on lipid peroxidation and work capacity of experimental
453 animals]. *Eksperimental'naia i klinicheskaiia farmakologiiia*. 2004;68:44-6.

454 [18] Slowinska-Lisowska M, Zembron-Lacny A, Rynkiewicz M, Rynkiewicz T, Kopec W.
455 Influence of L-carnosine on pro-antioxidant status in elite kayakers and canoeists. *Acta
456 Physiologica Hungarica*. 2014;101:461-70.

457 [19] Lee K-N, Hue J-J, Miga M, Kang BS, Kim J-S, Nam SY, et al. Effects of Carnosine on
458 Exercise Capacity in ICR Mice. *Laboratory Animal Research*. 2008;24:617-22.

459 [20] Brisola GMP, Redkva PE, Pessôa Filho DM, Papoti M, Zagatto AM. Effects of 4 weeks
460 of β -alanine supplementation on aerobic fitness in water polo players. *PloS one*.
461 2018;13:e0205129.

462 [21] Jordan T, Lukaszuk J, Misic M, Umoren J. Effect of beta-alanine supplementation on
463 the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2
464 treatment experimental design. *Journal of the International Society of Sports Nutrition*.
465 2010;7:20-.

466 [22] Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption
467 of orally supplied β -alanine and its effect on muscle carnosine synthesis in human vastus
468 lateralis. *Amino Acids*. 2006;30:279-89.

469 [23] Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W. Ergogenic Effects of
470 β -Alanine and Carnosine: Proposed Future Research to Quantify Their Efficacy. *Nutrients*.
471 2012;4:585.

472 [24] Maemura H, Goto K, Yoshioka T, Sato M, Takahata Y, Morimatsu F, et al. Effects of
473 carnosine and anserine supplementation on relatively high intensity endurance performance.
474 *International Journal of Sport and Health Science*. 2006;4:86-94.

475 [25] Morris SB. Estimating Effect Sizes From Pretest-Posttest-Control Group Designs.
476 *Organizational Research Methods*. 2008;11:364-86.

477 [26] Borenstein M, Hedges LV, Higgins JP, Rothstein HR. *Introduction to meta-analysis*:
478 John Wiley & Sons; 2011.

479 [27] Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports
480 medicine and exercise science. *Medicine+ Science in Sports+ Exercise*. 2009;41:3.

481 [28] Vereshchaka IV, Bulgakova NV, Maznychenko AV, Gonchar OO, Prylutskyy YI, Ritter
482 U, et al. C60 Fullerenes Diminish Muscle Fatigue in Rats Comparable to N-acetylcysteine or
483 β -Alanine. *Frontiers in Physiology*. 2018;9.

484 [29] Pence BD, Gibbons TE, Bhattacharya TK, Mach H, Ossyra JM, Petr G, et al. Effects of
485 exercise and dietary epigallocatechin gallate and β -alanine on skeletal muscle in aged mice.
486 *Applied Physiology, Nutrition, and Metabolism*. 2015;41:181-90.

487 [30] Rozhkova E, Ordzhonikidze Z, Druzhinin A, Seifulla N, Paniushkin V, Kuznetsov I.
488 Using carnosine and natural antioxidants for the prophylaxis of acute post-loading oxidative
489 stress. *Eksperimental'naia i klinicheskaiia farmakologiiia*. 2007;70:44-6.

490 [31] Nicoletti VG, Santoro AM, Grasso G, Vagliasindi LI, Giuffrida ML, Cuppari C, et al.
491 Carnosine interaction with nitric oxide and astroglial cell protection. *Journal of neuroscience*
492 research. 2007;85:2239-45.

493 [32] Miceli V, Pampalone M, Fazziano G, Grasso G, Rizzarelli E, Ricordi C, et al. Carnosine
494 protects pancreatic beta cells and islets against oxidative stress damage. *Molecular and*
495 *Cellular Endocrinology*. 2018;474:105-18.

496 [33] Ho ATV, Palla AR, Blake MR, Yucel ND, Wang YX, Magnusson KEG, et al.
497 Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting
498 regeneration and strength. *Proceedings of the National Academy of Sciences*.
499 2017;114:6675-84.

500 [34] Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C, et al.
501 International society of sports nutrition position stand: Beta-Alanine. *Journal of the*
502 *International Society of Sports Nutrition*. 2015;12:1-14.