Preprint
Article

Influence of Gradual Damage on the Structural Dynamic Behaviour of Composite Rotors: Experimental Investigations

Altmetrics

Downloads

261

Views

197

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

07 November 2018

Posted:

08 November 2018

You are already at the latest version

Alerts
Abstract
Fibre-reinforced composite structures under complex loads exhibit gradual damage behaviour with a degradation of effective mechanical properties and change of their structural dynamic behaviour. Damage manifests itself as spatial increase of inter-fibre failure and delamination-growth, resulting in local changes of stiffness. These changes affect not only the residual strengths but more importantly the structural dynamic behaviour. In case of composite rotors, this can lead to catastrophic failure if an eigenfrequency coincides with the rotational speed. The description and analysis of the gradual damage behaviour of composite rotors therefore provides the fundamentals for a better understanding of unpredicted structural phenomena. The gradual damage behaviour on the example of composite rotors and the resulting damage-dependent dynamic behaviour is experimentally investigated under propagating damage for combined out-of-plane and in-plane loads. A novel observation is reported, where monotonic increase of damage results in non-monotonic frequency shift of significant amount of eigenfrequencies.
Keywords: 
Subject: Chemistry and Materials Science  -   Polymers and Plastics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated