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On sets X € N for which an explicitly known algorithm returns
an integer n such that max(X) < n if X is finite

Apoloniusz Tyszka

Abstract

Let T'(k) denote (k—1)!, and let I, (k) denote (k—1)!, where ne{3,...,16} and
ke{2lu [22n_3 + 1,00) N N. For an integer n € {3,..., 16}, let X, denote the following statement:
if a system of equations S C{I',(x;)) = xx : L,ke{l,....,n}}U{x;-x; =xc 2 I, k€ (l,...,n}} with
I" instead of I, has only finitely many solutions in positive integers xi, ..., x,, then every tuple
(x1,-..,x,) € (N\ {0})" that solves the original system S satisfies xi, ..., x, < 22n_2. Our hypothe-
sis claims that the statements 3, . . ., ¢ are true. The statement ¢ proves the following implication:
if the equation x(x + 1) = y! has only finitely many solutions in positive integers x and y, then each
such solution (x, y) belongs to the set {(1,2), (2,3)}. The statement X5 proves the following implica-
tion: if the equation x! + 1 = y? has only finitely many solutions in positive integers x and y, then
each such solution (x,y) belongs to the set {(4,5), (5, 11),(7,71)}. The statement X9 implies the in-
finitude of primes of the form n” + 1. The statement X9 implies that any prime of the form n! + 1 with

9-3 . . . . . . .
n>22 proves the infinitude of primes of the form n! + 1. The statement X4 implies the infinitude
of twin primes. The statement X4 implies the infinitude of Sophie Germain primes.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan equation x! + 1 = y?, composite Fer-
mat numbers, Erdos’ equation x(x + 1) = y!, prime numbers of the form n” + 1, prime numbers of the
form n! + 1, Sophie Germain primes, twin primes.
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1 Definitions and basic lemmas

We say that a non-negative integer m is a threshold number of a set X C N, if X is infinite if and only
if X contains an element greater than m, cf. [17] and [18]. If a set X C N is empty or infinite, then any
non-negative integer m is a threshold number of X. If a set X € N is non-empty and finite, then the all
threshold numbers of X form the set {max(X), max(X) + 1, max(X) +2,...}.

Lemma 1. For every positive integers x and y, x! - y = y! if and only if
(x+l=yVvix=y=1
Let I'(k) denote (k — 1)!.
Lemma 2. For every positive integers x and y, x - I'(x) = I'(y) if and only if
x+l=y)vix=y=1)
Lemma 3. For every non-negative integers b and ¢, b + 1 = ¢ if and only if 22b . 22b = 220.

Lemma 4. (Wilson’s theorem, [4) p. 89]). For every positive integer x, x divides (x — 1)! + 1 if and only
if x =1 or x is prime.
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2 A variant of chess provides an example which explains the title

Let us assume that there are no draws, castlings, and en passant captures. Let us assume that a player
with no moves loses. As such, the game may continue forever. Let  denote the set of all positive
integers n such that an appropriate strategy of Black guarantees that White cannot enforce a win in less
than n moves.

Lemma 5. ( p. 128]). A player who is in a winning position is always able to enforce a win in a
number of moves that is less than the number of positions in the game.

Lemma 6. The number of positions does not exceed 1364,

Proof. With castlings or en passant captures, a legality of a move depends not only on the positions of
the pieces on the board. Without castlings and en passant captures, we observe that 13 corresponds to 12
distinct pieces and the empty square. 64 is the number of squares on the chessboard. O

Lemmas [5and [6]imply the following corollary.

Corollary 1. If White have a winning strategy, then H C[1, 1364 - 1]. Otherwise, H =N\ {0}.
The number 13%% — 1 is a threshold number of H, and we can decide the equality H =N\ {0}. If
H + N\ {0}, then we can compute H and max(H).

3 A Diophantine equation whose non-solvability expresses the consis-
tency of ZFC

Godel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply
the following theorem.

Theorem 1. (/3 p. 35]). There exists a polynomial D(xy,...,X,) with integer coefficients such that
if ZFC is arithmetically consistent, then the sentences "The equation D(x1, ..., X,) = 0 is solvable in
non-negative integers” and “The equation D(xi, ..., x,) = 0 is not solvable in non-negative integers”
are not provable in ZFC.

Let Y denote the set of all non-negative integers k such that the equation D(xy, ..., x,) = 0 has no
solutions in {0, ..., k}". Since the set {0, ..., k}" is finite, we know an algorithm which for every n € N
decides whether or not n € Y. Let y: N"*! — N be a computable bijection, and let & C N"*! be the
solution set of the equation D(x, ..., xp) + 0 x+1 = 0. Theorem|I| implies Theorems |Z| and @

Theorem 2. If ZFC is arithmetically consistent, then for every n € N the sentences “'n is a threshold
number of Y’ and ”’n is not a threshold number of Y are not provable in ZFC.

Theorem 3. We know an algorithm which for every n € N decides whether or not n € y(E). The set y(&E)
is empty or infinite. In both cases, every non-negative integer n is a threshold number of y(E). If ZFC is

arithmetically consistent, then the sentences "y(&E) is empty”, ”y(&E) is not empty”, ”y(E) is finite”, and
”y(&) is infinite” are not provable in ZFC.

4 Hypothetical statements V3, ..., V¢

For an integer n > 3, let U, denote the following system of equations:

Vie{l,...,n—1}\ {2} x;! = x41
X1-X2 = X3
X2 X2 = A3

The diagram in Figure 1 illustrates the construction of the system U,,.
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X1
[ X1 X2 = X3
!
squaring ! !
> > cee — >
X2 X3 X4 Xn—1 Xn

Fig. 1 Construction of the system U,
Let g(3) = 4, and let g(n + 1) = g(n)! for every integer n > 3.

Lemma 7. For every integer n > 3, the system U, has exactly two solutions in positive integers, namely
(L....1) and (2,2,(3)..... g(m)).

Let
By={x!=xc: (bke(l,....aDAG#R}U{xi-x;=x: i jike(l,....n)}

For an integer n > 3, let ¥,, denote the following statement: if a system S C B,, has only finitely many
solutions in positive integers xi,.. ., X, then each such solution (x1, ..., x,) satisfies xi,...,x, < g(n).
The statement W), says that for subsystems of B, the largest known solution is indeed the largest possible.

Hypothesis 1. The statements Y3, ...,¥Y ¢ are true.

Theorem 4. Every statement V), is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B, has a finite number of subsystems. O
Theorem 5. For every statement \V,,, the bound g(n) cannot be decreased.

Proof. 1t follows from Lemma 7| because U, C B,. O

5 The Brocard-Ramanujan equation x! + 1 = y?

Let A denote the following system of equations:

X1 ! = X2
x! = x3
X5! = X6
X4+X4 = X5
X3-X5 = Xg

Lemma|T]and the diagram in Figure 2 explain the construction of the system A.

! X +1 X5 squaring
Xl — S e e e e - - == - X4

v v

X3 | X3 X5 = X6 | Xg

Fig. 2 Construction of the system A
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Lemma 8. For every xi, x4 € N\ {0, 1}, the system A is solvable in positive integers x;, x3, X5, X¢ if and

only if x;!' +1 = xi. In this case, the integers x», X3, Xs, X¢ are uniquely determined by the following
equalities:

x = xp!

X3 = (X] !)!

X5 = x1! +1

x6 = (x!'+ 1)
Proof. 1t follows from Lemma [Tl o

It is conjectured that x! + 1 is a perfect square only for x € {4, 5,7}, see [14} p. 297]. A weak form of
Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y?, see [9].

Theorem 6. If the equation x;! +1 = xﬁ has only finitely many solutions in positive integers, then the
statement Y¢ guarantees that each such solution (x1, x4) belongs to the set {(4,5),(5,11),(7,71)}.

Proof. Suppose that the antecedent holds. Let positive integers x; and x4 satisfy x;! + 1 = xﬁ. Then,
x1,x4 € N\ {0,1}. By Lemmal[8 the system A is solvable in positive integers x;, x3, x5, Xg. Since
A C Bg, the statement Wg implies that xg = (x1! + 1)! < g(6) = g(5)!. Hence, x;! +1 < g(5) = g(4)!.
Consequently, x; <g4)=24. If x;€{l,...,23}, then x;! + 1 is a perfect square only for
x; € {4,5,7}. O

6 Are there infinitely many prime numbers of the form n” + 1?

Let 8 denote the following system of equations:

x! = x3
)C3! = X4
x5! = xg
xg! = X9
X1 X1 = X2
X3:X5 = Xp
X4+ Xg = X9
X5+X7 = X8

Lemma([T]and the diagram in Figure 3 explain the construction of the system B.

squaring x, +1 X5 !
X] ——— - - - - - > > X6

X3 F=-===mmmmmmm= = » X8
or X3 = Xg = 1

v v

Xq | X4 Xg = X9 | X9

Fig. 3 Construction of the system 8

4
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Lemma 9. For every integer x| > 2, the system B is solvable in positive integers xa, . . ., x9 if and only if
x% + 1 is prime. In this case, the integers x;, ..., X9 are uniquely determined by the following equalities:

Xy = x%

X3 = (x%)!

xo= (@)D

X5 = x% +1

X6 = (xF+1)!

i+l

7= x% +1

xg = (D+1

X9 = () +1)!
Proof. By Lemmall] for every integer x; > 2, the system 8 is solvable in positive integers xo, ..., xg if
and only if x% + 1 divides (xf)! + 1. Hence, the claim of LemmaElfollows from LemmaEl O
Lemma 10. There are only finitely many tuples (x1,...,x9) € (N '\ {0))° which solve the system B and
satisfy x; = 1.

Proof. 1If a tuple (xq,...,x9) € N\ {0})? solves the system B and x; = 1, then xq,...,x9 < 2. Indeed,
x1 = 1 implies that x, = x% = 1. Hence, for example, x3 = x! = 1. Therefore, x3 = x3+ 1 =2 or xg = 1.
Consequently, xg = xg! < 2. O

Edmund Landau’s conjecture states that there are infinitely many primes of the form n? + 1, see
[8 pp. 37-38].

Theorem 7. The statement Wy proves the following implication: if there exists an integer x| > 2 such
that x% + 1 is prime and greater than g(7), then there are infinitely many primes of the form n> + 1.

Proof. Suppose that the antecedent holds. By Lemma[] there exists a unique tuple
(x2,...,x9) € (N\ {0})® such that the tuple (x1, x2,...,X9) solves the system B. Since x% +1>g(7),
we obtain that xf > g(7). Hence, (x%)! > g(7)! = g(8). Consequently,

X9 = (D! + D! > (28) + 1! > ¢(8)! = g(9)

Since B C By, the statement W9 and the inequality x9 > g(9) imply that the system $ has infinitely many
solutions (x1,...,x9) € (N'\ {0})°. According to Lemmas[Qland[I0] there are infinitely many primes of
the form n? + 1. O

Corollary 2. Let Xy denote the set of primes of the form n> + 1. The statement Wy implies that we know
an algorithm such that it returns a threshold number of Xy, and this number equals max(Xo), if Xg is
finite.

Proof. We consider an algorithm which computes max(Xq N [1, g(7)]). O

7 Are there infinitely many prime numbers of the form »! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443] and [12].

Theorem 8. (cf. Theorem[I2). The statement ¥y proves the following implication: if there exists an
integer x| > g(6) such that x! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader. O
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8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture
states that there are infinitely many twin primes, see [8, p. 39]. Let C denote the following system of

equations:
x1! = x
)CQ! = X3
x4 = x5
X! = x7
x7! = xg
Xo! = xp0
xp2! = X3
x5! = X6
X2 X4 = Xj5
X5:X6 = X7
X7+X9 = X10
X4 X11 = X12
X3:X12 = X13
X9 X14 = Xi5
Xg XI5 = X6

LemmalI]and the diagram in Figure 4 explain the construction of the system C.

X5 X10

X xg=xs| T x7-x9=x10| T

X| pommmmmmm s e ymmmmmmm - o xg
OI')C1:X4=1 OI')C4=)66=1 OI')C6=)C9=1

! X4 0 X11 = X12 ! X9 * X14 = XI5
X5+ Xe = X7

B A » X12 R R » X15
OI‘X2=)612=1 orx7:x15:1

av B =as] Xg¥ 8 X15 0] iy

Fig. 4 Construction of the system C

Lemma 11. For every x4,x9 € N\{0,1,2}, the system C is solvable in positive integers
X1, X2, X3, X5, X6, X7, X8, X10> X11, X12, X13, X14, X15, X16 If and only if x4 and x9 are prime and x4 + 2 = xo.
In this case, the integers xi1, X3, X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 are uniquely determined by
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the following equalities:

xp = x-—1

X2 = ()C4 — 1)!
xo= ((g-DY!
X5 = )C4!

X6 = Xx9—1

X7 = ()C9 - 1)!

xg = ((xo—-DH!
X110 = X9!

oy = —)614)! +1
X12 = (X4 - 1)! +1
x13 = (g - D+ D!
e = 09 —xlg)! +1
X5 = ()C9 - 1)! +1

xt6 = ((xo =D+ 1)!

Proof. By Lemmam for every x4, x9 € N'\ {0, 1,2}, the system C is solvable in positive integers xi, xp,
X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 if and only if

(x4 +2 = x0) A (xalxa = D!+ 1) A (xol(xo = 1)1 + 1)
Hence, the claim of Lemma L] follows from Lemma 4] |

Lemma 12. There are only finitely many tuples (x1, . .., x16) € (N \ {0)! which solve the system C and

satisfy
(xs €{1,2D) V (x9 € {1,2})

Proof. If a tuple (x1,...,x16) € (N {0D'® solves the system C and
(xg €{1,2D) V (x9 € {1,2})

then xy,...,x16 < 7!. Indeed, for example, if x4 = 2 then xg = x4 + 1 = 3. Hence, x7 = xg! = 6. There-
fore, x15 = x7 + 1 = 7. Consequently, x;6 = x5! = 7!. O

Theorem 9. The statement Y16 proves the following implication: if there exists a twin prime greater
than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x4 and x9 such

that xo = x4 + 2 > g(14). Hence, x4,x €N\{0,1,2}. By Lemma [[I] there exists a
unique tuple (X1, X2, X3, Xs, X¢, X7, X8, X10, X11, X12, X13, X14, X15, X16) € (N \ {OD!* such that the tuple
(x1,...,x16) solves the system C. Since x9 > g(14), we obtain that x9 — 1 > g(14). Therefore,

(x9 — 1)! > g(14)! = g(15). Hence, (x9 — 1)! + 1 > g(15). Consequently,
xi6 = ((xo — DI+ D> g(15)! = g(16)

Since C C Bjg, the statement ¥ and the inequality x;¢ > g(16) imply that the system C has infinitely
many solutions in positive integers xi,...,x16. According to Lemmas [IT] and [I2] there are infinitely
many twin primes. O

Corollary 3. Let X denote the set of twin primes. The statement Y16 implies that we know an algorithm
such that it returns a threshold number of X6, and this number equals max(Xye), if X1¢ is finite.

Proof. We consider an algorithm which computes max(Xi6 N [1, g(14)]). O
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9 Hypothetical statements As,...,A;; about the Gamma function and
their consequences

Let A(5) = I'(25), and let A(n + 1) = I'(A(n)) for every integer n > 5. For an integer n > 5, let J,, denote
the following system of equations:

Vie{l,...,n—=1}\ {3} T(x)) = xin
X1 X] = X4
X2-X3 = Xj5

Lemma [2]and the diagram in Figure 5 explain the construction of the system 7,.

X1
r
X2 3

or xpo=x4=1

I I

r r
X3V | X2 X3 = X5 > > >
X5 X6 Xn-1 Xn

Fig. 5 Construction of the system 7,

For every integer n > 5, the system .J, has exactly two solutions in positive integers, namely
(1,...,1)and (5,24, 23!,25, A(5), ..., A(n)). For an integer n > 35, let A, denote the following statement:
if a system S C {F(xi) =x:0,k€ {1,...,n}} U {xi “Xj=Xx; i, k€ {1,...,n}} has only finitely many
solutions in positive integers X1, ..., Xy, then each such solution (x1, ..., x,) satisfies xi,...,x, < A(n).

Hypothesis 2. The statements As, ..., A4 are true.
Lemmas [2]and [ imply that the statements A, have similar consequences as the statements ‘P,,.
Theorem 10. The statement Ag implies that any prime number p > 25 proves the infinitude of primes.

Proof. 1t follows from Lemmas 2] and ] We leave the details to the reader. O

10 Hypothetical statements X, ..., % about the Gamma function and
their consequences

-3
Let T',,(k) denote (k—1)!, where ne€{3,...,16} and k€ {2} U [22n +1,00) NN. For an integer
ne{3,...,16}, let

On ={ln(x) =xx 2 ikef{l,....n}U{x;-xj=xc: i, ke{l,...,n}}

For an integer n € {3, ..., 16}, let P,, denote the following system of equations:
X1+-X1 = X
Fa(x2) = xi

Yiel2,....,.n—1} x; - x;

Xi+1
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Lemma 13. Foreveryintegern € {3,...,16}, P, C Q, and the system P, with I instead of I, has exactly

0 17 52 -2
one solution in positive integers xi, . . ., X,, namely (1, 22 R 22 ,22 e, 22}1 )

For an integer n € {3,..., 16}, let £, denote the following statement: if a system of equations S C Q,,
with I' instead of I',, has only finitely many solutions in positive integers xi,..., X,, then every tuple
-2
(x1,...,%x,) € (N\ {0})" that solves the original system S satisfies xp, ..., x,; < 22" .
Hypothesis 3. The statements X, ..., X6 are true.
Lemma 14. (¢f. Lemma[2)). For every integer n € {4, ...,16} and for every positive integers x and y,
-3
x-Tu(x) = Tu(y) if and only if (x + 1 = y) A (x >22"7 4 1).

Let Zo C Q9 be the system of equations in Figure 6.

squaring X2 +1
L NS N N

Ty Ty

X2+ X4 = X5 +1
v A 4

XsFmmmmmmmmmmm o » X6
x4

Ty Ty

04 X5+ X7 = Xg v
X X

7 8

Fig. 6 Construction of the system Zg

Lemma 15. For every positive integer xi, the system Zy is solvable in positive integers x3, . . ., X9 if and

9-4
only if x; > 22" and x% + 1 is prime. In this case, positive integers x3, . .., X9 are uniquely determined
by xi. For every positive integer n, at most finitely many tuples (x1, . .., x9) € (N \ {0})° begin with n and
solve the system Zg with I instead of Tg.

Proof. Tt follows from Lemmas 2 @] and [T4] |
Lemma 16. (/13]). The number (13)> + 1 = 38775788043632640001 is prime.

9-3 9-2
Lemma 17. ((13!)2 >22 7 41 = 18446744073709551617) A (Fg((13!)2) > 22 )

Theorem 11. The statement Zo implies the infinitude of primes of the form n*> + 1.

Proof. Tt follows from Lemmas [I5HI7} i
9-3

Theorem 12. (c¢f. Theorem B) The statement X9 implies that any prime of the form n! + 1 withn > 22

proves the infinitude of primes of the form n! + 1.

Proof. We leave the proof to the reader. O

Corollary 4. Let Yy denote the set of primes of the form n! + 1. The statement X9 implies that we know
an algorithm such that it returns a threshold number of Yo, and this number equals max(Yy), if Yy is
finite.

9-3
Proof. We consider an algorithm which computes max(Yq9 N [1, (22 - DI+1]). O
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Let Z14 C Q14 be the system of equations in Figure 7.

x| +1 X2 +1
--------------------------- =
Xp-x13=X6| |14

Ia
X4
— 4 +1
I T - s
xs¥oo- X
5 » X6
Iy T4
Iy I'4

Vo |X7-X11=xp| ¥
X11 X12

h 4 _xs . _xg = xlO W
X9 X10

Fig. 7 Construction of the system Z4

Lemma 18. For every positive integer xy, the system Z14 is solvable in positive integers x, ..., X14

14-3
if and only if x; and x| +2 are prime and x| > 22 + 1. In this case, positive integers
X2,...,X14 are uniquely determined by x1. For every positive integer n, at most finitely many tuples
(x1,...,x14) € N\ {OpH™ begin with n and solve the system Zy4 with T instead of T'14.

Proof. 1t follows from Lemmas 2] @] and[T4] i

Lemma 19. (/16 p. 87]). The numbers 459 - 28529 _ 1 and 45928529 4+ 1 are prime (Harvey Dub-
ner).

Lemma 20. 459 - 28529 _ | 5 92477 _ 24096

Theorem 13. The statement X4 implies the infinitude of twin primes.

Proof. Tt follows from Lemmas [T8H20] i

10
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A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [13]. Let
Z16 € Q16 be the system of equations in Figure 8.

X3 X3 = X3

I'i6

X3

X2
X4 +1 X5 —
-------------- | X5 X6 = X10

multiplying

X1

X1+ X15 = X7 I'is Tie

I

;C, X4 Xg=X9| X9 mmmmmmmm e m === » X10

8

Xgf=mmmmmmmmmmm N X7

I'i6 I'i6

Vo |Xo-Xi3=Xxg| ¥
X13 X14

Y X6 X11 = Xn2| ¥
X11 X12

Fig. 8 Construction of the system Z¢

Lemma 21. For every positive integer x|, the system Zi¢ is solvable in positive integers xa, ..., X1¢
16-3

if and only if x| is a Sophie Germain prime and x| > 22 + 1. In this case, positive integers

X2,...,X16 are uniquely determined by x|. For every positive integer n, at most finitely many tuples

(x1,...,x16) € (N \ {06 begin with n and solve the system Z1¢ with I instead of T 1.

Proof. Tt follows from Lemmas 2} @] and[T4] i

Lemma 22. ({10, p. 330]). 8069496435 - 10072 _ 1 isa Sophie Germain prime (Harvey Dubner).

16-2
Lemma 23. 8069496435 - 109072 _ 1 5 2277,

Theorem 14. The statement X1 implies the infinitude of Sophie Germain primes.
Proof. 1t follows from Lemmas 23 O

Theorem 15. The statement g proves the following implication: if the equation x(x + 1) = y! has only
finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set

{(1,2),(2,3)}.
Proof. We leave the proof to the reader. O
The question of solving the equation x(x + 1) = y! was posed by P. Erdos, see [1l]. F. Luca proved

that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in positive
integers, see [7]].

Theorem 16. The statement Xg proves the following implication: if the equation x! + 1 = y* has only
finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set
{(4,5),(5,11),(7,71)}.

Proof. We leave the proof to the reader. O
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11 Are there infinitely many composite Fermat numbers?

n n
Integers of the form 22" 1 1 are called Fermat numbers. Primes of the form 22 + 1 are called Fermat

primes, as Fermat conjectured that every integer of the form 22n + 1 is prime, see [6, p. 1]. Fermat

20 2! 22 23 24
correctly remarked that 2© +1=3,2¢ +1=5,2 +1=17,2¢ +1=257,and2* +1 = 65537
are all prime, see [6, p. 1].

Open Problem. ([6, p. 159]). Are there infinitely many composite numbers of the form 22n +17?

n
Most mathematicians believe that 22 + 1 is composite for every integer n > 5, see [5} p. 23]. Let

Hy={xxj=xc: i jke{l... .m}u?" = xc: ike(l,....n)

h
Leth(l)=1,andlet h(n + 1) = 22 ) for every positive integer n.

Lemma 24. The following subsystem of H,

X1

X1 - X1
Vie{l,....n—1)22"

has exactly one solution (x1, ..., x,) € N\ {0})", namely (h(1),..., h(n)).

Xi+1

For a positive integer n, let &, denote the following statement: if a system S C H, has only
finitely many solutions in positive integers xi,...,X,, then each such solution (xi,...,x,) satisfies
X1, ..., Xy < h(n). The statement &, says that for subsystems of H,, the largest known solution is indeed
the largest possible.

Hypothesis 4. The statements &, . ..,&13 are true.
Theorem 17. Every statement &, is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H,, has a finite number of subsystems. O

b4
Theorem 18. The statement &3 proves the following implication: if z € N \ {0} and 22° 4 1is composite
Z
and greater than h(12), then 22° 4 lis composite for infinitely many positive integers z.

Proof. Let us consider the equation
Z
x+ Do+ 1D =22"+1 )

in positive integers. By Lemma 3] we can transform equation (1) into an equivalent system G which has
13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms @ - 8 = y and

220 = v, see the diagram in Figure 9.
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x x+1 y+l1 y
()]
5
)
Q,
. . -~ . .
22( ) 22( ) 5 22( ) 22( )
£
Y squarin e h squarin e
22x d 9 N 22x+1 22y+1 ¢ d 9 22)’
22() N 2Z 2;
< 2 24741
22() 22()
squaring e
22 > 2271

Fig. 9 Construction of the system G
2Z
. 2z . 22%+1 . o
Since 2 + 1 > h(12), we obtain that 2 > h(13). By this, the statement £;3 implies that the

system G has infinitely many solutions in positive integers. It means that there are infinitely many

composite Fermat numbers. O

Corollary 5. Let ‘W13 denote the set of composite Fermat numbers. The statement £13 implies that we
know an algorithm such that it returns a threshold number of ‘W3, and this number equals max(‘W3),

if W13 is finite.

Proof. We consider an algorithm which computes max(‘Wy3 N [1, A(12)]). O
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