Preprint
Article

Risk Assessment of BTEX Concentration from Combustion of Coal in a Controlled Laboratory Environment

Altmetrics

Downloads

471

Views

327

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

12 November 2018

Posted:

13 November 2018

You are already at the latest version

Alerts
Abstract
A D-grade type coal was burned under simulated domestic practices in a controlled laboratory set-up, in order to characterize emissions of volatile organic compounds (VOCs); viz. benzene, toluene, ethylbenzene and xylenes (BTEX). Near-field concentrations were collected in a shack-like structure constructed using corrugated iron, simulating a traditional house found in informal settlements in South Africa. Measurements were carried out using the Synspec Spectras GC955 real-time monitor over a three-hour burn cycle. The 3-hour average concentrations (in µg/m3) of benzene, toluene, ethylbenzene, p-xylene and o-xylene were 919 ± 44, 2051 ± 91, 3838 ±19, 4245 41 and 3576 ± 49, respectively. The cancer risk for adult males and females in a typical SA household exposure scenario, was found to be 1.1 -1.2 and 110-120 folds higher than the US EPA designated risk severity indicator (1E-6), respectively. All four TEX compounds recorded the Hazard Quotient (HQ) of less than 1, indicating a low risk of developing related non-carcinogenic health effects. The HQ for TEX ranged from 0.001– 0.05, with toluene concentrations being the lowest and ethylbenzene the highest. This study has demonstrated that domestic coal burning may be a significant source of BTEX emission exposure.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated