Detection of the region of interest (ROI) is a critical step in laryngeal image analysis for the delineation of glottis contour. The process can improve both computational efficiency and accuracy of the image segmentation task, which will facilitate subsequent analysis and characterization of the vocal fold vibration as it correlates with voice quality and pathology. This study aims to develop machine learning based approaches for automatic detection of ROI for glottis image sequences captured by high-speed video-endoscopy (HSV), a clinical laryngeal imaging modality. In particular, we first applied the supporting vector machine (SVM) method using histogram of oriented gradients (HOG) feature descriptor, and second, trained a convolutional neural network (CNN) model for this task. Comparisons are made for both approaches in terms of accuracy of recognition and computation time.
Keywords:
Subject: Computer Science and Mathematics - Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.