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Abstract Two representable substructural logics ULω and IULω are logics for
finite UL and IUL-algebras, respectively. In this paper, the standard completeness
of ULω and IULω is proved by the method developed by Jenei, Montagna, Esteva,
Gispert, Godo and Wang. This shows that ULω and IULω are substructural fuzzy
logics.
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1 Introduction

In [10], we constructed three representable substructural logics ULω, IULω and
HpsUL∗ω by adding one simple axiom

(FIN) (A→ e)↔ (A�A→ e)

to Metcalfe and Montagna’s uninorm logic UL, involutive uninorm logic IUL [6],
and a suitable extension HpsUL∗ [7] of Metcalfe, Olivetti and Gabbay’s pseudo-
uninorm logic HpsUL [5], respectively. Especially, we showed that ULω and IULω
are logics for finite UL and IUL-algebras, respectively.

In this paper, we prove that ULω and IULω are standard complete by Wang’s
constructions in [8] and [9], which are some generalizations of Jenei and Montagna-
style approach for proving standard completeness for monoidal t-norm based logic
MTL [4] and the proof of the standard completeness for IMTL given by Esteva,
Gispert, Godo and Montagna in [2]. This shows that ULω and IULω are substruc-
tural fuzzy logics.
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2 SanMin Wang

We have proved that HpsUL∗ is standard complete in [11]. However, we are
unable to prove whether HpsUL∗ω is standard complete or, complete with respect
to finite HpsUL∗-algebras and left them as open problems.

2 HpsUL∗
ω,ULω, IULω and algebras involved

The Hilbert system HpsUL is the logic of bounded representable residuated lat-
tices, which is based on a countable propositional language with formulas built
inductively as usual from a set of propositional variables, binary connectives �,→
, ,∧,∨ and constants e, f,⊥,>, with definable connectives:

¬ϕ := ϕ→ f,

ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ),

λχ(ϕ) := (χ→ ϕ� χ) ∧ e,

ρχ(ϕ) := (χ χ� ϕ) ∧ e.

Definition 1 HpsUL consists of the following axioms and rules [5]:
(A1) ` ϕ→ ϕ

(A2) ` (ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ))
(A3) ` ϕ→ ((ϕ ψ)→ ψ)
(A4) ` (ϕ (ψ → χ))→ (ψ → (ϕ χ))
(A5) ` ψ → (ϕ→ ϕ� ψ)
(A6) ` (ψ → (ϕ→ χ))→ (ϕ� ψ → χ)
(A7) ` (ψ  ψ � (ψ → ϕ))→ (ψ  ϕ)
(A8) ` (ϕ ∧ t)� (ψ ∧ t)→ ϕ ∧ ψ
(A9) ` ϕ ∧ ψ → ψ

(A10) ` ϕ ∧ ψ → ϕ

(A11) ` (χ→ ϕ) ∧ (χ→ ψ)→ (χ→ ϕ ∧ ψ)
(A12) ` ϕ→ ϕ ∨ ψ
(A13) ` ψ → ϕ ∨ ψ
(A14) ` (ϕ→ χ) ∧ (ψ → χ)→ (ϕ ∨ ψ → χ)
(A15) ` e
(A16) ` ϕ→ (e→ ϕ)
(A17) ` ϕ→ >
(A18) ` ⊥ → ϕ

(PRL) ` (λχ(ϕ ∨ ψ → ϕ)) ∨ (ρχ(ϕ ∨ ψ → ψ))

(MP) ϕ,ϕ→ ψ ` ψ
(ADJU) ϕ ` ϕ ∧ e
(PN→) ϕ ` ψ → ϕ� ψ
(PN ) ϕ ` ψ  ψ � ϕ

Definition 2 [6, 7] A logic is a schematic extension (extension for short) of HpsUL

if it results from HpsUL by adding axioms in the same language. In particular,
• HpsUL∗ is HpsUL plus (WCM) ` (ϕ e)→ (ϕ→ e);
• UL is HpsUL plus ` ϕ� ψ → ψ � ϕ;
• IUL is UL plus ` ¬¬ϕ→ ϕ.
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Definition 3 New extensions of HpsUL are defined as follows.
• HpsUL∗ω is HpsUL∗ plus (FIN) ` (ϕ→ e)↔ (ϕ� ϕ→ e);
• ULω and IULω are UL and IUL plus (FIN), respectively.

Let L ∈ {HpsUL∗,UL, IUL,HpsUL∗ω,ULω, IULω} in the remainder of this
section. A proof in L of a formula ϕ from a set Γ of formulas is defined as usual.
We write Γ `L ϕ if such a proof exists.

Definition 4 [5] An HpsUL-algebra is a bounded residuated lattice A = 〈A,∧,
∨, ·,→, , e, f,⊥,>〉 with universe A, binary operations ∧,∨, ·,→, , and constants
e, f,⊥,> such that:

(i) 〈A,∧,∨,⊥,>〉 is a bounded lattice with top element > and bottom element
⊥;

(ii) 〈A, ·, e〉 is a monoid;
(iii) ∀x, y, z ∈ A, x · y 6 z iff x 6 y  z iff y 6 x→ z;
(iv) ∀x, y, u, v ∈ A, (λu(x∨y → x))∨(ρv(x∨y → y)) = e, where, for any a, b ∈ A,

λa(b) := (a→ b · a) ∧ e, ρa(b) := (a a · b) ∧ e.

We use the convention that · binds stronger than other binary operations and
we shall often omit ·; we will thus write xy instead of x · y, for example. Suitable
classes of algebras of extensions of HpsUL are defined as follows.

Definition 5 [5, 7, 10] Let A = 〈A,∧,∨, ·,→, , e, f,⊥,>〉 be an HpsUL-algebra.
For L an extension of HpsUL, A is an L-algebra if all axioms of L are valid in A.
An L-chain is an L-algebra that is linearly ordered. In particular:
• A is an HpsUL∗-algebra if the weak commutativity (Wcm) holds: xy ≤ e iff

yx ≤ e for all x, y ∈ A;
• A is an UL-algebra if xy = yx for all x, y ∈ A;
• A is an IUL-algebra if it is an UL-algebra such that ¬¬x = x for all x ∈ A;
• A is an HpsUL∗ω-algebra (ULω or IULω-algebra) if it is an HpsUL∗-algebra

(UL or IUL-algebra) such that the following identity (Fin) holds:
x→ e = x2 → e for all x ∈ A.

Definition 6 [5] Let A = 〈A,∧,∨, ·,→, , e, f,⊥,>〉 be an L-algebra. (i) An A-
valuation v is a homomorphism from the term algebra determined by formulas in
L to A; (ii) A formula ϕ is valid in A if v(ϕ) > e holds for any A-valuation v;
(iii) The relation of semantic consequence Γ �A ϕ holds if each A-evaluation that
validates all formulae in a theory Γ validates ϕ as well.

Theorem 1 [5] Γ `L ϕ iff Γ �A ϕ for every L-chain A, i.e., L is a presentable

substructural logic.

Lemma 1 Let A be an HpsUL∗ω-chain and, s, t, u ∈ A. Then

(i) st 6 e iff st2 6 e;

(ii) stu = s implies st = s and su = s;

(iii) stu = u implies su = u and tu = u;

(iv) st = e implies s = t = e.

Proof Only (ii) is proved as follows and, others see [10]. If tu 6 e then tut 6 e and
utu 6 e by (1) and (Wcm). Thus stut 6 s and stutu 6 st. Hence st 6 s and s 6 st.
Therefore st = s. The case of tu > e can be proved in the same way.

Clearly, Lemma 1 holds for all ULω and IULω-algebras.
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3 Wang’s Construction and Standard completeness

In this section, let Lω ∈ {ULω, IULω}, A = 〈A,∧,∨, ·,→, , e, f,⊥,>〉 be a finite
or countable linearly ordered Lω-algebra and s, t, u be arbitrary elements of A.

Definition 7 [7, 8] Let A be an ULω-algebra. For each s ∈ A, t is the immediate
predecessor of s in A if (i) t ∈ A, t < s; (ii) ∀u ∈ A, u < s implies u 6 t. For each
s ∈ A, let s− denote the immediate predecessor of s in A if it exists, otherwise take
s− = s.

Let X = {(s, 1) : s ∈ A} ∪ {(s, q) : s ∈ A, s > s−, q ∈ Q ∩ (0, 1)}, we define:
(s, q) 6 (t, r) iff either s <S t, or s = t and q 6 r and,

I1 := {(s, t) : s, t ∈ A, st = s 6= t, s > s−t}
I2 := {(s, t) : s, t ∈ A, st = t 6= s, t > st−}
I3 := {(s, t) : s, t ∈ A, st = t = s, s > st−}
I4 := {(s, t) : s, t ∈ A, (st 6= t and st 6= s) or

(st = s−t = s) or (st = st− = t)}.

Now define, for (s, q), (t, r) ∈ X:

(s, q) ◦ (t, r) =


(s, q) (s, t) ∈ I1,
(t, r) (s, t) ∈ I2,
(s, q) ∧X (t, r) (s, t) ∈ I3,
(st, 1) (s, t) ∈ I4,

where ∧X and ∨X is meant minX and maxX with respect to 6X , respectively. We
will omit index if it does not cause confusion.

Lemma 2 Let A be an ULω-algebra. Then (s, q)◦(t, r) 6 (e, 1) iff (s, q)◦(t, r)◦(t, r) 6
(e, 1) for all (s, q), (t, r) in X.

Proof Let (s, q) ◦ (t, r) 6 (e, 1). Since (s, q) ◦ (t, r) = (st,♦) for some ♦ ∈ {q, r, 1} by
Definition 7, then st 6 e, Thus stt 6 e by (Fin). Hence (s, q) ◦ (t, r) ◦ (t, r) 6 (e, 1).
The sufficiency part of the lemma can be proved in the same way.

Definition 8 [2, 9] Let A be an IULω-algebra. Let

I∗ := {(s, t) : s, t ∈ A, s− < s, t− < t, t = ¬s−},

I∗∗ := {(s, t) : s, t ∈ A, ss = s−s = s = t}.

∀(s, q), (t, r) ∈ X, define

(s, q)4 (t, r) =


(s, q) ◦ (t−, 1) ∨ (s−, 1) ◦ (t, r) if (s, t) ∈ I∗, q + r 6 1,
(s, q ∨ r) ◦ (s−, 1) if (s, t) ∈ I∗∗,
(s, q) ◦ (t, r) otherwise.

Lemma 3 Let A be an IULω-chain and s, t ∈ A. (i) If st− 6= s, st− 6 e, s−t 6 e

then st−t 6 e; (ii) If st− = s−t− and s−t 6 e then st−t 6 e; (iii) (s, q)4 (t, r) 6
(s, q) ◦ (t, r).
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Proof (i) If st 6 e then stt 6 e by Lemma 1(i) and thus st−t 6 stt 6 e. If t 6 e

then st−t 6 t 6 e by st− 6 e. Thus, let st > e and t > e in the following.

t− ≥ e by t > e. t− 6= e by st− 6= s. Then t− > e. Thus st− ≥ s. Hence st− > s

by st− 6= s. st− 6= e by Lemma 1(iv) and t− > e. Therefore st− < e by st− 6 e.
Then st− < e < t−. Thus st− < t−. Hence s < e.

Suppose that st 6 t−. Then sst 6 st− 6 e. Thus st 6 e by Lemma 1(i), a
contradiction and hence st > t−. Therefore st > t. st 6 t by s < e. Then st = t.

Suppose that s−t > s then s−tt > st > e. Thus s−t > e by Lemma 1(i), a
contradiction and hence s−t < s.

Therefore s−t 6 s−. s−t > s− by t > e. Then s−t = s−. Then s−st = s− by
st = t. Thus s−s = s− by Lemma 1(ii).

Suppose that ss = s then st− = sst− 6 s, a contradiction with st− > s and
hence ss < s by ss 6 s. Then ss 6 s−.

Thus s− = s−s 6 ss 6 s−. Hence ss = s−. Then (ss)t = s−t = s− and
s(st) = st = t. Thus s− = t by (ss)t = s(st), a contradiction with s− < e < t. Thus
the case of st > e and t > e does not exist. This completes the proof of (i).

(ii) It follows from s−t 6 e that s−tt 6 e by Lemma 1(i). Then st−t = s−t−t 6
s−tt 6 e by st− = s−t− and thus st−t 6 e.

(iii) See Proposition 3.7 (2) of [9].

Lemma 4 Let A be a finite IULω-algebra. Then (s, q)4 (t, r) 6 (e, 1) if and only if

(s, q)4 (t, r)4 (t, r) 6 (e, 1) for all (s, q), (t, r) in X.

Proof Let (s, q)4 (t, r) 6 (e, 1). There are three cases to be considered.

Case 1. (s, t) ∈ I∗ and q + r 6 1. Then (s, q)4 (t, r) = (s, q) ◦ (t−, 1) ∨ (s−, 1) ◦
(t, r) 6 (e, 1). Thus st− 6 e, s−t 6 e. Then s−tt 6 e by Lemma 1(i). If (s, q) 4
(t, r) = (s−, 1)◦ (t, r) then (s, q)4 (t, r)4 (t, r) = ((s−, 1)◦ (t, r))4 (t, r) 6 ((s−, 1)◦
(t, r)) ◦ (t, r) 6 (s−tt, 1) 6 (e, 1) by Lemma 3(iii). Let (s, q)4 (t, r) = (s, q) ◦ (t−, 1)
in the following. If (s, q)◦ (t−, 1) = (s, q) then (s, q)4 (t, r)4 (t, r) = (s, q)4 (t, r) 6
(e, 1). Otherwise st− 6= s or st− = s−t−. Then st−t 6 e by Lemma 3(i) and 3(ii).
Thus (s, q) 4 (t, r) 4 (t, r) = ((s, q) ◦ (t−, 1)) 4 (t, r) 6 ((s, q) ◦ (t−, 1)) ◦ (t, r) 6
(st−t, 1) 6 (e, 1).

Case 2. (s, t) ∈ I∗∗ then ss = s−s = s = t and (s, q)4(t, r) = (s, q∨r)◦(s−, 1) 6
(e, 1). Thus ss− 6 e. Hence ss−s 6 e by Lemma 1(i) and (Wcm). Therefore
(s, q) 4 (t, r) 4 (t, r) = ((s, q ∨ r) ◦ (s−, 1)) 4 (s, r) 6 ((s, q ∨ r) ◦ (s−, 1)) ◦ (s, r)
6 (ss−s, 1) 6 (e, 1).

Case 3. (s, q)4 (t, r) = (s, q)◦ (t, r) 6 (e, 1) then st 6 e. Thus stt 6 e by Lemma
1(i). Hence, by Lemma 3(iii), (s, q)4 (t, r)4 (t, r) 6 (s, q) ◦ (t, r) ◦ (t, r) 6 (stt, 1) 6
(e, 1) .

By a similar procedure, we prove that (s, q)4 (t, r) 6 (e, 1) if (s, q)4 (t, r)4
(t, r) 6 (e, 1).

Lemma 5 Let Let A be an HpsUL∗ω-algebra, X and the binary operation ◦ on X be

as in Definition 7. The following conditions hold:

(a) X is densely ordered, and has a maximum >X = (>, 1) and a minimum ⊥X =
(⊥, 1).

(b) 〈X, ◦,6X , eX〉 is a linearly ordered monoid, where eX = (e, 1).

(c) ◦ is left-continuous with respect to the order topology on 〈X,6X〉.
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(d) There is a map Φ from A into X such that Φ is an embedding of the structure

〈A,∧,∨, ·, e,⊥,>〉 into 〈X,∧X ,∨X , ◦, eX ,⊥X ,>X〉, and for all s, t ∈ A,Φ(s → t) is

the residuum of Φ(s) and Φ(t) in 〈X,∧X ,∨X , ◦, eX ,⊥X ,>X〉, respectively.

(e) ∀(s, q), (t, r) ∈ X, (s, q) ◦ (t, r) ≤ (e, 1) iff (s, q) ◦ (t, r) ◦ (t, r) ≤ (e, 1).

Proof Claim (e) has been proved by Lemma 2. As pointed out in [7], the associa-
tivity of ◦ is mainly dependent on Lemma 1(ii) and 1(iii). Other claims can be
proved in the same way as that of [7, Theorem 4.5].

Lemma 6 Every countable linearly ordered UL∗ω-algebra can be embedded into a stan-

dard UL∗ω-algebra.

Proof Let X,A, etc. be as in Definition 7. We can assume, without loss of generality,
that X = Q ∩ [0, 1]. Now define for α, β ∈ [0, 1], α ∗ β = sup{x ◦ y : x, y ∈ X,x ≤
α, y ≤ β}. The proof of the weak commutativity, the monotonicity, associativity,
left-continuity, etc. of ∗ is the same as that of [7, Theorem 4.6]. The neutral element
of ∗ is eX in Q ∩ [0, 1]. By the left-continuity of ∗, the following property holds.

(P) α, β, γ ∈ [0, 1], α ∗ β ∗ γ = sup{x ◦ y ◦ z : x, y, z ∈ X,x ≤ α, y ≤ β, z ≤ γ}.
We prove that α∗β ≤ eX iff α∗β ∗β ≤ eX for any α, β in [0, 1]. Given α∗β ≤ eX

then x ◦ y ≤ eX for all x, y ∈ X,x ≤ α, y ≤ β. Let x, y, z ∈ X,x ≤ α, y ≤ β, z ≤ β.
Then x ◦ y ≤ eX , x ◦ z ≤ eX . Thus x ◦ y ◦ y ≤ eX , x ◦ z ◦ z ≤ eX by Lemma 5(e).
Hence x ◦ y ◦ z ≤ max{x ◦ y ◦ y, x ◦ z ◦ z} ≤ eX . Therefore α ∗β ∗β ≤ eX by (P). The
sufficient part of the claim can be proved in the similar way.

By Lemma 1, Definition 8, Lemma 4, we can prove the claims similar to Lemma
5 and 6 for IULω-algebras. As a consequence of these lemmas, and extending [4,
Theorem 3.3] in the obvious way, we obtain the following standard completeness.

Theorem 2 ULω and IULω are complete with respect to the class of standard algebras

involved.

4 Concluding remarks

Roughly speaking, the methodological significance of Jenei and Montagna’s proof
is that it does not require a complete understanding of the structure of the MTL-
algebras by embedding a countable MTL-algebras into a dense one. It is indeed
different from the proof of the BL’s standard completeness given by Hajek, Cignoli,
Esteva, Godo, Torrens et al in [1,3]. The validation of the structure X in Definitions
7, 8 and Theorems 3.6, 3.7 is dependent on Lemma 1(ii) which claims that stu = s

implies st = s. However, we are unable to prove the condition that stu = t implies
st = t in HpsUL∗ω. It seems that we need to introduce some more strong axioms
into HpsUL∗ω to guarantee its completeness with respect to finite (or standard)
HpsUL∗-algebras.
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