
UL_ω and IUL_ω are substructural fuzzy logics

SanMin Wang

Received: date / Accepted: date

Abstract Two representable substructural logics **UL_ω** and **IUL_ω** are logics for finite **UL** and **IUL**-algebras, respectively. In this paper, the standard completeness of **UL_ω** and **IUL_ω** is proved by the method developed by Jenei, Montagna, Esteva, Gispert, Godo and Wang. This shows that **UL_ω** and **IUL_ω** are substructural fuzzy logics.

Keywords Substructural fuzzy logics · Residuated lattices · Semilinear substructural logics · Standard completeness · Fuzzy logic

Mathematics Subject Classification (2000) 03B47 · 03B50 · 03B52

1 Introduction

In [10], we constructed three representable substructural logics **UL_ω**, **IUL_ω** and **HpsUL_ω^{*}** by adding one simple axiom

$$(\text{FIN}) \quad (A \rightarrow e) \leftrightarrow (A \odot A \rightarrow e)$$

to Metcalfe and Montagna's uninorm logic **UL**, involutive uninorm logic **IUL** [6], and a suitable extension **HpsUL^{*}** [7] of Metcalfe, Olivetti and Gabbay's pseudo-uninorm logic **HpsUL** [5], respectively. Especially, we showed that **UL_ω** and **IUL_ω** are logics for finite **UL** and **IUL**-algebras, respectively.

In this paper, we prove that **UL_ω** and **IUL_ω** are standard complete by Wang's constructions in [8] and [9], which are some generalizations of Jenei and Montagna-style approach for proving standard completeness for monoidal t-norm based logic **MTL** [4] and the proof of the standard completeness for **IMTL** given by Esteva, Gispert, Godo and Montagna in [2]. This shows that **UL_ω** and **IUL_ω** are substructural fuzzy logics.

SanMin Wang
 Faculty of Science, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
 Tel.: +86-13655812543
 Fax: +86-057186843224
 E-mail: wangsanmin@hotmail.com

We have proved that **HpsUL**^{*} is standard complete in [11]. However, we are unable to prove whether **HpsUL**_ω^{*} is standard complete or, complete with respect to finite **HpsUL**^{*}-algebras and left them as open problems.

2 HpsUL_ω^{*}, UL_ω, IUL_ω and algebras involved

The Hilbert system **HpsUL** is the logic of bounded representable residuated lattices, which is based on a countable propositional language with formulas built inductively as usual from a set of propositional variables, binary connectives $\odot, \rightarrow, \rightsquigarrow, \wedge, \vee$ and constants e, f, \perp, \top , with definable connectives:

$$\neg\varphi := \varphi \rightarrow f,$$

$$\varphi \leftrightarrow \psi := (\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi),$$

$$\lambda_\chi(\varphi) := (\chi \rightarrow \varphi \odot \chi) \wedge e,$$

$$\rho_\chi(\varphi) := (\chi \rightsquigarrow \chi \odot \varphi) \wedge e.$$

Definition 1 **HpsUL** consists of the following axioms and rules [5]:

- (A₁) $\vdash \varphi \rightarrow \varphi$
- (A₂) $\vdash (\varphi \rightarrow \psi) \rightarrow ((\chi \rightarrow \varphi) \rightarrow (\chi \rightarrow \psi))$
- (A₃) $\vdash \varphi \rightarrow ((\varphi \rightsquigarrow \psi) \rightarrow \psi)$
- (A₄) $\vdash (\varphi \rightsquigarrow (\psi \rightarrow \chi)) \rightarrow (\psi \rightarrow (\varphi \rightsquigarrow \chi))$
- (A₅) $\vdash \psi \rightarrow (\varphi \rightarrow \varphi \odot \psi)$
- (A₆) $\vdash (\psi \rightarrow (\varphi \rightarrow \chi)) \rightarrow (\varphi \odot \psi \rightarrow \chi)$
- (A₇) $\vdash (\psi \rightsquigarrow \psi \odot (\psi \rightarrow \varphi)) \rightarrow (\psi \rightsquigarrow \varphi)$
- (A₈) $\vdash (\varphi \wedge t) \odot (\psi \wedge t) \rightarrow \varphi \wedge \psi$
- (A₉) $\vdash \varphi \wedge \psi \rightarrow \psi$
- (A₁₀) $\vdash \varphi \wedge \psi \rightarrow \varphi$
- (A₁₁) $\vdash (\chi \rightarrow \varphi) \wedge (\chi \rightarrow \psi) \rightarrow (\chi \rightarrow \varphi \wedge \psi)$
- (A₁₂) $\vdash \varphi \rightarrow \varphi \vee \psi$
- (A₁₃) $\vdash \psi \rightarrow \varphi \vee \psi$
- (A₁₄) $\vdash (\varphi \rightarrow \chi) \wedge (\psi \rightarrow \chi) \rightarrow (\varphi \vee \psi \rightarrow \chi)$
- (A₁₅) $\vdash e$
- (A₁₆) $\vdash \varphi \rightarrow (e \rightarrow \varphi)$
- (A₁₇) $\vdash \varphi \rightarrow \top$
- (A₁₈) $\vdash \perp \rightarrow \varphi$
- (PRL) $\vdash (\lambda_\chi(\varphi \vee \psi \rightarrow \varphi)) \vee (\rho_\chi(\varphi \vee \psi \rightarrow \psi))$
- (MP) $\varphi, \varphi \rightarrow \psi \vdash \psi$
- (ADJ_U) $\varphi \vdash \varphi \wedge e$
- (PN_→) $\varphi \vdash \psi \rightarrow \varphi \odot \psi$
- (PN_{rightsquigarrow}) $\varphi \vdash \psi \rightsquigarrow \psi \odot \varphi$

Definition 2 [6, 7] A logic is a schematic extension (extension for short) of **HpsUL** if it results from **HpsUL** by adding axioms in the same language. In particular,

- **HpsUL**^{*} is **HpsUL** plus (WCM) $\vdash (\varphi \rightsquigarrow e) \rightarrow (\varphi \rightarrow e)$;
- **UL** is **HpsUL** plus $\vdash \varphi \odot \psi \rightarrow \psi \odot \varphi$;
- **IUL** is **UL** plus $\vdash \neg\neg\varphi \rightarrow \varphi$.

Definition 3 New extensions of **HpsUL** are defined as follows.

- **HpsUL** $_{\omega}^*$ is **HpsUL** * plus (FIN) $\vdash (\varphi \rightarrow e) \leftrightarrow (\varphi \odot \varphi \rightarrow e)$;
- **UL** $_{\omega}$ and **IUL** $_{\omega}$ are **UL** and **IUL** plus (FIN), respectively.

Let $\mathbf{L} \in \{\mathbf{HpsUL}^*, \mathbf{UL}, \mathbf{IUL}, \mathbf{HpsUL}_{\omega}^*, \mathbf{UL}_{\omega}, \mathbf{IUL}_{\omega}\}$ in the remainder of this section. A proof in \mathbf{L} of a formula φ from a set Γ of formulas is defined as usual. We write $\Gamma \vdash_{\mathbf{L}} \varphi$ if such a proof exists.

Definition 4 [5] An **HpsUL**-algebra is a bounded residuated lattice $\mathcal{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, \rightsquigarrow, e, f, \perp, \top \rangle$ with universe A , binary operations $\wedge, \vee, \cdot, \rightarrow, \rightsquigarrow$, and constants e, f, \perp, \top such that:

- (i) $\langle A, \wedge, \vee, \perp, \top \rangle$ is a bounded lattice with top element \top and bottom element \perp ;
- (ii) $\langle A, \cdot, e \rangle$ is a monoid;
- (iii) $\forall x, y, z \in A, x \cdot y \leq z$ iff $x \leq y \rightsquigarrow z$ iff $y \leq x \rightarrow z$;
- (iv) $\forall x, y, u, v \in A, (\lambda_u(x \vee y \rightarrow x)) \vee (\rho_v(x \vee y \rightarrow y)) = e$, where, for any $a, b \in A$, $\lambda_a(b) := (a \rightarrow b \cdot a) \wedge e$, $\rho_a(b) := (a \rightsquigarrow a \cdot b) \wedge e$.

We use the convention that \cdot binds stronger than other binary operations and we shall often omit \cdot ; we will thus write xy instead of $x \cdot y$, for example. Suitable classes of algebras of extensions of **HpsUL** are defined as follows.

Definition 5 [5, 7, 10] Let $\mathcal{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, \rightsquigarrow, e, f, \perp, \top \rangle$ be an **HpsUL**-algebra. For \mathbf{L} an extension of **HpsUL**, \mathcal{A} is an \mathbf{L} -algebra if all axioms of \mathbf{L} are valid in \mathcal{A} . An \mathbf{L} -chain is an \mathbf{L} -algebra that is linearly ordered. In particular:

- \mathcal{A} is an **HpsUL** * -algebra if the weak commutativity (Wcm) holds: $xy \leq e$ iff $yx \leq e$ for all $x, y \in A$;
- \mathcal{A} is an **UL**-algebra if $xy = yx$ for all $x, y \in A$;
- \mathcal{A} is an **IUL**-algebra if it is an **UL**-algebra such that $\neg\neg x = x$ for all $x \in A$;
- \mathcal{A} is an **HpsUL** $_{\omega}^*$ -algebra (**UL** $_{\omega}$ or **IUL** $_{\omega}$ -algebra) if it is an **HpsUL** * -algebra (**UL** or **IUL**-algebra) such that the following identity (Fin) holds:

$$x \rightarrow e = x^2 \rightarrow e \text{ for all } x \in A.$$

Definition 6 [5] Let $\mathcal{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, \rightsquigarrow, e, f, \perp, \top \rangle$ be an \mathbf{L} -algebra. (i) An \mathcal{A} -valuation v is a homomorphism from the term algebra determined by formulas in \mathbf{L} to \mathcal{A} ; (ii) A formula φ is valid in \mathcal{A} if $v(\varphi) \geq e$ holds for any \mathcal{A} -valuation v ; (iii) The relation of semantic consequence $\Gamma \models_{\mathcal{A}} \varphi$ holds if each \mathcal{A} -valuation that validates all formulae in a theory Γ validates φ as well.

Theorem 1 [5] $\Gamma \vdash_{\mathbf{L}} \varphi$ iff $\Gamma \models_{\mathcal{A}} \varphi$ for every \mathbf{L} -chain \mathcal{A} , i.e., \mathbf{L} is a presentable substructural logic.

Lemma 1 Let \mathcal{A} be an **HpsUL** $_{\omega}^*$ -chain and, $s, t, u \in A$. Then

- (i) $st \leq e$ iff $st^2 \leq e$;
- (ii) $stu = s$ implies $st = s$ and $su = s$;
- (iii) $stu = u$ implies $su = u$ and $tu = u$;
- (iv) $st = e$ implies $s = t = e$.

Proof Only (ii) is proved as follows and, others see [10]. If $tu \leq e$ then $tut \leq e$ and $utu \leq e$ by (1) and (Wcm). Thus $stut \leq s$ and $stutu \leq st$. Hence $st \leq s$ and $s \leq st$. Therefore $st = s$. The case of $tu > e$ can be proved in the same way.

Clearly, Lemma 1 holds for all **UL** $_{\omega}$ and **IUL** $_{\omega}$ -algebras.

3 Wang's Construction and Standard completeness

In this section, let $\mathbf{L}_\omega \in \{\mathbf{UL}_\omega, \mathbf{IUL}_\omega\}$, $\mathcal{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, \rightsquigarrow, e, f, \perp, \top \rangle$ be a finite or countable linearly ordered \mathbf{L}_ω -algebra and s, t, u be arbitrary elements of A .

Definition 7 [7, 8] Let \mathcal{A} be an \mathbf{UL}_ω -algebra. For each $s \in A$, t is the immediate predecessor of s in A if (i) $t \in A$, $t < s$; (ii) $\forall u \in A, u < s$ implies $u \leq t$. For each $s \in A$, let s^- denote the immediate predecessor of s in A if it exists, otherwise take $s^- = s$.

Let $X = \{(s, 1) : s \in A\} \cup \{(s, q) : s \in A, s > s^-, q \in Q \cap (0, 1)\}$, we define: $(s, q) \leq (t, r)$ iff either $s <_S t$, or $s = t$ and $q \leq r$ and,

$$\begin{aligned} I_1 &:= \{(s, t) : s, t \in A, st = s \neq t, s > s^- t\} \\ I_2 &:= \{(s, t) : s, t \in A, st = t \neq s, t > st^-\} \\ I_3 &:= \{(s, t) : s, t \in A, st = t = s, s > st^-\} \\ I_4 &:= \{(s, t) : s, t \in A, (st \neq t \text{ and } st \neq s) \text{ or} \\ &\quad (st = s^- t = s) \text{ or } (st = st^- = t)\}. \end{aligned}$$

Now define, for $(s, q), (t, r) \in X$:

$$(s, q) \circ (t, r) = \begin{cases} (s, q) & (s, t) \in I_1, \\ (t, r) & (s, t) \in I_2, \\ (s, q) \wedge_X (t, r) & (s, t) \in I_3, \\ (st, 1) & (s, t) \in I_4, \end{cases}$$

where \wedge_X and \vee_X is meant \min_X and \max_X with respect to \leq_X , respectively. We will omit index if it does not cause confusion.

Lemma 2 Let \mathcal{A} be an \mathbf{UL}_ω -algebra. Then $(s, q) \circ (t, r) \leq (e, 1)$ iff $(s, q) \circ (t, r) \circ (t, r) \leq (e, 1)$ for all $(s, q), (t, r)$ in X .

Proof Let $(s, q) \circ (t, r) \leq (e, 1)$. Since $(s, q) \circ (t, r) = (st, \diamond)$ for some $\diamond \in \{q, r, 1\}$ by Definition 7, then $st \leq e$, Thus $stt \leq e$ by (Fin). Hence $(s, q) \circ (t, r) \circ (t, r) \leq (e, 1)$. The sufficiency part of the lemma can be proved in the same way.

Definition 8 [2, 9] Let \mathcal{A} be an \mathbf{IUL}_ω -algebra. Let

$$I^* := \{(s, t) : s, t \in A, s^- < s, t^- < t, t = \neg s^-\},$$

$$I^{**} := \{(s, t) : s, t \in A, ss = s^- s = s = t\}.$$

$\forall (s, q), (t, r) \in X$, define

$$(s, q) \triangle (t, r) = \begin{cases} (s, q) \circ (t^-, 1) \vee (s^-, 1) \circ (t, r) & \text{if } (s, t) \in I^*, q + r \leq 1, \\ (s, q \vee r) \circ (s^-, 1) & \text{if } (s, t) \in I^{**}, \\ (s, q) \circ (t, r) & \text{otherwise.} \end{cases}$$

Lemma 3 Let \mathcal{A} be an \mathbf{IUL}_ω -chain and $s, t \in A$. (i) If $st^- \neq s$, $st^- \leq e$, $s^- t \leq e$ then $st^- t \leq e$; (ii) If $st^- = s^- t^-$ and $s^- t \leq e$ then $st^- t \leq e$; (iii) $(s, q) \triangle (t, r) \leq (s, q) \circ (t, r)$.

Proof (i) If $st \leq e$ then $stt \leq e$ by Lemma 1(i) and thus $st^-t \leq stt \leq e$. If $t \leq e$ then $st^-t \leq t \leq e$ by $st^- \leq e$. Thus, let $st > e$ and $t > e$ in the following.

$t^- \geq e$ by $t > e$. $t^- \neq e$ by $st^- \neq s$. Then $t^- > e$. Thus $st^- \geq s$. Hence $st^- > s$ by $st^- \neq s$. $st^- \neq e$ by Lemma 1(iv) and $t^- > e$. Therefore $st^- < e$ by $st^- \leq e$. Then $st^- < e < t^-$. Thus $st^- < t^-$. Hence $s < e$.

Suppose that $st \leq t^-$. Then $sst \leq st^- \leq e$. Thus $st \leq e$ by Lemma 1(i), a contradiction and hence $st > t^-$. Therefore $st \geq t$. $st \leq t$ by $s < e$. Then $st = t$.

Suppose that $s^-t \geq s$ then $s^-tt \geq st > e$. Thus $s^-t > e$ by Lemma 1(i), a contradiction and hence $s^-t < s$.

Therefore $s^-t \leq s^-$. $s^-t \geq s^-$ by $t > e$. Then $s^-t = s^-$. Then $s^-st = s^-$ by $st = t$. Thus $s^-s = s^-$ by Lemma 1(ii).

Suppose that $ss = s$ then $st^- = sst^- \leq s$, a contradiction with $st^- > s$ and hence $ss < s$ by $ss \leq s$. Then $ss \leq s^-$.

Thus $s^- = s^-s \leq ss \leq s^-$. Hence $ss = s^-$. Then $(ss)t = s^-t = s^-$ and $s(st) = st = t$. Thus $s^- = t$ by $(ss)t = s(st)$, a contradiction with $s^- < e < t$. Thus the case of $st > e$ and $t > e$ does not exist. This completes the proof of (i).

(ii) It follows from $s^-t \leq e$ that $s^-tt \leq e$ by Lemma 1(i). Then $st^-t = s^-t^-t \leq s^-tt \leq e$ by $st^- = s^-t^-$ and thus $st^-t \leq e$.

(iii) See Proposition 3.7 (2) of [9].

Lemma 4 Let \mathcal{A} be a finite **IUL** $_{\omega}$ -algebra. Then $(s, q) \Delta (t, r) \leq (e, 1)$ if and only if $(s, q) \Delta (t, r) \Delta (t, r) \leq (e, 1)$ for all $(s, q), (t, r)$ in X .

Proof Let $(s, q) \Delta (t, r) \leq (e, 1)$. There are three cases to be considered.

Case 1. $(s, t) \in I^*$ and $q + r \leq 1$. Then $(s, q) \Delta (t, r) = (s, q) \circ (t^-, 1) \vee (s^-, 1) \circ (t, r) \leq (e, 1)$. Thus $st^- \leq e$, $s^-t \leq e$. Then $s^-tt \leq e$ by Lemma 1(i). If $(s, q) \Delta (t, r) = (s^-, 1) \circ (t, r)$ then $(s, q) \Delta (t, r) \Delta (t, r) = ((s^-, 1) \circ (t, r)) \Delta (t, r) \leq ((s^-, 1) \circ (t, r)) \circ (t, r) \leq (s^-tt, 1) \leq (e, 1)$ by Lemma 3(iii). Let $(s, q) \Delta (t, r) = (s, q) \circ (t^-, 1)$ in the following. If $(s, q) \circ (t^-, 1) = (s, q)$ then $(s, q) \Delta (t, r) \Delta (t, r) = (s, q) \Delta (t, r) \leq (e, 1)$. Otherwise $st^- \neq s$ or $st^- = s^-t^-$. Then $st^-t \leq e$ by Lemma 3(i) and 3(ii). Thus $(s, q) \Delta (t, r) \Delta (t, r) = ((s, q) \circ (t^-, 1)) \Delta (t, r) \leq ((s, q) \circ (t^-, 1)) \circ (t, r) \leq (st^-t, 1) \leq (e, 1)$.

Case 2. $(s, t) \in I^{**}$ then $ss = s^-s = s = t$ and $(s, q) \Delta (t, r) = (s, q \vee r) \circ (s^-, 1) \leq (e, 1)$. Thus $ss^- \leq e$. Hence $ss^-s \leq e$ by Lemma 1(i) and (Wcm). Therefore $(s, q) \Delta (t, r) \Delta (t, r) = ((s, q \vee r) \circ (s^-, 1)) \Delta (s, r) \leq ((s, q \vee r) \circ (s^-, 1)) \circ (s, r) \leq (ss^-s, 1) \leq (e, 1)$.

Case 3. $(s, q) \Delta (t, r) = (s, q) \circ (t, r) \leq (e, 1)$ then $st \leq e$. Thus $stt \leq e$ by Lemma 1(i). Hence, by Lemma 3(iii), $(s, q) \Delta (t, r) \Delta (t, r) \leq (s, q) \circ (t, r) \circ (t, r) \leq (stt, 1) \leq (e, 1)$.

By a similar procedure, we prove that $(s, q) \Delta (t, r) \leq (e, 1)$ if $(s, q) \Delta (t, r) \Delta (t, r) \leq (e, 1)$.

Lemma 5 Let \mathcal{A} be an **HpsUL** $_{\omega}^*$ -algebra, X and the binary operation \circ on X be as in Definition 7. The following conditions hold:

- (a) X is densely ordered, and has a maximum $\top_X = (\top, 1)$ and a minimum $\perp_X = (\perp, 1)$.
- (b) $\langle X, \circ, \leq_X, e_X \rangle$ is a linearly ordered monoid, where $e_X = (e, 1)$.
- (c) \circ is left-continuous with respect to the order topology on $\langle X, \leq_X \rangle$.

(d) There is a map Φ from A into X such that Φ is an embedding of the structure $\langle A, \wedge, \vee, \cdot, e, \perp, \top \rangle$ into $\langle X, \wedge_X, \vee_X, \circ, e_X, \perp_X, \top_X \rangle$, and for all $s, t \in A$, $\Phi(s \rightarrow t)$ is the residuum of $\Phi(s)$ and $\Phi(t)$ in $\langle X, \wedge_X, \vee_X, \circ, e_X, \perp_X, \top_X \rangle$, respectively.

(e) $\forall (s, q), (t, r) \in X, (s, q) \circ (t, r) \leq (e, 1)$ iff $(s, q) \circ (t, r) \circ (t, r) \leq (e, 1)$.

Proof Claim (e) has been proved by Lemma 2. As pointed out in [7], the associativity of \circ is mainly dependent on Lemma 1(ii) and 1(iii). Other claims can be proved in the same way as that of [7, Theorem 4.5].

Lemma 6 *Every countable linearly ordered \mathbf{UL}_ω^* -algebra can be embedded into a standard \mathbf{UL}_ω^* -algebra.*

Proof Let X, \mathcal{A} , etc. be as in Definition 7. We can assume, without loss of generality, that $X = Q \cap [0, 1]$. Now define for $\alpha, \beta \in [0, 1]$, $\alpha * \beta = \sup\{x \circ y : x, y \in X, x \leq \alpha, y \leq \beta\}$. The proof of the weak commutativity, the monotonicity, associativity, left-continuity, etc. of $*$ is the same as that of [7, Theorem 4.6]. The neutral element of $*$ is e_X in $Q \cap [0, 1]$. By the left-continuity of $*$, the following property holds.

(P) $\alpha, \beta, \gamma \in [0, 1]$, $\alpha * \beta * \gamma = \sup\{x \circ y \circ z : x, y, z \in X, x \leq \alpha, y \leq \beta, z \leq \gamma\}$.

We prove that $\alpha * \beta \leq e_X$ iff $\alpha * \beta * \beta \leq e_X$ for any α, β in $[0, 1]$. Given $\alpha * \beta \leq e_X$ then $x \circ y \leq e_X$ for all $x, y \in X, x \leq \alpha, y \leq \beta$. Let $x, y, z \in X, x \leq \alpha, y \leq \beta, z \leq \beta$. Then $x \circ y \leq e_X, x \circ z \leq e_X$. Thus $x \circ y \circ z \leq e_X, x \circ z \circ z \leq e_X$ by Lemma 5(e). Hence $x \circ y \circ z \leq \max\{x \circ y \circ z, x \circ z \circ z\} \leq e_X$. Therefore $\alpha * \beta * \beta \leq e_X$ by (P). The sufficient part of the claim can be proved in the similar way.

By Lemma 1, Definition 8, Lemma 4, we can prove the claims similar to Lemma 5 and 6 for \mathbf{IUL}_ω -algebras. As a consequence of these lemmas, and extending [4, Theorem 3.3] in the obvious way, we obtain the following standard completeness.

Theorem 2 \mathbf{UL}_ω and \mathbf{IUL}_ω are complete with respect to the class of standard algebras involved.

4 Concluding remarks

Roughly speaking, the methodological significance of Jenei and Montagna's proof is that it does not require a complete understanding of the structure of the **MTL**-algebras by embedding a countable **MTL**-algebras into a dense one. It is indeed different from the proof of the **BL**'s standard completeness given by Hajek, Cignoli, Esteva, Godo, Torrens et al in [1,3]. The validation of the structure X in Definitions 7, 8 and Theorems 3.6, 3.7 is dependent on Lemma 1(ii) which claims that $stu = s$ implies $st = s$. However, we are unable to prove the condition that $stu = t$ implies $st = t$ in \mathbf{HpsUL}_ω^* . It seems that we need to introduce some more strong axioms into \mathbf{HpsUL}_ω^* to guarantee its completeness with respect to finite (or standard) \mathbf{HpsUL}^* -algebras.

Acknowledgements

This study was funded by the National Foundation of Natural Sciences of China (grant number 61379018 & 61662044& 11571013).

Compliance with ethical standards**Conflict of interest** The author declares that he has no conflict of interest.**Ethical approval** This article does not contain any studies with human participants or animals performed by the author.**References**

1. R. Cignoli, F. Esteva, L. Godo and A. Torrens, *Basic fuzzy logic is the logic of continuous t-norms and their residua*, Soft Computing **4**, 106-112(2000)
2. F. Esteva, J. Gispert, L. Godo, and F. Montagna. On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic, *Studia Logica*, **71(2)**,199-226(2002)
3. P. Hájek, *Basic fuzzy logic and BL-algebras*, Soft Computing **2**, 124-128(1998)
4. S. Jenei and F. Montagna. A proof of standard completeness for Esteva and Godo's logic **MTL**, *Studia Logica*, **70**,183-192(2002)
5. G. Metcalfe, N. Olivetti and D. Gabbay. Proof Theory for Fuzzy Logics, Springer Series in Applied Logic (Vol.36), (2009)
6. G. Metcalfe and F. Montagna. Substructural fuzzy logics, *Journal of Symbolic Logic*, **7(3)**, 834-864(2007)
7. S.-M. Wang, Logics for residuated pseudo-uninorms and their residua, *Fuzzy Sets and Systems*, **218**, 24-31(2013)
8. S.-M. Wang. Uninorm logic with the n -potency axiom, *Fuzzy Sets and Systems*, **205**,116-126(2012)
9. S.-M. Wang. Involutive uninorm logic with the n -potency axiom, *Fuzzy Sets and Systems*, **218**, 1-23(2013)
10. S.-M. Wang. Semilinear substructural logics with the finite embeddability property[J]. arXiv preprint arXiv:1608.04029(2016)
11. Wang S.-M. The logic of pseudo-uninorms and their residua[J]. arXiv preprint arXiv:1707.05441(2017)