

1 Article

2 Species and bio-availability of inorganic and organic 3 phosphorus in primary, secondary and digested 4 sludge

5 Shaoxiong Zhang ¹, Wenli Huang ^{2,3,*} and Dongfang Liu ²

6 ¹ School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
7 zhangsx@stdu.edu.cn (S. Z);

8 ² Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of
9 Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Education Park,
10 Tianjin 300350, China; huangwenli@nankai.edu.cn (W. H); 3578145273@qq.com (D.L)

11 ³ Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba,
12 Ibaraki 305-8572, Japan

13 * Correspondence: huangwenli@nankai.edu.cn; Tel.: +86 22-23501117

14 **Abstract:** The species and bio-availability of phosphorus (P) in primary, secondary and digested
15 sludge were fractionated and further analyzed in this study. Results showed that inorganic P (IP)
16 was the primary P fraction in the secondary sludge and digested sludge, in which non-apatite IP
17 (NAIP) amounted to 91.6% and 69.3% of IP, respectively. Organic P (OP), accounting for about
18 71.7% of total P (TP), was the dominant P composition in primary sludge. The content of
19 bio-available P was about 9.7, 43.4, 29.8 mg-P/g-TS in primary sludge, secondary sludge and
20 digested sludge, respectively, suggesting secondary sludge is the optimal choice when land
21 application of sewage sludge is taken into consideration, followed by digested sludge and primary
22 sludge. Polyphosphate and orthophosphate, comprising approximately 54.3% and 89.2% of TP,
23 was the dominant P species in the secondary sludge and digested sludge, respectively.
24 Monoester-P (54.6% of TP in extract) and diester- P (24.1%) were identified as OP species in
25 primary sludge by Phosphorus-31 nuclear magnetic resonance (³¹PNMR). The present results
26 would be helpful for P recovery and recycle from sewage sludge in wastewater treatment plant.

27 **Keywords:** Sewage sludge; P bio-availability; P species; SMT protocol

29 1. Introduction

30 Phosphorus (P) is one of the essential mineral elements for all living organisms, which accounts
31 for around 2 - 4% of the dry weight of most cells [1]. The extensive application of P fertilizers is one
32 of the main reasons that the current crop production has been able to meet the food demand and
33 security associated with an ever-expanding world population. It is estimated that approximately
34 90% of the P derived from phosphate rock is used in agriculture as fertiliser [2]. However, on one
35 hand, phosphate rock is a non-renewable resource which is estimated to be exhausted in 50 - 100
36 years with a peak in its production occurring in 2030s if the growth of demand for fertilizers remains
37 at 3% per year [3-5]. On the other hand, according to the statistics of the US Geological Survey, eight
38 countries or areas including United States, Algeria, China, Jordan, Morocco and Western Sahara,
39 Russia, South Africa and Syria control 93.9% of global phosphate rock reserves [6]. In order to secure
40 domestic raw materials, some major producer countries have designated phosphorous as a strategic
41 resource and restricted export of the P rock or in the form of processed and chemical products with
42 added value in recent years [3]. With these trends, the price of P rock has been increasing in the
43 international trade market. Therefore, P resource protection and P recycling is prerequisite for a

44 sustainable agriculture and society on a global scale, especially for the countries that lack of P
45 resources.

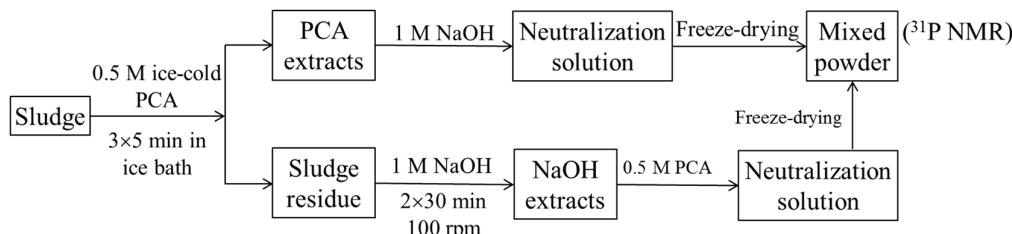
46 Sewage sludge, a by-product of biological wastewater treatment process, is regards as a
47 potential P reservoir due to its high production and P content [7]. Various P recovery technologies
48 from sewage sludge have been developed, including incineration, alkaline/acid extraction, thermal
49 treatment, phosphorous crystallization as HAp (hydroxylapatite) and MAP (magnesium
50 ammonium phosphate) [3, 8, 9]. However, the costs of these projects are too high due to their
51 complex processes for phosphorus recovery. Land application of sewage sludge as P fertilizer is now
52 very attractive, because it not only solves the sludge disposal problem but also benefits to crop
53 production [10]. In US and EU-15, land application of sludge now is the predominant choice for
54 sludge management (41% in US and 53% in EU-15) [11, 12]. In China, about 45% and 3.5% of sludge
55 is applied to agriculture and gardening, respectively. As well known, Japan is a P resource- poor
56 country. While the percentage of treated sewage sludge for farmland and green areas has been stable
57 at around 14% for many years in Japan, much lower than those in other countries. Thus land
58 application of sewage sludge as P fertilizer has great development potential to alleviate P resource
59 shortage to a certain extent in Japan.

60 Generally, P content in sewage sludge accounts for about 0.3-4.8% of total solid [13]. But it is
61 well known that not all the forms of P exhibit similar mobility and bio-availability in the sludge,
62 identification of the P fraction and species in the sludge is beneficial for both land application of
63 sewage sludge as P fertilizer and understanding the characteristics and function of P in different
64 sludge. Primary sludge, secondary sludge and digested sludge are the three main types of sludge
65 produced from WWTP. Previous study mainly focus on investigate the bio-availability of P in
66 secondary sludge and P species in secondary sludge and digested sludge. It was reported that
67 75%-88.7% of TP in secondary sludge possesses high mobility and bio-availability [14]. Poly-P and
68 ortho-P was the major P in enhanced P removal activated sludge and digested sludge, respectively
69 [15-17]. However, to date, little detailed and comprehensively information could be found about the
70 P fractions and species in primary sludge, secondary and digested sludge.

71 This study aimed to investigate the P bio-availability and species in primary sludge, secondary
72 and digested sludge. The Standards, Measurements and Testing (SMT) protocol was applied to
73 analyze the fractionation of P in sewage sludge and to evaluate the mobility and bio-availability of P
74 in various sludge. Solution ^{31}P nuclear magnetic resonance (^{31}P NMR) spectroscopy is employed to
75 characterize the inorganic and organic phosphorus species in sewage sludge. It is expected that this
76 work will be useful for P utilization and recovery from sewage sludge, especially when agriculture
77 utilization of sludge is taken into consideration.

78 2. Materials and Methods

79 2.1. Sewage sludge sample


80 Sludge samples were collected from a WWTP treating domestic wastewater in Shimodate,
81 Ibaraki Prefecture, Japan. The process flow diagram of the WWTP is shown in Figure S1 (See
82 Supplementary Material). The sludge samples were collected from the primary tank, secondary
83 sedimentation tank and digestion tank, respectively. The collected sludge was kept in a refrigerator
84 at 4°C and analyzed within 2 days.

85 2.2. Phosphorus fractionation in sludge

86 In this study, the SMT programme extraction protocol was applied to analyze P fractions in all
87 sludge samples (Figure S2), which has been widely used in soil, sediment and sewage sludge
88 samples [18-20]. After sequential extraction based on the SMT method, P in sludge was fractionated
89 into the following 5 categories: (1) concentrated HCl-extractable P, namely total P (TP), (2) organic P
90 (OP), (3) inorganic P (IP), (4) non-apatite inorganic P (NAIP, the P fraction associated with oxides
91 and hydroxides of Al, Fe and Mn), and (5) apatite P (AP, the P fraction associated with Ca). In order
92 to avoid the transformation of P species in sludge during preparation, the samples centrifuged at

93 6000×g for 10 min at 4°C, and then the residue were frozen immediately at -80°C, lyophilized at -50°C
 94 for 48 h and stored at -20°C until analysis. The P concentration in the supernatant collected after
 95 extraction was determined with molybdenum blue method.

96 2.3. Extraction of P from sludge

97
 98 **Figure 1.** Schematic diagrams for the fractionation and characterization of various forms of P in
 99 sewage sludge.

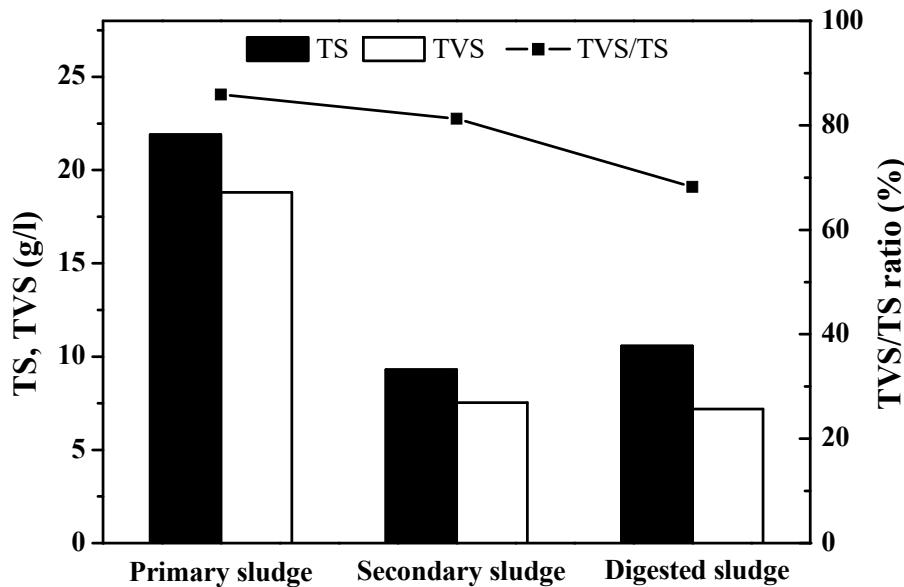
100 PCA and NaOH extraction methods have been efficiently used for IP and OP extraction from
 101 sludge, soil and sediment samples [21-24]. In this study, the PCA-NaOH extraction procedure was
 102 applied to fractionate and characterize P in the sludge samples according to the schematic diagram
 103 shown in Figure 1. Before extraction, a certain amount of sludge was washed twice with 100 mM
 104 NaCl solution (4°C) with the supernatant being discharged. After extraction, neutralization was
 105 conducted immediately to minimize P transformation. 2 ml of the resultant supernatant was taken
 106 for TP, IP and OP analysis. The remaining extracts were freeze-dried at -50°C for 48 h, and the dried
 107 PCA-NaOH extracts were uniformly mixed and them stored at -20°C till ³¹P NMR analysis.

108 2.4. Chemical analysis

109 Mixed liquor (volatile) suspended solids (ML(V)SS), chemical oxygen demand (COD),
 110 ammonia nitrogen (NH₄-N), and phosphorus (PO₄-P) were measured in accordance with the
 111 standard methods [25]. Total concentration of phosphorus in the liquid was determined with
 112 molybdenum blue method after digestion by potassium persulfate at 120°C. Metal ions in sludge
 113 samples were quantified after the sludge samples being digested and filtered through 0.22 µm
 114 cellulose nitrate membrane filters (Nalgene). 0.1 g of dried sludge was digested in a mixture of 3 ml
 115 hydrochloric acid (37%, Wako), 1 ml nitric acid (70%, Wako), and 1 ml perchloric acid (60%, Wako)
 116 on an electric heating plate for 10 min. The concentration of each metal was measured by inductively
 117 coupled plasma mass spectrometry (ICP-MS, ELAN DRC-e, Perkin Elmer, USA).

118 2.5. ³¹P NMR Analysis

119 To obtain the ³¹P NMR spectrum, 200 mg of freeze-dried sludge extracts were re-dissolved in 0.8
 120 ml of 1M NaOH and 0.2 ml D₂O and then 0.2 ml of 100 mM EDTA solution was added. The dose of
 121 EDTA and NaOH solutions was to minimize the interference of divalent/trivalent cations and to
 122 adjust pH above 12.0, respectively, to ensure consistent chemical shifts and optimal spectral
 123 resolution during the ³¹P NMR measurement.


124 The ³¹P NMR spectrum was obtained by using a Bruker Avance-600MHz NMR Spectrometer at
 125 242.94 MHz, 90°C of pulse width, 25°C of regulated temperature, and acquisition time of 0.67 s
 126 (with relaxation delay of 2s) were applied in the experiments. To obtain accurate phosphorus forms,
 127 spectra were collected immediately after preparation and the process was finished within 2 h to
 128 minimize transformation of phosphorus species. Chemical shifts of signals were determined
 129 relatively to an external standard of 85% H₃PO₄ via signal lock. The peaks were assigned to P species
 130 according to the reports in literature with peak areas calculated by integration [26-29].

131

132 3. Results

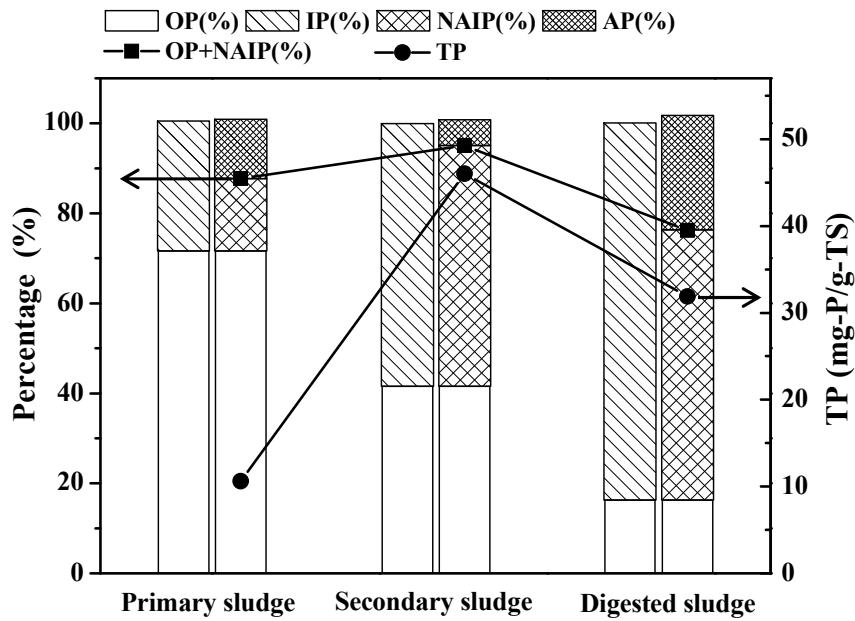
133 3.1. Characterization of sludge

134

135

136 **Figure 2.** Changed in TS, TVS and TVS/TS ratio of the sludge sample.

137


Table 1. Average metal content in sewage sludge (Unit: mg/g-TS).

Sample	Na	K	Mg	Ca	Fe
Primary sludge	1.6	2.3	1.4	1.7	0.6
Secondary sludge	4.3	12.4	9.6	7.2	6.4
Digested sludge	6.2	22.7	17.1	13.1	11.5

138

139 TS, TVS and TVS/TS ratio of sludge were shown in Figure 2. The concentration of TS in primary
 140 sludge is about 21.9 g/L, which is approximately 2 times of that in secondary and digested sludge.
 141 The TVS/TS ratio of primary sludge, secondary sludge and digested sludge were 85.9%, 81.2% and
 142 68.1%, respectively. In anaerobic digestion stage, biodegradable organic substances can be converted
 143 to biogas, leaving most inorganic and recalcitrant materials in the digested sludge. This can be
 144 explained the lower TVS/TS ratio of digested sludge than those of primary sludge and secondary
 145 sludge. Mineral element analysis showed that K, Mg, Fe and Ca were the major ions in all sludge
 146 samples (Table 1). In addition, the concentration of mineral elements in digested sludge was much
 higher than that in primary sludge and secondary sludge, proved previously explanation.

147 3.2. P fractionation in sludge by SMT protocol

148

149

150

151

Figure 3. TP concentrations and percentage of each P fraction to TP in the sludges by using the SMT extraction protocol. TS, total solids; TP, total phosphorus; OP, organic phosphorus; IP, inorganic phosphorus; NAIP, non-apatite inorganic phosphorus; AP, apatite phosphorus.

152

Table 2. Average contents of each P fraction in sludge by using the SMT extraction protocol.

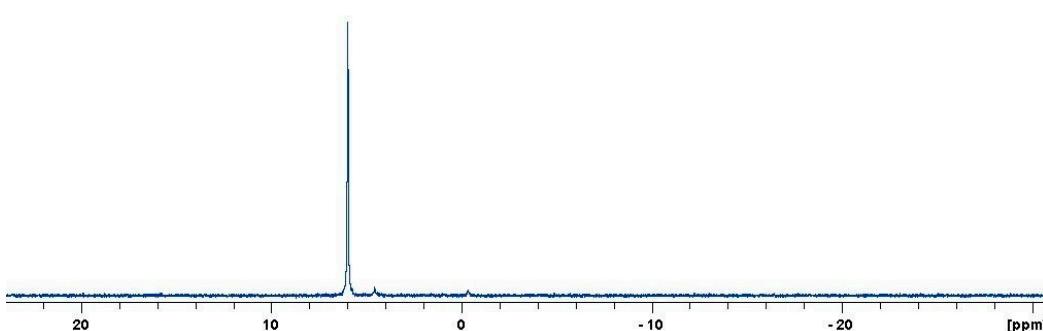
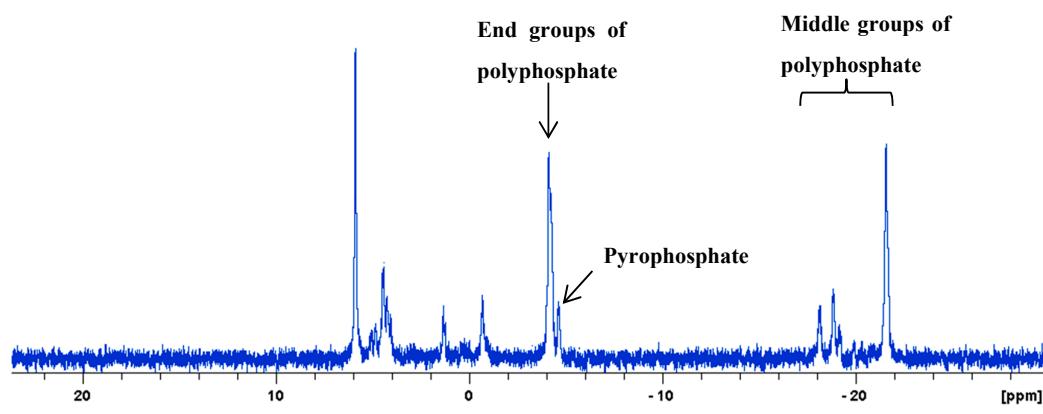
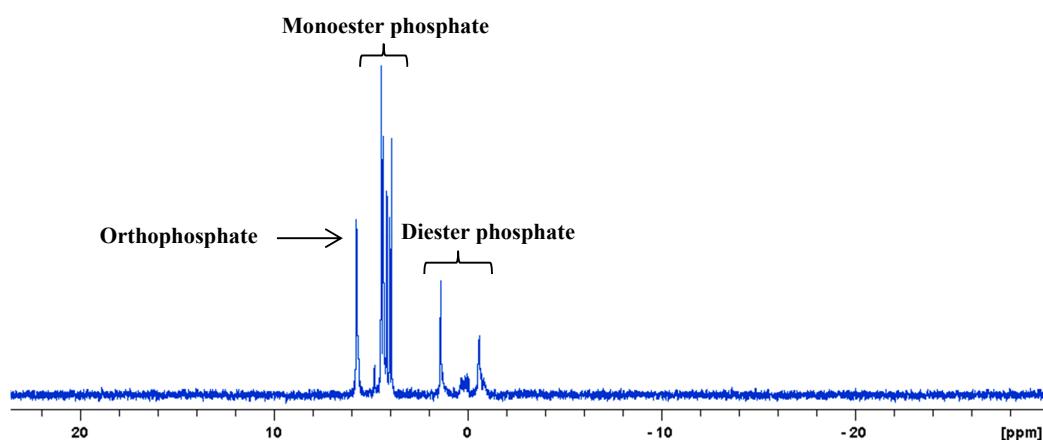
Sludge	TP (mg-P/g-TS)	OP (mg-P/g-TS)	IP (mg-P/g-TS)	NAIP (mg-P/g-TS)	AP (mg-P/g-TS)	OP+NAIP (mg-P/g-TS)	Bio-availability (%)
Primary sludge	10.6±3.2	7.6±2.4	3.1±1.6	1.7±0.8	1.4±0.6	9.3	87.7
Secondary sludge	46.1±5.6	19.1±3.5	26.9±2.8	24.6±3.1	2.6±1.1	43.7	94.8
Digested sludge	31.9±5.1	5.2±2.9	26.7±3.4	19.1±2.3	8.2±2.7	24.3	76.2

153 TS, total solids; TP, total P; OP, organic P; IP, inorganic P; NAIP, non-apatite P; AP, apatite P; Bio-availability, the
 154 percentage of OP+NAIP to TP.

155 Table 2 summarized the P fractions of primary sludge, secondary sludge and digested sludge,
 156 respectively. The TP concentration in secondary sludge was about 46.1 mg/g-TS, which was around
 157 4.3 times of that in primary sludge. This result may be brought about by the secondary sludge,
 158 which accumulated high concentration of P and responsible for P removal from wastewater. While
 159 the primary sludge directly settled from wastewater is mainly suspended solid contaminants.
 160 Compared to secondary sludge, lower concentration of TP in digested sludge was also detected,
 161 most probably due to parts of P in the secondary sludge was released to the effluent in digestion
 162 tank (Table S1). OP content in secondary sludge was about 19.1 mg/g-TS, much higher than that in
 163 primary sludge (7.6 mg/g-TS) and digested sludge (5.2 mg/g-TS). While the percentage of OP to TP
 164 was 71.7% in primary sludge, which was higher than that in secondary sludge (41.4% of TP) and
 165 digested sludge (16.3% of TP), indicating OP is the dominant P in primary sludge (Figure 3). It was
 166 reported that OP can be released from sediments and utilized by algae [30]. Moreover, OP in soil can
 167 be hydrolyzed by phosphatase and then used by the rhizosphere of plants [31, 32]. Thus high
 168 content of OP in sludge may play an important role in P recycle when land application of sludge as P
 169 fertilizer is taken into consideration.

170 On the other hand, IP was the major P fraction in secondary sludge and digested sludge, in
 171 which IP accounted for 58.4% and 77.5% of TP, respectively. Only about 3.1 mg/g IP (about 28.8% of
 172 TP) was detected in primary sludge (Table 2, Figure 3). NAIP was the dominant IP in primary
 173 sludge, secondary sludge and digested sludge, accounting for 55.8%, 91.6% and 69.3% of IP,
 174 respectively. In addition, NAIP was about 16.0%, 53.4% and 59.9% of TP in primary sludge,
 175 secondary sludge and digested sludge, respectively. Compared with OP and NAIP, AP content was
 176 relatively low, about 13.2% of TP in primary sludge and 5.6% of TP in secondary sludge. However, a
 177 high content and percentage of AP was founded in digested sludge (8.2 mg/g-TS and 25.7% of TP),
 178 most probably due to the formation of Ca-P precipitates in the digestion tank resulting from the
 179 saturation status of co-existing calcium phosphate.

180 OP and NAIP were considered to be releasable and bio-available P. In this study, the
 181 concentration of NAIP+OP were 9.3, 43.7 and 24.3 mg/g-TS, accounting for about 87.7%, 94.8% and
 182 76.2% of TP in primary sludge, secondary sludge and digested sludge, respectively. It was obviously
 183 that secondary sludge not only has the highest NAIP+OP content but also has the highest percentage
 184 of NAIP+OP among the three sludge samples. Although digested sludge has the lowest percentage
 185 of NAIP+OP, its NAIP+OP contents are much higher than those in primary sludge. Thus digested
 186 sludge should be reused in preference to primary sludge when utilization of sewage as P fertilizer is
 187 taken into consideration. These indicated the content of bio-available P was a more intuitive and
 188 better parameter than TP concentration and proportion of bio-available P to assess the
 189 bio-availability of P in sewage sludge.




190 *3.3. Identification of P species in sludge by ^{31}P NMR analysis*

191 **Table 3.** Contents of different P fractions extracted by PCA + NaOH method and their relative
 192 proportions (%TP) identified by ^{31}P NMR in the sludge samples.

Sample	TPExtract (mg-P/g-TS)	IP			OP	
		Ortho-P (%)	Pyro-P (%)	Poly-P (%)	Monoester-P (%)	Diester-P (%)
Primary sludge	9.7 \pm 2.8	21.3 \pm 3.1	-	-	54.6 \pm 5.7	24.1 \pm 4.2
Secondary sludge	43.4 \pm 4.7	17.6 \pm 6.5	2.4 \pm 1.2	54.2 \pm 5.7	16.1 \pm 4.9	9.7 \pm 2.2
Digested sludge	29.8 \pm 4.1	89.2 \pm 5.8	-	-	6.6 \pm 3.3	4.3 \pm 3.6

194 Quantification of various P fractions by integrating the peak areas in NMR spectra has been
195 widely used to estimate the relative proportions of P fractions. All NMR-spectra show peaks in the
196 areas for ortho-P, monoester-P, diester-P, pyro-P, poly-P (Figure 4). Table 3 summarizes the
197 contents of these compounds and their relative proportions (% TP) in primary sludge, secondary
198 sludge and digested sludge extracts identified by ^{31}P NMR. The average TP contents in the PCA +
199 NaOH extracts from primary sludge, secondary sludge and digested sludge were 9.7, 43.4 and 29.8
200 mg-P/g-TS with average extraction rate of approximately 91.5-94.1% of TP, respectively, indicating
201 the high efficiency of PCA + NaOH procedure for P extraction from sludge samples.

202

207

(c)

208
209 Figure 4. Typical ^{31}P NMR spectra of PCA+NaOH extracts from (a) primary sludge, (b) secondary sludge and
210 (c) digested sludge.

211 In primary sludge extracts, ortho-P, monoester-P and diester-P were identified as the major P
212 species, accounting for approximately 21.3, 54.6 and 24.1% of TP, respectively. Obviously, the
213 monoester-P and diester-P were the dominant OP species in primary sludge extracts. Generally,
214 monoester-P and diester-P are regarded as potential bio-available P due to that they can be
215 hydrolyzed and utilized by plants and algal in certain conditions. In the secondary sludge, poly-P
216 was the major form of P species, comprising 54.2% of the extractable TP from sludge (Table 3). The
217 high content of poly-P in secondary sludge signals the high amount and bioactivity of PAOs in
218 activated sludge in the aeration tank during sampling period. Specifically, pyro-P was only
219 identified in the secondary sludge, around 2.4% of extractable TP. The presence of pyro-P could
220 reflect microbial activity in sludge due to it was directly related to adenosine triphosphate (ATP)
221 hydrolysis in cells. Ortho-P, a main nutrient for living organisms, was about 89.2% of TP in the
222 digested sludge and much higher than that in the primary sludge and the secondary sludge. These
223 results indicated that most of poly-P, pyro-P, monoester-P and diester-P in primary sludge and
224 secondary sludge were converted to ortho-P or reused by anaerobic bacteria during digestion
225 process.

226 *3.4. Implication of this study*

227 The TP content in primary sludge, secondary sludge and digested sludge was about 10.6, 46.1
228 and 31.9 mg/g-TS, respectively. Obviously, secondary sludge has the highest concentration of P,
229 followed by digested sludge and primary sludge. In primary sludge, OP was the dominant P
230 fractions and accounting for about 71.7% of TP. IP was the major P fraction in secondary sludge and
231 digested sludge, in which IP accounted for 58.4% and 77.5% of TP, respectively. Monoester-P,
232 poly-P and ortho-P, accounting for 54.6%, 54.3% and 89.2% of TP, were the dominant P species in
233 the primary sludge, secondary sludge and digested sludge, respectively. The concentration of
234 NAIP+OP were 9.3, 43.7 and 24.3 mg/g-TS, accounting for about 87.7%, 94.8% and 76.2% of TP in
235 primary sludge, secondary sludge and digested sludge, respectively, indicating the high mobile and
236 bio-available P stored in those sludge samples.

237 Some studies have been conducted to investigate the P in sewage sludge, but most have only
238 focused on the concentration of TP and ignoring the bio-available P in sludge. The content of
239 bio-available P may provide a more intuitive and convenient parameter to evaluate the P in sewage
240 sludge. The results of the present study indicated that secondary sludge not only contains the
241 highest concentration and proportion of TP among different sludge samples, but also has the
242 highest content of potential mobile and bio-available P. In this study, secondary sludge was the
243 optimal choice for land application of sewage sludge as P fertilizer source. Although the proportion
244 of bio-available P in primary sludge was slightly higher than that in digested sludge, digested
245 sludge is more suitable for land application as it contains much more bio-available P content. This
246 study proved that land application of sewage sludge as P fertilizer should be in the order secondary
247 sludge>digested sludge>primary sludge.

248 **4. Conclusions**

249 In this study, the P species and bio-availability in primary sludge, secondary sludge and
250 digested sludge were identified and evaluated. The following results can be obtained:

251 (1) IP was the primary P fraction in the secondary sludge and digested sludge, in which NAIP
252 amounted to 91.6% and 69.3% of TP, respectively. OP content (about 7.6 mg/g-TS) was the dominant
253 P in the primary sludge.

254 (2) Two OP fractions (monoester-P and diester-P) and three IP compounds (ortho-P, poly-P and
255 pyro-P) were identified P species in the secondary sludge. Poly-P was the dominant P species in the
256 secondary sludge, comprising approximately 54.3% of TP. Monoester-P and ortho-P, accounting for
257 54.6% and 89.2% of TP, were the major P species in the primary sludge and digested sludge,
258 respectively.

259 (3) The content of bio-available P is a good parameter to evaluate the bio-availability of P in
260 sewage sludge. About 9.3, 43.7 and 24.3 mg/g-TS bio-available P were stored in primary sludge and
261 digested sludge, respectively.

262 These results revealed that P species and bio-availability were different in primary sludge,
263 secondary sludge and digested sludge, which is much meaningful for P removal and recovery from
264 wastewater and sludge in WWTPs.

265 **Author Contributions:** S.Z. was in charge of contributing the analysis method, analyzing the data, and writing
266 the paper. W.H. and D.L. were in charge of the supervision of this research and helping in revising. All authors have read
267 and approved the final manuscript.

268 **Funding:** The authors would like to thank the financial support from National Natural Science Foundation of
269 China (No. 51608279)

270 **Acknowledgments:** We acknowledge the valuable comments by two anonymous reviewers.

271 **Conflicts of Interest:** The authors declare no conflict of interest.

273 **References**

1. Karl, D.M. Aquatic ecology: phosphorus, the staff of life. *Nature* **2000**, *406*, 31-33.
2. Christen, K. Closing the phosphorus loop. *Environ. Sci. Technol.* **2007**, *41*, 2078-2078.
3. Cordell D.; Drangert J.-O.; White S. The story of phosphorus: Global food security and food for thought. *Global Environ. Chang.* **2009**, *19*, 292-305.
4. Gilbert N. The disappearing nutrient. *Nature* **2009**, *461*, 716-718.
5. Hao X.; Wang C.; van Loosdrecht M.C.M.; Hu Y.; (2013), Looking beyond struvite for P -recovery, *Environ. Sci. Technol.* **47**, 4965-4966.
6. USGS. Phosphate rock in mineral commodity summaries, U.S. Geological Survey, Washington D.C. 2014.
7. Xu, H.; Zhang H.; Shao L.; He P. Fraction distributions of phosphorus in sewage sludge and sludge ash. *Waste Biomass Valor.* **2012**, *3*, 355-361.
8. Arakane, M.; Imai, T.; Murakami, S.; Takeuchi, M.; Ukita, M.; Sekine, M.; Higuchi T. Resource recovery from excess sludge by subcritical water combined with magnesium ammonium phosphate process. *Water Sci. Technol.* **2006**, *54*, 81-86.
9. Hosni, K.; Ben, Moussa, S.; Chachi, A.; Ben, Amor, M. The removal of PO_4^{3-} by calcium hydroxide from synthetic wastewater: optimization of the operating conditions. *Desalination* **2008**, *223*, 337-343.
10. Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. *Waste Manage.* **2008**, *28*, 347-358.
11. Catallo, W.J.; Comeaux, J.L. Reductive hydrothermal treatment of sewage sludge. *Waste Manage.* **2008**, *28*, 2213-2219.
12. Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. *Waste Manage.* **2012**, *32*, 1186-1195.
13. Fytilli, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods-A review. *Renew. Sust. Energ. Rev.* **2008**, *12*, 116-140.
14. Xie, C.; Zhao, J.; Tang, J.; Xu, J.; Lin, X.; Xu, X. The phosphorus fractions and alkaline phosphatase activities in sludge. *Bioresource Technol.* **2011**, *102*, 2455-2461.
15. Hinedi, Z.R.; Chang, A.C.; Lee, R.W.K. Characterization of phosphorus in sludge extracts using phosphorus-31 nuclear magnetic resonance spectroscopy. *J. Environ. Qual.* **1989**, *18*, 323-329.
16. Uhlmann, D.; Röske, I.; Hupfer, M.; Ohms, G. A simple method to distinguish between polyphosphate and other phosphate fractions of activated sludge. *Water Res.* **1990**, *24*, 1355-1360.
17. Lalmi, D.; Hadef, R.; Numerical study of the swirl direction effect at the turbulent diffusion flame characteristics. *Int. J. Heat. Technol.* **2017** *35*, 520-528.
18. Medeiros, J.J.G.; Cid, B.P.; Gomez, E.F. Analytical phosphorus fractionation in sewage sludge and sediment samples. *Anal. Bioanal. Chem.* **2005**, *381*, 873-878.
19. Ruban, V.; Lopez-Sanchez, J.F.; Pardo, P.; Rauret, G.; Muntau, H.; Quevauviller, P. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. *J. Environ. Monitor.* **1999**, *1*, 51-56.

- 310 20. Zhao, R. Simulation-based environmental cost analysis for work-in-process. *Int. J. Simul. Model.* **2012**, *11*,
311 196-210.
- 312 21. Ahlgren, J.; Tranvik, L.; Gogoll, A.; Waldeback, M.; Markides, K.; Rydin, E.; Sediment depth attenuation of
313 biogenic phosphorus compounds measured by 31P NMR. *Environ. Sci. Technol.* **2005**, *39*, 867-872.
- 314 22. Daumer, M.L.; Béline, F.; Spérando, M.; Morel, C. Relevance of a perchloric acid extraction scheme to
315 determine mineral and organic phosphorus in swine slurry. *Bioresource Technol.* **2008**, *99*, 1319-1324.
- 316 23. Vestergren, J.; Vincent, A.G.; Jansson, M.; Persson, P.; Ilstedt, U.; Gröbner, G.; Giesler, R.; Schleucher, J.
317 High-resolution characterization of organic phosphorus in soil extracts using 2D 1H-31P NMR correlation
318 spectroscopy. *Environ. Sci. Technol.* **2012**, *46*, 3950-3956.
- 319 24. Saric, T.; Simunovic, G.; Simunovic, K.; Svalina, I. Estimation of machining time for CNC manufacturing
320 using neural. *Int. J. Simul. Model.* **2016**, *15*, 663-675.
- 321 25. APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed, *American Public Health
322 Association/American Water Work Association/Water Environment Federation*, Washington D.C.; USA. 1998.
- 323 26. Turner, B.L.; Mahieu, N.; Condron, L.M. Phosphorus-31 nuclear magnetic resonance spectral assignments
324 of phosphorus compounds in soil NaOH-EDTA extracts. *Soil Sci. Soc. Am. J.* **2003**, *67*, 497-510.
- 325 27. Turner, B.L. Optimizing phosphorus characterization in animal manures by solution phosphorus- 31
326 nuclear magnetic resonance spectroscopy. *J. Environ. Qual.* **2004**, *33*, 757-766.
- 327 28. Zhang, H.-L.; Fang, W.; Wang, Y.-P.; Sheng, G.-P.; Xia, C.-W.; Zeng, R.J.; Yu, H.-Q. Species of phosphorus
328 in the extracellular polymeric substances of EBPR sludge. *Bioresource Technol.* **2013**, *142*, 714-718.
- 329 29. Reis, A.N.; Pitombeira-Neto, A.R.; Rolim, G.A. Simulation of tank truck loading operations in a fuel
330 distribution. *Int. J. Simul. Model.* **2017**, *16*, 435-447.
- 331 30. Ahlgren, J.; Reitzel, K.; Brabandere, H.D.; Gogoll, A.; Rydin, E. Release of organic P forms from lake
332 sediments. *Water Res.* **2011**, *45*, 565-572.
- 333 31. George, T.S.; Turner, B.L.; Gregory, P.J.; Menun, C.B.J.; Richardson, A.E. Depletion of organic phosphorus
334 from oxisols in relation to phosphatase activities in the rhizosphere. *Eur. J. Soil Sci.* **2006**, *57*, 47-57.
- 335 32. Mesmoudi, K.; Meguellati, K.; Bournet, P.-E. Thermal analysis of greenhouses installed under semi-arid
336 climate. *Int. J. Heat .Technol.* **2017**, *5*, 474-486.