Preprint
Review

Towards the Understanding of Ice Crystal-graupel Collision Charging in Thunderstorm Electrification

Altmetrics

Downloads

1083

Views

488

Comments

0

Submitted:

06 November 2018

Posted:

13 November 2018

You are already at the latest version

Alerts
Abstract
Thunderstorm electrification has been studied for hundreds of years. Several mechanisms have been proposed to elucidate the electrification, including convective charging, inductive precipitation charging, and ice crystal-graupel collision charging. Field observations and model studies have demonstrated the vital roles that graupel and ice crystals play in the electrification, but the mechanism of the collision charging is still unclear. The fundamental essence of relative growth rate theory used for explaining the tripole charge structure in thunderclouds also needs a further exploration. We analyze the processes of ice crystal-graupel collision charging from charge migration inside hydrometeors to charge separation between two hydrometeors. The driving effects of temperature gradient and chemical potential gradient in charge migration are clarified, as well as the applicability of the relative growth rate theory, thermoelectric effect and surface tension gradient in different humidities. Based on the understanding from these electrification mechanisms, we propose that the essence of charge separation is driven by non-thermal equilibrium, and future studies on thunderstorm electrification should focus on the dynamical non-thermal equilibrium of cloud particles.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated