

1 Article

2 Theaflavins Improve Insulin Sensitivity through 3 Regulating Mitochondrial Biosynthesis in Palmitic 4 Acid-Induced HepG2 Cells

5 **Tuantuan Tong** ^{1,2,*,#}, **Ning Ren** ^{1,2,†}, **Jiafan Wu** ^{1,2}, **Na Guo** ^{1,2}, **Xiaobo Liu** ^{1,2}, **Hyunuk Kang**^{1,2}, **Pan Li**
6 ^{1,2}, **Eunhye Kim**^{1,2}, **Yuanyuan Wu**^{1,2}, **Puming He**^{1,2}, **Youying Tu**^{1,2, *} and **Bo Li**^{1,2, *}

7 ¹ Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China

8 ² Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China

9 [#] The first two authors contributed equally to this work and are considered co-first authors

10 ^{*} Correspondence: drlib@zju.edu.cn; Tel.: +86-571-88982743

11

12 **Abstract:** Theaflavins, the characteristic and bioactive polyphenols in black tea, possess the
13 potential improvement effects on insulin resistance-associated metabolic abnormalities including
14 obesity and type 2 diabetes. However, the molecular mechanisms of theaflavins improving insulin
15 sensitivity are still not clear. In this study, we investigated the protective effects and mechanisms of
16 theaflavins on palmitic acid-induced insulin resistance in HepG2 cells. Theaflavins could
17 significantly increase glucose uptake of insulin-resistant cells at noncytotoxic doses. This activity
18 was mediated by upregulating the glucose transporter 4 protein expression, increasing the
19 phosphorylation of IRS-1 at Ser307, and reduced the phosphor-Akt (Ser473) level. Moreover,
20 theaflavins were found to enhance mitochondrial DNA copy number through down-regulate the
21 PGC-1 β mRNA level and up-regulate PRC mRNA expression in insulin-resistant HepG2 cells.
22 These results indicated that theaflavins could improve free fatty acid-induced hepatic insulin
23 resistance by promoting mitochondrial biogenesis, and were promising functional food and
24 medicines for insulin resistance-related disorders.

25 **Keywords:** Theaflavins; Hepatocyte; Insulin resistance; Insulin signaling pathway; Mitochondrial
26 biogenesis; Peroxisome proliferator-activated receptor coactivator-1 (PGC-1).

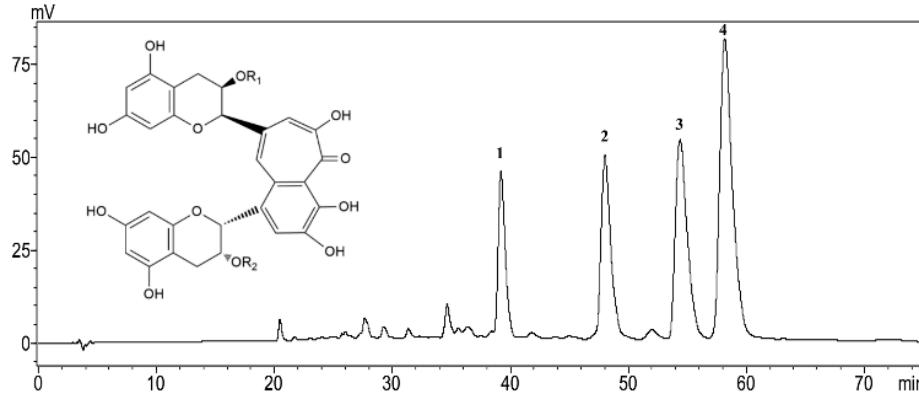
27

28 1. Introduction

29 Insulin resistance (IR) is a pathological condition in which cells fail to respond to the normal
30 physiological dose of insulin, and plays important roles in the pathogenesis of metabolic syndrome
31 such as obesity and type 2 diabetes mellitus (T2DM)[1]. Accumulating studies have demonstrated
32 that consumption of high-energy diets lead to the glycometabolic disorder and impairment of
33 insulin sensitivity, which increased the risk of the development of metabolic abnormalities[2]. The
34 current clinical drugs for treatment of diabetes and insulin resistance, including sulfonylureas,
35 metformin and thiazolidinediones, always have some side effects such as weight gain and
36 hypoglycemia [3-5]. Search for new functional foods and medicines for IR and T2DM from natural
37 resources with fewer adverse effects has become an urgent need.

38 Black tea, the most popular tea in the world, has been found to effectively improve high-energy
39 diet induced metabolic syndromes such as obesity, hyperlipidemia and diabetes in animal models
40 and adults [6,7]. Theaflavins, the characteristic polyphenols generating from enzymatic oxidation
41 of appropriate pairs of catechins during the black tea production, were reported to contribute
42 importantly to these health benefits of black tea. The major theaflavins are theaflavin (TF),
43 theaflavin-3-gallate (TF-3-G), theaflavin-3'-gallate (TF-3'-G) and theaflavin-3, 3'-digallate (TFDG) [8].
44 A randomized pilot study showed that oral administration of theaflavins had a beneficial effect on
45 body fat and muscle in healthy individuals[9]. Black tea polyphenols containing theaflavins were
46 demonstrated to promote insulin-sensitive glucose transporter 4 (GLUT4) translocation through

47 both PI3K and AMPK-dependent pathways in L6 skeletal muscle cells[10]. Jin et al reported that
 48 administration of black tea extracts, TFs and TF1 all significantly lowered the serum insulin levels,
 49 improved the insulin sensitivity and suppressed fat accumulation in high-fat diet induced obese
 50 rats, and no obvious toxicity were observed[11]. Liver, skeletal muscle and adipose are major organs
 51 involved in the glucose metabolism and insulin resistance[12]. Among the three organs, liver is the
 52 most possible target of theaflavins based on their bioavailability and tissue concentrations[13].
 53 However, the effect and molecular mechanisms of theaflavins on improving liver insulin sensitivity
 54 are still not clear.

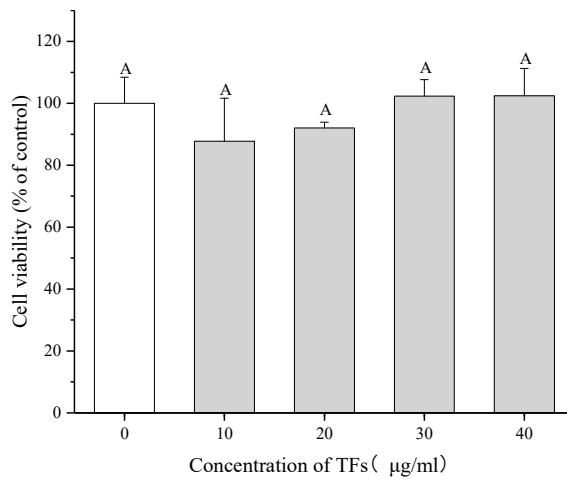

55 Mitochondria are primarily responsible for providing cells with energy in the form of
 56 adenosine triphosphate (ATP), and play an important for many cellular processes. The association
 57 between mitochondria dysfunction and insulin resistance have been observed in insulin resistant or
 58 diabetic patients and animal models[14]. Reduced mitochondrial capacity will contribute to the
 59 accumulation of reactive oxygen species or lipid intermediates, desensitizing insulin signaling and
 60 leading to insulin resistance[15]. The lower mitochondrial content is usually associated with reduced
 61 mitochondrial function. Improving mitochondrial function and biogenesis may lead to new
 62 therapeutic or preventive options for IR and T2DM [16]. The peroxisome proliferator-activated
 63 receptor coactivator-1 (PGC-1) family, composed of PGC-1 α , PGC-1 β and PGC-1-related coactivator
 64 (PRC), play a vital role in a regulatory network governing mitochondrial biogenesis and respiratory
 65 function. Several studies in humans and rodents have described the associations between the PGC-1
 66 family and IR [3].

67 Redox-active compounds such as resveratrol, pyrroloquinoline, quinone and hydroxytyrosol
 68 have been reported to improve mitochondrial function and biogenesis through counteracting
 69 reactive oxygen species[17]. Theaflavins were found to be potent inhibitors of the membrane-bound
 70 complex I and ATP synthase, and could eliminate superoxide produced form the respiratory chain
 71 of *Escherichia coli* [8]. Considered together, the present study was designed to examine whether
 72 theaflavins was able to promote liver mitochondrial biogenesis and alleviate insulin resistance using
 73 an insulin-resistant HepG2 cell model. The possible molecular mechanisms were also elucidated.

74 2. Results

75 2.1. Chemical compositions of TFs

76 HPLC analysis showed that TFs used in this work contained 12.04% TF, 18.10% TF-3-G, 24.14%
 77 TF-3'-G and 38.49% TFDG. The total content of the four theaflavin monomers in TFs was 92.77%
 78 (Fig. 1).

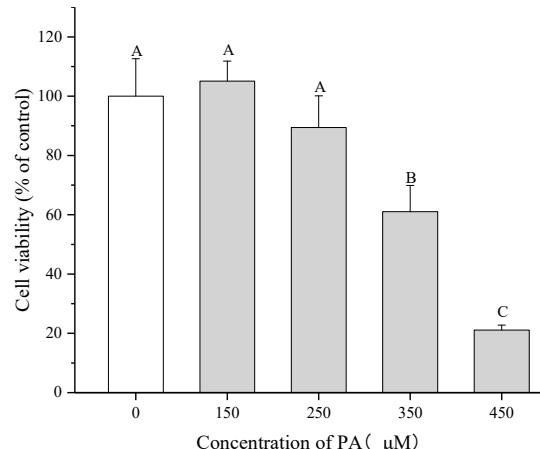


79 **Figure 1.** HPLC chromatogram of theaflavins (TFs). 1, Theaflavin (TF): R1=R2=H; 2, Theaflavin-3-gallate
 80 (TF-3-G): R1=H, R2=galloyl; 3, Theaflavin-3'-gallate (TF-3'-G): R1=galloyl, R2=H; 4, Theaflavins-3, 3'-digallate
 81 (TFDG): R1= R2=galloyl.

82 2.2. Effect of TFs on HepG2 cell viability

84 The cytotoxicity of TFs on HepG2 cells was evaluated using the MTT assay after 24 h
 85 incubation. There was no significant difference (p>0.05) among the cell viabilities of the negative
 86 control and TFs-treated groups (10-40 μ g/ml), indicating TFs had no cytotoxic effects on HepG2 cells

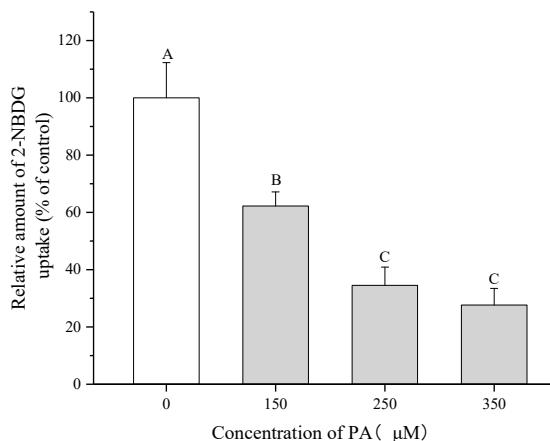
87 within the selected concentrations (Fig. 2). The TFs treatment used in the next experiments were
 88 between 0 - 10 μ g/ml, in order to explore whether TFs could influence cell insulin sensitivity at lower
 89 and safer doses.



90 **Figure 2.** Effect of theaflavins (TFs) on HepG2 cell growth at 24 h. Cell viability was determined by MTT
 91 assay. Data represent means \pm SD from five replicates. Significant differences among different treatments are
 92 indicated by different letters ($p < 0.05$).
 93

94 2.3. Establishment of IR HepG2 cell model induced by PA

95 In order to determine the most optimal concentration of PA for inducing IR HepG2 cells, the
 96 effects of PA on cell viability and glucose uptake were tested. The MTT assay showed that PA
 97 (150-450 μ M) could inhibit the proliferation of HepG2 cells in a dose-dependent manner after 24 h
 98 treatment ($p < 0.05$), and the cell viability varied from $105.09 \pm 6.75\%$ to $21.12 \pm 1.69\%$ (Fig. 3A). Then
 99 the cell 2-NBDG uptake was determined at lower concentrations of PA (150-350 μ M), and Fig. 3B
 100 showed that 2-NBDG uptake was significantly decreased from $62.23 \pm 4.89\%$ to $27.65 \pm 5.81\%$ in HepG2
 101 cells ($p < 0.05$). These results suggested that PA could stimulate IR in HepG2 cells at 150- 250 μ M
 102 without obvious cytotoxicity, and 250 μ M was chosen for establishing IR HepG2 cell model because
 103 of its higher efficiency.
 104


105 A

106

107 B

108

109 **Figure 3.** Palmitic acid (PA) induces insulin resistance in HepG2 cells. (A) Effect of PA on HepG2 cell
 110 growth at 24 h. Cell viability was determined by MTT assay. (B) PA reduces 2-NBDG uptake of HepG2 cells.
 111 Data represent means \pm SD from five replicates. Significant differences among different treatments are indicated
 112 by different letters ($p < 0.05$).
 113

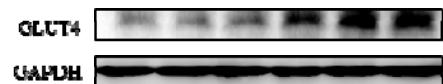
114 *2.4. Effects of TFs on glucose uptake of IR HepG2 cells*

115 In order to determine whether TFs could ameliorate IR of hepatocytes, glucose uptake assay
 116 was performed in IR HepG2 cells induced by PA. As shown in Fig. 4, PA (250 μ M) significantly
 117 decreased the 2-NBDG uptake of HepG2 cells, while TFs (2.5–10 μ g/ml) and metformin (5 μ g/ml,
 118 positive control) obviously reversed the reduction of 2-NBDG uptake at 24 h treatment ($p < 0.05$). This
 119 result indicated that TFs could improve the insulin sensibility of HepG2 cells treated by PA.
 120

121

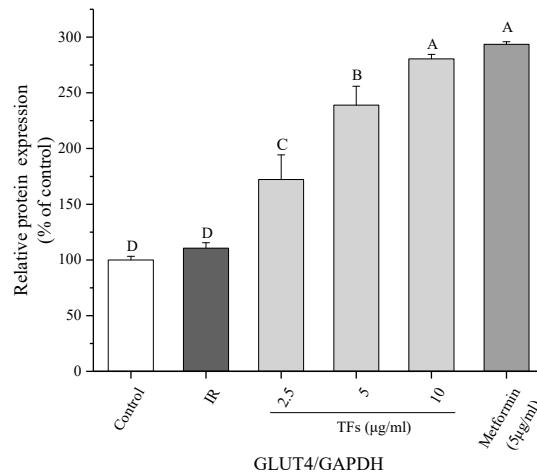
122 **Figure 4.** Effects of theaflavins (TFs) on 2-NBDG uptake of insulin-resistant HepG2 cells induced by
 123 palmitic acid (PA). Metformin is used as a positive control. Data represent means \pm SD from five replicates.
 124 Significant differences between groups are indicated by different letters ($p < 0.05$).
 125

126 *2.5. Effects of TFs on insulin signaling pathway*


127 To confirm the improvement of TFs on PA-induced insulin resistance, the expression of insulin
 128 signaling pathway-associated proteins in HepG2 cells were determined. As shown in Fig. 5 A-C,
 129 PA significantly reduced the phosphor-Akt (Ser473) protein level ($p < 0.05$), increased the protein
 130 expression of phosphor-IRS-1 (Ser307), and had no significant effects on the protein expressions of

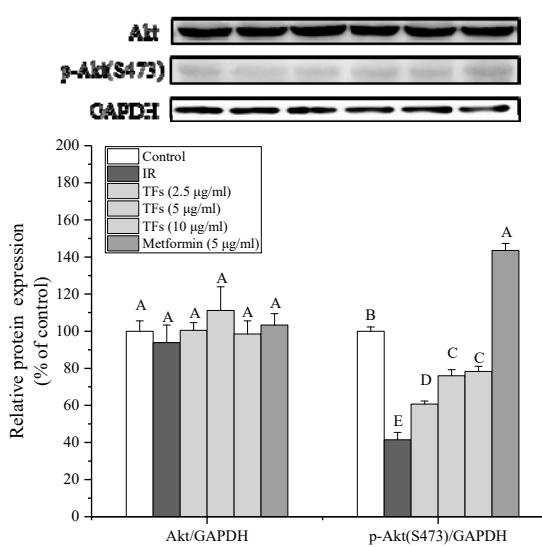
131 GLUT4, Akt and IRS-1 ($p>0.05$). TFs could enhance the GLUT4 protein level in a dose-dependent
 132 manner, and remarkably reverse the phosphorylation of Akt and IRS-1 induced by PA ($p<0.05$). TFs'
 133 activities on phosphor-IRS-1 (Ser307) and GLUT4 could be comparable to that of metformin. These
 134 results indicated that TFs might improve the glucose uptake and insulin sensitivity of PA-induced
 135 HepG2 cells through IRS-1/Akt/GLUT4 pathway.

136


137

A

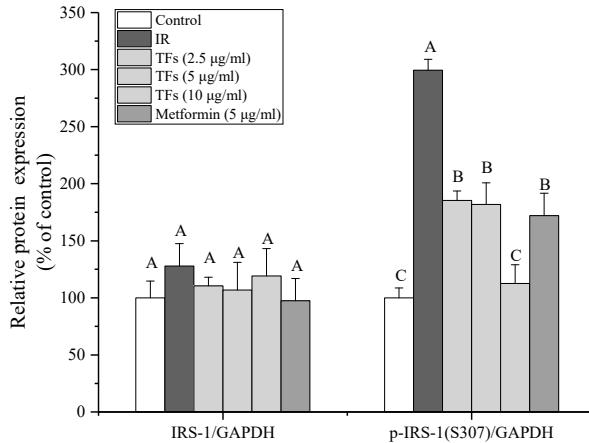
138


139

140

141

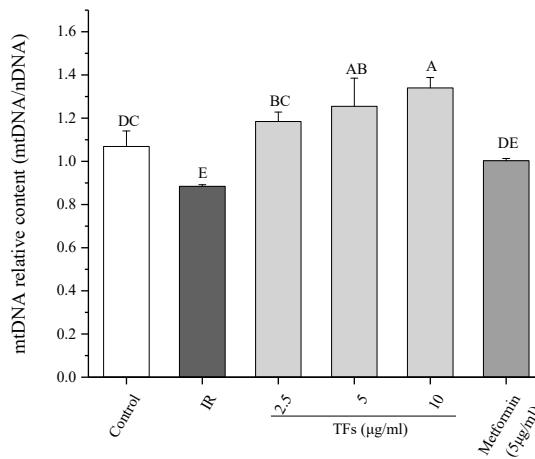
B



142

C

143


144

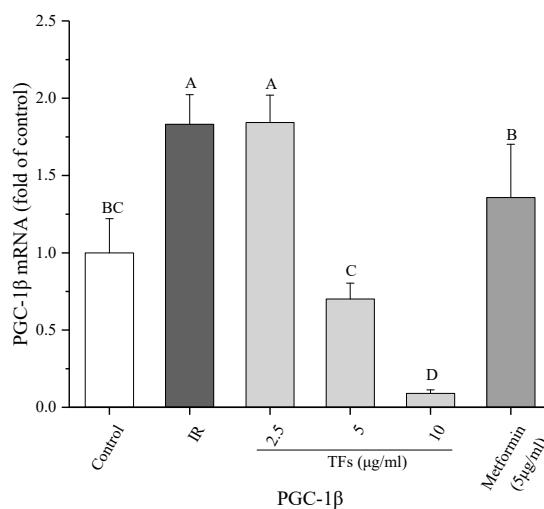
145 **Figure 5.** Effects of theaflavins (TFs, 2.5–10 µg/ml) on insulin signaling pathway in insulin-resistant HepG2
 146 cells at 24 h. (A) Protein expression of GLUT4. (B) Protein expressions of phosphor-Akt (Ser473) and Akt. (C)
 147 Protein expressions of phosphor-IRS-1 (Ser307) and IRS-1. The protein levels were analyzed by Western blot.
 148 Metformin (5 µg/ml) is used as a positive control. Data represent means \pm SD from three replicates. Significant
 149 differences among different treatments are indicated by different letters ($p < 0.05$).
 150

151 **2.6. TFs improve mitochondrial biogenesis in PA-induced HepG2 cells**

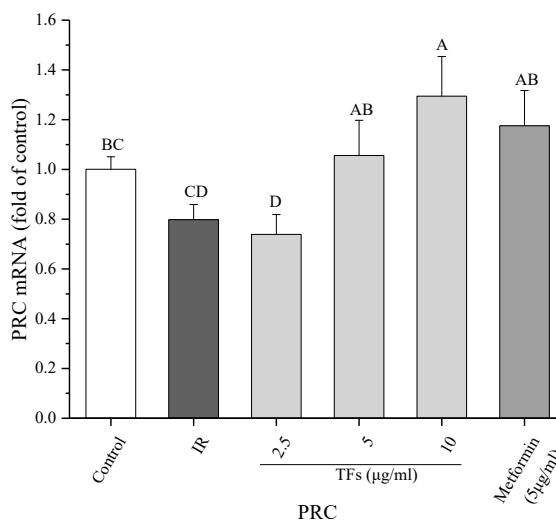
152 The mtDNA copy number was determined to evaluate the mitochondrial mass. As shown in
 153 Fig. 6, the relative mtDNA content in PA-treated HepG2 cells was reduced by around 20% compared
 154 to that of normal cells. TFs significantly increased the mtDNA copy number in a dose-dependent
 155 manner, and their activity was stronger than that of metformin ($p < 0.05$). These data suggested that
 156 the TFs could improve mitochondrial biogenesis in IR HepG2 cells.
 157

158

159


160 **Figure 6.** Effect of theaflavins (TFs) on the mtDNA copy number of insulin-resistant HepG2 cells at 24 h.
 161 Data represent means \pm SD from five replicates. Significant differences among different treatments are indicated
 162 by different letters ($p < 0.05$).
 163

164 **2.7. Effects of TFs on mRNA expression of PGC-1 family in PA induced HepG2 cells**


165 Two PGC-1 family members associated with mitochondrial biogenesis under energy stimulus,
 PGC-1 β and PRC genes were determined by RT-PCR. In the PA-induced HepG2 cells, the mRNA

166 expression was up-regulated, and the PRC mRNA level was decreased in comparison to the control
 167 cells. TFs obviously reversed the mRNA expressions of PGC-1 β and PRC (p<0.05), and their
 168 activities were stronger or similar compared with that of metformin at the same dose (Fig. 7).
 169

170 A

171 B

172 **Figure 7.** Effects of theaflavins (TFs) on the PGC-1 β (A) and PRC (B) mRNA expressions of
 173 insulin-resistant HepG2 cells at 24 h. The relative mRNA level was determined by quantitative real-time PCR,
 174 and calculated by the mean value with the comparative Ct method ($\Delta\Delta Ct$). Data represent means \pm SD from five
 175 replicates. Significant differences among different treatments are indicated by different letters (p < 0.05).

176 **3. Discussion**

177 Authors should discuss the results and how they can be interpreted in perspective of previous
 178 studies and of the working hypotheses. The findings and their implications should be discussed in
 179 the broadest context possible. Future research directions may also be highlighted.

180 High calorie dietary habits coupled with low levels of physical activity are prominent cause of
 181 metabolic syndrome in modern world. IR is a key risk factor in the pathogenesis of various chronic
 182 diseases including T2DM, cardiovascular disease, chronic kidney disease and cognitive disorders
 183 [18-20]. Natural products are thought to be the important sources for anti-T2DM drug
 184 discovery[21]. Many natural compounds such as flavanols[22] and anthocyanins [23] have been
 185 reported to ameliorate insulin resistance through different signaling pathways. Theaflavins, as one

186 of the major flavor and bioactive ingredient of black tea, has been demonstrated to protect against
187 cancer, inflammation, hyperlipidemia, hypertension and obesity etc. in vivo and in vitro [7,24-26].
188 Although theaflavins showed potential preventive and therapeutic effects on IR-associated
189 metabolic abnormalities as candidate nutritional supplements and medicines, the researches on the
190 direct correlation between theaflavins and IR are still limited.

191 Notwithstanding the bioavailability of tea polyphenols in vivo was thought to be low,
192 theaflavins were accumulated in the small and large intestine, liver and prostate of mice primarily in
193 free forms [13]. The liver is crucial for the maintenance of normal glucose homeostasis [27].
194 Impairment in hepatic insulin signaling resulted in glucose intolerance, lipid synthesis and chronic
195 IR [28]. Although PA-induced impaired insulin signaling cascade in human or mouse hepatocytes, is
196 a well-documented model of experimental IR, the PA dosage varied in different studies [29,30]. In
197 the present work, an IR HepG2 cell model was established with 250 μ M of PA (Fig. 3). The
198 fluorescent glucose analog, 2-NBDG, was used as a marker to detect glucose transport. TFs
199 significantly enhanced the 2-NBDG uptake of PA-induced HepG2 cells, indicating that these
200 compounds could improve the insulin sensitivity of IR hepatocytes (Fig. 4).

201 The GLUT4, a member of glucose transporters family, is identified as the most important type
202 of glucose transporters in mediating insulin-dependent glucose uptake and maintaining glucose
203 homeostasis. Overexpression of GLUT4 is a good strategy for treatment of IR[31]. Several natural
204 compounds and medicines such as leanolic acid and liraglutide have been reported to attenuate IR at
205 least partly through increasing GLUT4 expression in liver [32,33]. Previous study showed that black
206 tea polyphenols could promotes GLUT4 translocation in skeletal muscle cells[10]. Our data
207 indicated that TFs increased the expression of GLUT4 in PA-induced HepG2 cells (Fig. 5 A), which
208 explained the enhanced glucose uptake of IR hepatocytes treated with TFs.

209 The IRS-1/PI3K/Akt signaling pathway plays an important role in the regulation of insulin
210 signaling transduction and glucose metabolism in liver[34]. Akt as the downstream effector of
211 phosphatidylinositol 3-kinase (PI3K), could mediate effects of insulin on glucose uptake, glycolysis,
212 gluconeogenesis and glycogen synthesis in hepatocytes[35-37]. The PI3K/Akt signaling pathway
213 was shown to increase GLUT4 expression and promote translocation of GLUT4 vesicles to the
214 plasma membrane[38]. Insulin receptor substrate-1 (IRS-1) is essential for recruiting and activating
215 downstream PI3K/Akt pathway[39]. The serine phosphorylation of IRS-1(particularly on Ser636/639
216 and Ser307) could inhibit tyrosine phosphorylation of IRS-1 and then block the downstream effector
217 pathways and impair insulin signaling[40]. In this work, PA reduced the phosphorylated Akt
218 (Ser473) protein level and increased the phosphorylation of IRS-1(Ser307) in HepG2 cells, which
219 were in accordance with the previous study [41].TFs significantly reversed phosphorylation of Akt
220 and IRS-1 induced by PA (Fig. 5B and 5C), indicating that TFs could modulate insulin signaling
221 transduction and increase glucose uptake via the IRS-1/Akt/GLUT4 pathway in liver cells.

222 Defects in mitochondrial biogenesis leads to excess reactive oxygen species and the subsequent
223 decrease in energy expenditure, which are the main disruptors of insulin signaling in obesity.
224 Accumulation of FFAs in the liver may be connected with mitochondrial dysfunction including
225 mitochondrial DNA (mtDNA) depletion, decreased activity of respiratory chain complexes and
226 impaired mitochondrial β -oxidation[42]. Some natural products such as resveratrol and the extract
227 of Parkinsonia aculeata have been proved to improve high-fat diet-induced insulin resistance
228 through stimulating mitochondrial biogenesis[43,44]. Our data showed that theaflavins increased
229 the relative mtDNA copy numbers of IR HepG2 cells (Fig. 6), indicating that they could improve
230 mitochondrial biogenesis of high-fat induced hepatocytes.

231 The PGC-1 family modulate mitochondrial biogenesis and energy metabolism in a specific and
232 subtle manner that depends on the tissue and physiological context[45]. In liver, PGC-1 α regulates
233 gluconeogenesis in response to fasting, while PGC-1 β governs lipid metabolism in response to
234 specific nutritional stimuli such as fructose and fatty acids. PGC-1 β is a transcriptional coactivator
235 for SREBP-1, the master regulator of hepatic lipogenesis. High-fat feeding stimulates the expression
236 of both PGC-1 β and SREBP1c and 1a in liver[46]. Nagai et al. proved that knockdown of PGC-1 β in
237 liver protected rats from fructose induced hepatic insulin resistance, which mostly be attributed to

238 reduction in hepatic lipogenesis resulting in reduced hepatic DAG content and decreased PKC3
239 activation[47]. Additionally, PGC-1 β knockdown decreased mitochondrial copy numbers, and
240 reduced genes involved with mitochondrial fatty acid oxidation, biogenesis and function. PGC-1 β
241 inhibition may be a therapeutic target for treatment of NAFLD, hypertriglyceridemia, and insulin
242 resistance associated with increased de novo lipogenesis[48][48]52. PRC, the least characterized
243 member of PGC-1 family, appears to be restricted to the regulation of mitochondrial biogenesis in
244 proliferating cells. Knockdown of PRC in vitro resulted in the generation of abnormal mitochondria
245 that exhibited disorganized cristae, severe membrane abnormalities, reduced ATP production, and
246 down-expressed respiratory protein subunits from complexes I, II, III, IV and ATPase [45].

247 Previous study showed that oral administration of a purified theaflavin mixture (10 mg/kg BW)
248 increased energy expenditure via induction of uncoupling proteins (UCP-1 and UCP-3) and PGC-1 α
249 in fasting mice[49]. However, it is not clear whether PGC-1s are involved in TFs-regulated
250 mitochondrial function with fat stimuli. Considering the importance of PGC-1 β and PRC for
251 regulating lipid metabolism and mitochondrial biogenesis, their RNA expressions were determined
252 in this work. Compared with IR HepG2 cells induced by PA, TFs could significantly decreased the
253 PGC-1 β RNA level, and enhanced the PRC RNA expression (Fig.7). These results were similar with
254 the previous report that H2S regulated liver mitochondrial biogenesis associated with
255 downregulating the mRNA and protein level of PGC-1 β and upregulating the mRNA and protein
256 levels of PRC in mouse hepatocytes[50]. Based on our results and the literature reports, TFs might
257 promote mitochondrial biogenesis via modulation of PGC-1 β and PRC in insulin resistant
258 hepatocytes induced by free fatty acids.

259 4. Materials and Methods

260 4.1. Preparation and analysis of theaflavins

261 A highly purified theaflavins mixture (TFs) were prepared according to the method developed
262 in our lab [51]. The sample was analyzed by Shimadzu LC-2010A HPLC system equipped with a
263 Shimadzu SPD10A UV detector (Shimadzu, Kyoto, Japan). Chromatographic separation of TFs was
264 carried out on an Intertil ODS-SP C18 reversed-phase column (5 μ m, 250 \times 4.6 nm, Shimadzu, Kyoto,
265 Japan). The mobile phase A was acetic acid/acetonitrile/water (0.5: 3: 96.5, v/v/v), and B was acetic
266 acid/ acetonitrile/ water (0.5: 30: 69.5, v/v/v). Gradient elution was performed with 40–85% B from 0
267 to 20 min and 85% B until 70 min at a flow rate of 1 mL/min. The column was kept at 25 $^{\circ}$ throughout
268 the analysis and the wavelength was set at 280 nm.

269

270 4.2. Cell culture and reagent

271 The human liver cancer cell line HepG2 was purchased from the cell bank of Chinese Academy
272 of Sciences (Shanghai, China), and cultured in Dulbecco's modified Eagle's medium (DMEM)
273 (Genom, Hangzhou, China) containing 10% fetal bovine serum (Hyclone, NSW, Australia), 100
274 units/ml penicillin (Biological Industries, CT, USA) and 0.1 mg/ml streptomycin ((Biological
275 Industries, CT, USA). Cells were maintained at 37 °C with humidified air and 5% CO₂. Palmitic acid
276 (PA) was obtained from Sigma-Aldrich (St. Louis, MO, USA). The primary antibodies against Akt,
277 phosphor-Akt (Ser473), IRS-1, phosphor-IRS-1 (Ser307), GLUT4 and GAPDH were purchased from
278 Cell Signaling Technology, Inc. (Danvers, MA, USA).

279

280 4.3. Cell viability

281 Cell viability was determined by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
282 bromide (MTT) assay. HepG2 cells were seeded into 96-well plates at 1.5 \times 104 per well, cultured for
283 48 h, and then treated with different concentrations of PA (0 - 450 μ M) or TFs (0 - 40 μ g/ml) for 24h.
284 Subsequently, 100 μ l MTT (0.5 mg/mL) was added to each well and incubated for 4 h at 37 °C in the
285 dark. After removing the supernatant, 150 μ L DMSO was added to dissolve the formazan crystals.
286 The absorbance was measured at 492 nm with a microplate reader (Bio-Techne, MN, USA).

287

288 *4.4. Induction of insulin-resistant HepG2 cells*

289 Insulin-resistant HepG2 cells were induced by PA. Briefly, a 100 mM PA stock solution was
 290 prepared in 0.1 M NaOH at 70°, and then diluted in 10% (w/v) BSA solution to produce various
 291 concentrations of PA[52]. HepG2 cells were treated with PA (0, 150, 250, 350μM) for 24 h in black
 292 96-well plates, and cell glucose uptake was measured as aforementioned to determine the optimum
 293 PA concentration used for building the insulin-resistant HepG2 cell model.

294

295 *4.5. Glucose uptake assay*

296 Glucose uptake in HepG2 cells was measured by using 2-(N-(7-nitrobenz-2-oxa-1,
 297 3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG, Sigma-Aldrich, USA) according to the previous
 298 report[53] with a few modifications. In brief, cells cultured on black 96-well plates were treated with
 299 PA in the presence of TFs (0 - 10 μg/ml) or Metformin (5 μg/ml, positive control) for 24 h. Then cells
 300 were kept in glucose-free DMEM for 4h, and stimulated by insulin (500 nM) for another 10 min.
 301 Following incubation with 50 nM 2-NBDG in glucose-free DMEM for 10 min, the cells were quickly
 302 washed twice with ice-cold PBS buffer to terminate reaction. The fluorescence was monitored at an
 303 excitation wavelength of 485 nm and an emission wavelength of 535 nm.

304

305 *4.6. Total RNA preparation and Real-time PCR analysis*

306 Total RNA was extracted from HepG2 cells using a Eastep Super Total RNA Extraction Kit
 307 (Promega, USA). RNA was quantified by a K5500 Micro-Spectrophotometer (Kaiao, Beijing, China),
 308 and 500 ng RNA was reverse transcribed into cDNA using HiScript Reverse Transcriptase Kit
 309 (Vazyme biotech, USA). Real-time PCR was performed on a 7500 Real-Time PCR System according
 310 to the procedure of ChamQTM SYBR qPCR Master Mix Kit (Vazyme biotech, USA).

311 GAPDH was used as the reference, and relative mRNA expression was calculated by the mean
 312 value with the comparative Ct method ($\Delta\Delta Ct$). The primer pairs for PGC-1 β , PRC and GAPDH were
 313 chosen from the Primer Bank website (<http://www.rtprimerdb.org/>). The sequences of the primers
 314 for each gene are shown in Table 1.

315

Table 1. Sequence of primers for real-time PCR

Gene	Primer sequences (5'-3')	Annealing temperature (°C)
PGC-1 β	Forward: TGA CTC CGA GCT CTT CCA G	54.7
	Reverse: CGA AGC TGA GGT GCA TGA TA	54.8
PRC	Forward: AGT GGT TGG GGA AGT CGA AG	54.8
	Reverse: CCT GCC GAG AGA GAC TGA C	56.9
GAPDH	Forward: GAA GGT GAA GGT CGG AGT C	54.8
	Reverse: GAA GAT GGT GAT GGG ATT TC	55.0

316

317 *4.7. Determination of mitochondrial DNA copy number*

318 The relative mitochondrial DNA (mtDNA) copy number was indicated by the ratio of mtDNA
 319 to nuclear DNA (nDNA) as previously described[54] NADH dehydrogenase subunit 1 (ND1) gene
 320 was used to represent mtDNA, and the nuclear-encoded 18S rRNA gene was used to represent
 321 nDNA. Total DNA was extracted from HepG2 cells using a DNA Extraction Kit (BioVision,
 322 Shanghai, China). Relative amounts of mtDNA and nDNA were determined by real-time
 323 quantitative PCR. The primer sequences were: mtDNA fwd, 5'-ATGGCCAACCTCCTACTCCT-3';
 324 mtDNA rev, 5'-GCGGTGATGTAGAGGGTGAT-3'; nDNA fwd,
 325 5'-ACGGACCAGAGCGAAAGCA-3'; nDNA rev, 5'-GACATCTAAGGGCATCACAGAC-3'.
 326

327 **4.8. Western blot**

328 Cells were harvested with protein extraction reagent (Tiangen, Beijing, China), and total protein
329 levels were determined by the BCA protein kit (Tiangen, Beijing, China). Cell lysates were separated
330 by SDS-PAGE, and blotted onto polyvinylidene difluoride (PVDF) filters membrane with a
331 Mini-Protean 3 System (Bio-Rad). The membrane was blocked with 5% skim milk for 1 h, and then
332 incubated with specific primary polyclonal/monoclonal antibodies overnight at 4 °C. After
333 incubation with horseradish peroxidase conjugated secondary antibody for 1 h, immunoreactive
334 proteins were visualized with the ECL Plus Western Blotting Detection Reagents (Fude-bio,
335 Hangzhou, China) and exposed using a Mini-Protein System (Bio-Rad, GA, USA). Protein bands
336 were quantitated with NIH ImageJ software and normalized by GAPDH bands for analysis.
337

338 **4.9. Statistical analysis**

339 Data were presented as the mean ± standard deviation (SD). Multiple comparisons were
340 performed by one-way analysis of variance (ANOVA) followed with Student–Newman–Keuls
341 (SNK) test., and p<0.05 was considered statistically significant. Statistical analysis was performed
342 using Statistical Analysis System (SAS) for windows V8.

343 **5. Conclusions**

344 Taken together, theaflavins at noncytotoxic doses could protect HepG2 cells against
345 PA-induced insulin resistance by increasing glucose uptake and modulating the IRS-1/Akt/GLUT4
346 pathway. These effects were mediated through improving mitochondrial biogenesis and regulating
347 PGC-1 family member PGC-1 β and PRC. These findings extend the understanding of the
348 physiological function played by theaflavins in obesity, insulin resistance and diabetes. Theaflavins
349 may exert a therapeutic effect on hepatic insulin resistance with few side effects, and could be
350 promising functional food and medicines for IR-related disorders in the future.

351 .

352 **Author Contributions:** T.-T.T. and N.R. designed the experiments and wrote the paper; and B.L. conceived and
353 organized the study; J.-F.W. and N.G. performed the experiments for cell culture and glucose uptake assay of
354 theaflavins; H.K. and E.K. contributed the isolation of theaflavins from the leaves of black tea; Y.-Y.T., W.-Y.W.
355 and P.-M.H. revised the manuscript; and all authors approved the final version manuscript.

356 **Acknowledgments:** We acknowledge financial supports from the National Natural Science Foundation of
357 China (grant no. 31501474), the National Key Research and Development Program of China (grant no.
358 2017YFD0400800), the Key Research and Development Program of Zhejiang Province (grant no. 2018C02012),
359 the Fundamental Research Funds for the Central Universities, Fujian Province “2011 Collaborative Innovation
360 Center” of Chinese Oolong Tea Project (Fujian Educational Department, [2015] No.75) and 2016 Project of
361 Fuding Municipal Project.

362 **Conflicts of Interest:** The authors declare no conflict of interest.

363

364

365 **References**

366 1. Bae, C.R.; Hasegawa, K.; Akiedaasai, S.; Kawasaki, Y.; Senba, K.; Cha, Y.S.; Date, Y. Possible involvement
367 of food texture in insulin resistance and energy metabolism in male rats. *Journal of Endocrinology* 2014,
368 222, 61-72.

369 2. Rawat, A.K.; Korthikunta, V.; Gautam, S.; Pal, S.; Tadigoppula, N.; Tamrakar, A.K.; Srivastava, A.K.
370 4-Hydroxyisoleucine improves insulin resistance by promoting mitochondrial biogenesis and act through
371 AMPK and Akt dependent pathway. *Fitoterapia* 2014, 99, 307-317.

372 3. Henagan, T.M.; Lenard, N.R.; Gettys, T.W.; Stewart, L.K. Dietary Quercetin Supplementation in Mice
373 Increases Skeletal Muscle PGC1 α Expression, Improves Mitochondrial Function and Attenuates Insulin
374 Resistance in a Time-Specific Manner. *PLoS one* 2014, 9, e89365, doi:10.1371/journal.pone.0089365.

375 4. Dujic, T.; Causevic, A.; Bego, T.; Malenica, M.; Velija-Asimi, Z.; Pearson, E.R.; Semiz, S. Organic cation
376 transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes.
377 *Diabetic Medicine* 2016, 33, 511-514, doi:10.1111/dme.13040.

378 5. Chakrabarti, R.; Rajagopalan, R. Diabetes and insulin resistance associated disorders: Disease and the
379 therapy. *Current Science* 2002, 83, 1533-1538.

380 6. Chen, N.; Bezzina, R.; Hinch, E.; Lewandowski, P.A.; Cameronsmith, D.; Mathai, M.L.; Jois, M.; Sinclair,
381 A.J.; Begg, D.P.; Wark, J.D. Green tea, black tea, and epigallocatechin modify body composition, improve
382 glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. *Nutrition
383 research* 2009, 29, 784-793.

384 7. Imran, A.; Butt, M.S.; Arshad, M.S.; Arshad, M.U.; Saeed, F.; Sohaib, M.; Munir, R. Exploring the potential
385 of black tea based flavonoids against hyperlipidemia related disorders. *Lipids in Health & Disease* 2018,
386 17, 57.

387 8. Li, B.; Vik, S.B.; Tu, Y. Theaflavins inhibit the ATP synthase and the respiratory chain without increasing
388 superoxide production. *Journal of Nutritional Biochemistry* 2012, 23, 953-960.

389 9. Aizawa, T.; Yamamoto, A.; Ueno, T. Effect of oral theaflavin administration on body weight, fat, and
390 muscle in healthy subjects: a randomized pilot study. *Journal of the Agricultural Chemical Society of
391 Japan* 2017, 81, 311-315.

392 10. Nagano, T.; Hayashibara, K.; Ueda-Wakagi, M.; Yamashita, Y.; Ashida, H. Black Tea Polyphenols
393 Promotes GLUT4 Translocation through Both PI3K-and AMPK-dependent Pathways in Skeletal Muscle
394 Cells. *Food Science & Technology Research* 2015, 21, 489-494.

395 11. Jin, D.; Xu, Y.; Mei, X.; Meng, Q.; Gao, Y.; Li, B.; Tu, Y. Antidiabesity and lipid lowering effects of theaflavins
396 on high-fat diet induced obese rats. *Journal of Functional Foods* 2013, 5, 1142-1150,
397 doi:https://doi.org/10.1016/j.jff.2013.03.011.

398 12. Watanabe, S. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes
399 and obesity: Hope from natural mitochondrial nutrients. *生物物理学报* 2009, 61, 1343-1352.

400 13. Henning, S.M.; Aronson, W.; Niu, Y.; Conde, F.; Lee, N.H.; Seeram, N.P.; Lee, R.P.; Lu, J.; Harris, D.M.;
401 Moro, A. Tea Polyphenols and Theaflavins Are Present in Prostate Tissue of Humans and Mice after Green
402 and Black Tea Consumption. *Journal of Nutrition* 2006, 136, 1839.

403 14. Martin, S.D.; Mcgee, S.L. The role of mitochondria in the aetiology of insulin resistance and type 2
404 diabetes. *BBA - General Subjects* 2014, 1840, 1303-1312.

405 15. Schrauwen, P.; Schrauwenhinderling, V.; Hoeks, J.; Hesselink, M.K. Mitochondrial dysfunction and
406 lipotoxicity. *BBA - Molecular and Cell Biology of Lipids* 2010, 1801, 266-271.

407 16. Fernándezgalilea, M.; Pérezmatute, P.; Prietohontoria, P.L.; Houssier, M.; Burrell, M.A.; Langin, D.;
408 Martínez, J.A.; Morenoaliaga, M.J. α -Lipoic acid treatment increases mitochondrial biogenesis and
409 promotes beige adipose features in subcutaneous adipocytes from overweight/obese subjects. *BBA -
410 Molecular and Cell Biology of Lipids* 2015, 1851, 273-281.

411 17. Cheng, Z.; Schmelz, E.M.; Liu, D.; Hulver, M.W. Targeting mitochondrial alterations to prevent type 2
412 diabetes--evidence from studies of dietary redox-active compounds. *Molecular Nutrition & Food Research*
413 2014, 58, 1739-1749.

414 18. Patel, T.P.; Rawal, K.; Bagchi, A.K.; Akolkar, G.; Bernardes, N.; Dias, D.D.; Gupta, S.; Singal, P.K. Insulin
415 resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. *Heart
416 Failure Reviews* 2015, 21, 11-23.

417 19. Dave, N.; Wu, J.; Thomas, S. Chronic Kidney Disease-Induced Insulin Resistance: Current State of the
418 Field. *Current Diabetes Reports* 2018, 18, 44.

419 20. Kullmann, S.; Heni, M.; Hallschmid, M.; Fritsche, A.; Preissl, H.; Häring, H.U. Brain Insulin Resistance at
420 the Crossroads of Metabolic and Cognitive Disorders in Humans. *Physiological reviews* 2016, 96,
421 1169-1209.

422 21. Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology
423 and mechanisms. *Pharmacological Research* 2018, 130, 451.

424 22. Engin, A.B.; Tsatsakis, A.M.; Tsoukalas, D.; Engin, A. Do flavanols-rich natural products relieve
425 obesity-related insulin resistance? *Food & Chemical Toxicology* 2017.

426 23. Belwal, T.; Nabavi, S.F.; Nabavi, S.M.; Habtemariam, S. Dietary Anthocyanins and Insulin Resistance:
427 When Food Becomes a Medicine. *Nutrients* 2017, 9, 1111.

428 24. TU, Y.; KIM, E.; GAO, Y.; RANKIN, G.O.; LI, B.; CHEN, Y.C. Theaflavin-3, 3'-digallate induces apoptosis
429 and G2 cell cycle arrest through the Akt/MDM2/p53 pathway in cisplatin-resistant ovarian cancer
430 A2780/CP70 cells. *International journal of oncology* 2016, 48, 2657-2665.

431 25. Cheang, W.S.; Ngai, C.Y.; Ye, Y.T.; Xiao, Y.T.; Wong, W.T.; Yang, Z.; Chi, W.L.; Zhen, Y.C.; Bian, Z.X.; Yu,
432 H. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of
433 endoplasmic reticulum stress. *Scientific reports* 2015, 5, 10340.

434 26. Butt, M.S.; Imran, A.; Sharif, M.K.; Ahmad, R.S.; Xiao, H.; Imran, M.; Rsool, H.A. Black Tea Polyphenols: A
435 Mechanistic Treatise. *Critical Reviews in Food Science & Nutrition* 2014, 54, 1002-1011.

436 27. Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of hepatic glucose metabolism in health and
437 disease. *Nature Reviews Endocrinology* 2017, 13.

438 28. Farese, Robert V.; Zechner, R.; Newgard, Christopher B.; Walther, Tobias C. The Problem of Establishing
439 Relationships between Hepatic Steatosis and Hepatic Insulin Resistance. *Cell metabolism* 2012, 15,
440 570-573, doi:<https://doi.org/10.1016/j.cmet.2012.03.004>.

441 29. Pardo, V.; Gonzálezrodríguez, Á.; Muntané, J.; Kozma, S.C.; Valverde, Á.M. Role of hepatocyte S6K1 in
442 palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic
443 acid-induced protection. *Food & Chemical Toxicology* 2015, 80, 298-309.

444 30. Shinjo, S.; Jiang, S.; Nameta, M.; Suzuki, T.; Kanai, M.; Nomura, Y.; Goda, N. Disruption of the
445 Mitochondria-Associated ER Membrane (MAM) Plays a Central Role in Palmitic Acid-Induced Insulin
446 Resistance. *Experimental Cell Research* 2017, 359, 86.

447 31. Atkinson, B.J.; Griesel, B.A.; King, C.D.; Josey, M.A.; Olson, A.L. Moderate GLUT4 Overexpression
448 Improves Insulin Sensitivity and Fasting Triglyceridemia in High-Fat Diet-Fed Transgenic Mice. *Diabetes*
449 2013, 62, 2249-2258.

450 32. Li, M.; Han, Z.; Bei, W.; Rong, X.; Guo, J.; Hu, X. Oleanolic Acid Attenuates Insulin Resistance via NF-κB to
451 Regulate the IRS1-GLUT4 Pathway in HepG2 Cells. *Evidence-Based Complementray and Alternative*
452 *Medicine*,2015,(2015-12-30) 2015, 2015, 1-9.

453 33. Chen, L.N.; Lyu, J.; Yang, X.F.; Ji, W.J.; Yuan, B.X.; Chen, M.X.; Ma, X.; Wang, B. Liraglutide ameliorates
454 glycometabolism and insulin resistance through the upregulation of GLUT4 in diabetic KKAY mice.
455 *International journal of molecular medicine* 2013, 32, 892-900.

456 34. Cordero-Herrera, I.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Cocoa flavonoids improve insulin
457 signalling and modulate glucose production via AKT and AMPK in HepG2 cells. *Molecular Nutrition &*
458 *Food Research* 2013, 57, 974-985, doi:[doi:10.1002/mnfr.201200500](https://doi.org/10.1002/mnfr.201200500).

459 35. Hagiwara, A. Hepatic mTORC2 Activates Glycolysis and Lipogenesis through Akt, Glucokinase, and
460 SREBP1c. *Cell metabolism* 2012, 15, 725-738.

461 36. Ren, Z.; Xie, Z.; Cao, D.; Gong, M.; Yang, L.; Zhou, Z.; Ou, Y. C-Phycocyanin inhibits hepatic
462 gluconeogenesis and increases glycogen synthesis via activating Akt and AMPK in insulin resistance
463 hepatocytes. *Food & function* 2018.

464 37. Mokashi, P.; Khanna, A.; Pandita, N. Flavonoids from *Enicostema littorale* blume enhances glucose uptake
465 of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. *Biomedicine*
466 & *Pharmacotherapy* 2017, 90, 268-277.

467 38. Koren-Gluzer, M.; Aviram, M.; Hayek, T. Paraoxonase1 (PON1) reduces insulin resistance in mice fed a
468 high-fat diet, and promotes GLUT4 overexpression in myocytes, via the IRS-1/Akt pathway.
469 *Atherosclerosis* 2013, 229, 71-78.

470 39. Whiteman, E.L.; Cho, H.; Birnbaum, M.J. Role of Akt/protein kinase B in metabolism. *Trends in*
471 *endocrinology and metabolism: TEM* 2002, 13, 444-451.

472 40. Aguirre, V.; Uchida, T.; Yenush, L.; Davis, R.; White, M.F. Aguirre, V., Uchida, T., Yenush, L., Davis, R. &
473 White, M. F. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin
474 receptor substrate-1 and phosphorylation of Ser307. *J. Biol. Chem.* 275, 9047-9054. *Journal of Biological
475 Chemistry* 2000, 275, 9047-9054.

476 41. Zhang, H.; Ge, Z.; Tang, S.; Meng, R.; Bi, Y.; Zhu, D. Erythropoietin ameliorates PA-induced insulin
477 resistance through the IRS/AKT/FOXO1 and GSK-3 β signaling pathway, and inhibits the inflammatory
478 response in HepG2 cells. *Molecular medicine reports* 2017, 16, 2295.

479 42. Chen, Y.; Pandiri, I.; Joe, Y.; Kim, H.J.; Kim, S.K.; Park, J.; Ryu, J.; Cho, G.J.; Park, J.W.; Ryter, S.W.
480 Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme
481 Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis. *Oxidative Medicine & Cellular
482 Longevity* 2016, 2016, 3949813.

483 43. Araújo, T.G.; de Oliveira, A.G.; Vecina, J.F.; Marin, R.M.; Franco, E.S.; Abdalla Saad, M.J.; Mb, D.S.M.
484 *Parkinsonia aculeata* (Caesalpinaeae) improves high-fat diet-induced insulin resistance in mice through
485 the enhancement of insulin signaling and mitochondrial biogenesis. *Journal of Ethnopharmacology* 2016,
486 183, 95-102.

487 44. Wang, B.; Sun, J.; Ma, Y.; Wu, G.; Tian, Y.; Shi, Y.; Le, G. Resveratrol preserves mitochondrial function,
488 stimulates mitochondrial biogenesis, and attenuates oxidative stress in regulatory T cells of mice fed a
489 high-fat diet. *Journal of Food Science* 2015, 79, H1823-H1831.

490 45. Villena, J.A. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial
491 function and beyond. *The FEBS journal* 2015, 282, 647-672, doi:10.1111/febs.13175.

492 46. Lin, J.; Yang, R.; Tarr, P.T.; Wu, P.H.; Handschin, C.; Li, S.; Yang, W.; Pei, L.; Uldry, M.; Tontonoz, P., et al.
493 Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. *Cell*
494 2005, 120, 261-273, doi:10.1016/j.cell.2004.11.043.

495 47. Nagai, Y.; Yonemitsu, S.; Erion, D.M.; Iwasaki, T.; Stark, R.; Weismann, D.; Dong, J.; Zhang, D.; Jurczak,
496 M.J.; Löffler, M.G., et al. The Role of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 β in the
497 Pathogenesis of Fructose-Induced Insulin Resistance. *Cell metabolism* 2009, 9, 252-264,
498 doi:https://doi.org/10.1016/j.cmet.2009.01.011.

499 48. Nagai, Y.; Yonemitsu, S.; Erion, D.M.; Iwasaki, T.; Stark, R.; Weismann, D.; Dong, J.; Zhang, D.; Jurczak,
500 M.J.; Löffler, M.G. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the
501 pathogenesis of fructose-induced insulin resistance. *Cell metabolism* 2009, 9, 252-264.

502 49. Kudo, N.; Arai, Y.; Suhara, Y.; Ishii, T.; Nakayama, T.; Osakabe, N. A Single Oral Administration of
503 Theaflavins Increases Energy Expenditure and the Expression of Metabolic Genes. *PloS one* 2015, 10,
504 e0137809.

505 50. Untereiner, A.A.; Ming, F.; Módis, K.; Rui, W.; Ju, Y.J.; Wu, L. Stimulatory effect of CSE-generated H₂S on
506 hepatic mitochondrial biogenesis and the underlying mechanisms. *Nitric Oxide* 2016, 58, 67-76.

507 51. Yi, X.; Jin, Y.X.; Wu, Y.Y.; Tu, Y.Y. Isolation and purification of four individual theaflavins using
508 semi-preparative high performance liquid chromatography. *Journal of Liquid Chromatography & Related
509 Technologies* 2010, 33, 1791-1801.

510 52. Cousin, S.P.; Hügl, S.R.; Wrede, C.E.; Kajio, H.; Jr, M.M.; Rhodes, C.J. Free fatty acid-induced inhibition of
511 glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic
512 beta-cell line INS-1. *Endocrinology* 2001, 142, 229.

513 53. Zhang, Q.; Hu, X.F.; Xin, M.M.; Liu, H.B.; Sun, L.J.; Morrisnatschke, S.L.; Chen, Y.; Lee, K.H. Antidiabetic
514 potential of the ethyl acetate extract of *Physalis alkekengi* and chemical constituents identified by
515 HPLC-ESI-QTOF-MS. *Journal of Ethnopharmacology* 2018.

516 54. Shen, Z.; Liu, C.; Liu, P.; Zhao, J.; Xu, W. Sphingosine 1-phosphate (S1P) promotes mitochondrial
517 biogenesis in Hep G2 cells by activating Peroxisome proliferator-activated receptor γ coactivator 1 α
518 (PGC-1 α). *Cell Stress & Schaperones* 2014, 19, 541-548.

519 **Sample Availability:** Not available.

520