Optimal conditions for maximum efficacy of photoinitiated polymerization are theoretically presented. Analytic formulas are shown for the crosslink time, crosslink depth and efficacy function. The roles of photoinitiator (PI) concentration, diffusion depth and light intensity on the polymerization spatial and temporal profiles, for both uniform and non-uniform cases, are presented. For optimal efficacy, a strategy via controlled PI concentration is proposed, where re-supply of PI in high light intensity may achieve a combined-efficacy similar to low light intensity, but has a much faster procedure. A new criterion of efficacy based on the polymerization (crosslink) [strength] and [depth] is introduced. Experimental data are analyzed for the role of PI concentration and light intensity on the gelation time and efficacy.
Keywords:
Subject: Chemistry and Materials Science - Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.