Preprint
Article

Cracking, Microstructure and Tribological Properties of Laser Formed and Remelted K417G Ni-Based Superalloy

Altmetrics

Downloads

383

Views

207

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 November 2018

Posted:

19 November 2018

You are already at the latest version

Alerts
Abstract
K417G Ni-based superalloy is widely used in aeroengine turbine blade for its excellent properties. However, the aeroengine rotor blade zigzag crown appears early failure frequently, which is because of the wear problems occurring in the working process. Laser forming repairing (LFR) is a promising technique to repair these damaged blades. Unfortunately, the laser formed Ni-based superalloys with high content of (Al + Ti) have a high cracking sensitivity. In this paper, the crack characterization of the LFRed K417G, the microstructure, microhardness and tribological properties of the coating before and after laser remelting are presented. The results show that the microstructure of as-deposited K417G consists of γ phase, γ′ precipitated phase, γ + γ′ eutectic and carbide. Cracking mechanisms including solidification cracking, liquation cracking and ductility dip cracking are proposed based on the composition of K417G and processing characteristics to explain the cracking behavior of the K417G superalloy during LFR. After laser remelting, the microstructure of the coating has been refined, and the microhardness and tribological properties has been improved. Laser remelting can decrease the size of the cracks in the LFRed K417G but not the number. Therefore, laser remelting can be applied as an effective method for strengthening coating and as an auxiliary method for controlling cracking.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated