

Article

Authentic Student Laboratory Classes in Science Education

Jurgen Schulte^{1,†}

¹ University of Technology Sydney; jurgen.schulte@uts.edu.au

† Current address: School of Mathematical & Physical Sciences, University of Technology Sydney, Ultimo NSW 2007, Australia

Abstract: The traditional hands-on nature in science laboratory classes creates a sense of immediacy and a presence of authenticity in such learning experiences. The handling of physical objects in a laboratory class, and the immediate responses provided by these experiments, are certainly real-live observations, yet may be far from instilling an authentic learning experience in students. This paper explores the presence of authenticity in hands-on laboratory classes in introductory science laboratories. With our own laboratory program as a backdrop we introduce four general types of hands-on laboratory experiences and assign degrees of authenticity according the processes and student engagement associated with them. We present a newly developed type of hands-on experiment which takes a somewhat different view of the concept of hands-on in a laboratory class. A proxemics-based study of teacher-student interactions in the hands-on laboratory classes presents us with some insights into the design of the different types of laboratory classes and the pedagogical presumptions we made. A step-by-step guide on how to embed industry engagement in the curriculum and the design of an authentic laboratory program is presented to highlight some minimum requirement for the sustainability of such program and pitfalls to avoid.

Keywords: authentic learning, work integrated learning, curriculum development, laboratory classes, proxemics

1. Introduction

The development of new experiments is a large undertaking for science educators in secondary and early tertiary education, which is often accompanied by constraints due to time and budget limitations and sometimes due to restrictions imposed by an overarching pedagogical framework. This becomes an even more challenging endeavor when an entire laboratory program is to be redesigned to meet certain desired educational outcomes.

There are some disciplinary skills that need to be conveyed such as the application of disciplinary concepts, general laboratory specific skills and general disciplinary specific instrumentation skills. Then there are some soft-skills to be developed that are nurturing a larger pedagogical framework within the educational organization or to meet a national education policy. Common soft-skills in this context are working in a team and team and time management; verbal and written skills, presentation skills; and discipline specific reporting skills.

Ideally, in the development of a new science laboratory program, pedagogical aspects should be considered first before considering the curriculum and technical aspects of the laboratory design. The supporting drivers here are the opportunities for all students to be positively engaged in the program, the program's credibility and its relevance as perceived by students. Motivated and well engaged students have a positive and often long lasting learning experience and generally tend to present good learning outcomes.

Student motivation is driven by their individual interest and curiosity, it can also be driven by challenges that go beyond the textbook script. When designing an activity, the task to be performed should also consider students' intellectual preparedness, pathways and past experience (e.g., mature

38 students, students with work experience, adults). In that, a high level of intellectual conceptualization
39 adds to the credibility and, if placed in a situated context, adds to the authenticity of the task as
40 well as the relevance of the learning context. This becomes even more important when students are
41 expected to learn skills that appear to be peripheral to the immediate disciplinary content, yet form
42 an important foundation to the graduate knowledge, e.g., engineering students, who as part of their
43 degree requirements take classes in physics, chemistry, mathematics or finance.

44 This paper takes a closer look at the conceptual and pedagogical aspect of authentic student
45 learning experiences with reference to our own physics laboratory program. The considerations in
46 this paper are of quite general nature and may be easily transferred to other physical or life sciences
47 laboratory programs. In chapter 2, we discuss the concept of authenticity in context of student learning
48 and the characteristic elements that constitute authenticity in a student laboratory environment.
49 Chapter 3 explores some typical indicators to identify learning patterns in a laboratory environment,
50 how these might be used to identify and measure authenticity in a qualitative way, and how in an
51 authentic laboratory task learning outcomes may be assessed. In chapter 4, we elucidate some learning
52 and interaction dynamics in the laboratory classes using proxemics measurements as tool to identify
53 levels of authenticity. In the last part of this paper, chapter 5, we present some guidance for the design
54 process of an authentic laboratory program based on the evaluation of the design of the authentic
55 learning experiences in one of our own laboratory programs.

56 2. Authentic Learning Experiences

57 In the early 21st century science textbooks kept a narrow focus on pure disciplinary knowledge,
58 almost as if there was an assumption that all science students aspire to a similar academic career
59 as the authors of these books. This view slowly changed in the 1990's with the recognition that the
60 majority of university science students are not aiming for a academic career and the narrow focus
61 on content with a purely academic end goal did not appeal to students' motivation. By that time,
62 students already enjoyed an increasing science technology awareness due to readily accessible digital
63 media. The difference in the evolution of highschool textbook aligned teaching and first year science
64 education in higher education is marginal. Often, courses rely on heavily prescribed curricula built
65 around certain textbook content. Prompted by the realization that there is more to a science education
66 than an academic career as end goal, a gradual shift in pedagogical thinking occurred with the desire
67 to make science education more accessible to students by introducing more traceable links to real life;
68 a degree of authenticity. Contemporary science textbooks now include elements of authenticity built
69 into the wording of practice problems as well as in illustrations of daily life applications. While the
70 weaving in of authenticity through wording and readily recognizable real life related illustrations is
71 acknowledging the need for science skills to be seen in a more than purely academic context, there is a
72 risk that such surface approach is undervaluing the intellectual academic maturity of the intended
73 student reader, who may find such word or image associations rather stretched and artificial than
74 convincingly authentic.

75 Real life relevance, as part of the learning experience in higher education and authenticity in
76 learning and teaching, has become a serious formal requirement in Australian higher education with
77 the formal introduction of graduate attributes at the turn of the millennium [1]. The Department of
78 Education Training and Youth Affairs (DETYA) required higher education institutions to articulate
79 the graduate attributes that their courses aim to develop. That is, professional bodies and employers
80 can expect that graduates graduating from a particular course have acquired the named graduate
81 attributes. For example, the graduate attributes associated with the science faculty in our university
82 are: disciplinary knowledge; research, inquiry and critical thinking; professional, ethical and social
83 responsibility; reflection, innovation and creativity; communication; Aboriginal and Torres Strait
84 Islander knowledges and connection with Country [2].

85 What are the characteristics of an authentic learning experience? Authenticity in higher education
86 is generally associated with a disciplinary context placed in a real-world activity, i.e., something

87 hands-on and done in practice or seen in association with some out-of-class activity. This alone though
88 does not make a learning experience authentic. The experience itself should also be seen by the
89 professional (educator, professional in the work force) as authentic; it is equally important that it also
90 perceived by the student learners as credibly authentic.

91 Following the work by Reeves et al. [3] it can be noted that from a work professional point of view,
92 an authentic learning experience should have some relevance outside the classroom experience; it
93 should be open ended; have a complex problem to solve that requires higher order thinking; there
94 may be many valid solutions to the task; there may be different technical approaches to solving the
95 problem; the task covers multiple disciplinary concepts; the task encourages small team working; and
96 there is a reflective evaluation of the solution process and outcome, similar to what a professional
97 would experience in a non-academic work environment.

98 From a student learner point of view, the task and the context within are of credible authenticity,
99 that is, students can believe and verify that such task is indeed commonly performed by professionals
100 in the workforce. In such a setting, student learners have the opportunity to explore, discuss,
101 and meaningfully construct concepts and relationships that involve real-world problems which are
102 interesting and relevant to them [4]. A theoretical model to support such situated learning in a science
103 education, where the credibility aspects from the student perspective was taking into account was
104 presented in a recent discourse by Van Vorst et al. [5].

105 A laboratory class as part of a standard science curriculum is an opportunity for a hands-on
106 experience for students, where hands-on is often implying some degree of authenticity that goes
107 beyond the implied authentic approach taken in textbooks. Here, the textbook science is transferred
108 from an abstract or imaginary context to a related hands-on, simulated real-world experiment where
109 the underlying science is seen to become authentic in that process. The authenticity in student
110 laboratory experiments though has changed its connotation over the past decades, from a narrow
111 academic science topic at hand in the 1990's, to the current view of seeing the situated experience
112 within a larger disciplinary professional context. It is this type of 'larger context' authenticity that
113 we'd like to address in the following discussion. A hands-on experience although is not necessarily a
114 pre-requisite for an authentic laboratory experience. An example of an authentic laboratory experience
115 without student hands-on activity is presented in chapter 3.

116 Situated learning has been instrumental in linking theoretical textbook knowledge with applications
117 of the knowledge in real-world (or real-work) situations [6]. Situated learning provides an avenue
118 for emphasizing the directly applicable part of knowledge and in that course extends the more
119 fundamental or theoretical knowledge base. In a situated learning environment, students have the
120 opportunity to apply their experience and knowledge in ways that are grounded in real world scenarios
121 [7,8]. Alternating cycles of theory (lectures) and practice (laboratory class) are introduced to foster an
122 episodic acquisition of knowledge [9]. Situated learning enables teachers to create curricula that also
123 address the motivational aspects of learning in order to make STEM (Science, Technology, Engineering,
124 Mathematics) topics more accessible to students [10]. A comprehensive discourse on the evolution and
125 current view on situated learning in a physics context can be found in Bennett, Lubben & Hogarth [11].

126 In-depth disciplinary knowledge and skills are what employers expect by default from their graduate
127 recruits. In addition to these assumed skills, employers expect graduates to present some knowledge
128 across disciplines and social or economic context as well as skills in people and process management
129 [12]. These non-core disciplinary skills, or soft-skills, often become more relevant when graduates
130 are seeking employment in areas that are peripheral to the academic core of their degree course, or
131 when the landscape of the relevant profession is changing rapidly. Authentic learning environments

132 are inherently multifaceted and multidisciplinary. They foster the development of an intellectual
133 capability of readily transforming core disciplinary knowledge and skills from a narrow academic
134 performance context to a larger out of academia yet discipline related context.

135 3. Authentic teaching and learning in science laboratory classes

136 There has been a long tradition in the development of first year university student experiments
137 in science that aimed to replicate fundamental experiments carried out by previous scientist in the
138 early days of modern scientific discovery. This is where academics tend to teach content in a purely
139 academic context to prepare students for experimental work relevant in an academic environment.
140 In these traditional type of experiments, students learn a prescribed collection of discipline related
141 facts and follow step-by-step instructions to become familiar research steps that previous scientist took
142 [13]. Naturally, these types of traditional experiments offer only limited opportunity for self-directed
143 inquiry, critical thinking, independent experiment design thinking or context related problem solving.

144 In an attempt to engage students more actively in the learning process and to foster more
145 critical thinking in science education, traditional experiments were modified to allow for episodes of
146 inquiry built on top of the prescribed traditional academic process. Although this new inquiry based
147 approached was welcomed by students and teachers alike as refresher to the repetitive processes in
148 traditional student experiments [14], the novelty continued to be dominated by a perceived need, by
149 educators to prescribe and control the experimental process as well as to have all students work and
150 complete each experiment in a synchronized fashion.

151 Doing actual scientifically motivated experimental work in a professional working environment
152 will always be quite different from the simulation of such task in an educational environment unless
153 the purpose of the task and its performance and consequences are assessed in similar ways. Hence,
154 authenticity in an educational context will always be limited, especially at an introductory level.
155 Authenticity in that respect may then be measured by the creditability of the authentic learning
156 experience as judged by the educator and professional and as perceived by the student learner.

157 The question arises then, what aspects in the design of a student laboratory program should
158 educators consider when creating a credible authentic learning experience?

159 Over the years of designing and teaching introductory experimental laboratory programs we
160 identified three main authenticity driving forces; the role of the teacher in the laboratory class, the
161 interactions that students engage in, and the role of external agents.

162 In an authentic learning environment the teacher takes one a background role, more like a mentor
163 than a leader issuing directives to control the flow of the activity. Working in small groups and engaging
164 in discussions is encouraged [15,16], and teachers acknowledge that such in- and inter-group discussion
165 may elevate the level of noise in the classroom. Once the teacher steps back from controlling the
166 experimental proceedings, the process flow of the activity is no longer under the complete control of the
167 teacher. Students have then the opportunity to take on some ownership of the experimental work and
168 with that an immediate responsibility for their actions, i.e., intellectually, creativity-wise and socially.
169 Responsibility always requires a third party against which it can be measured or benchmarked. This is
170 where authentic, external performance processes may be brought in to contribute to the authenticity
171 and credibility of the experimental task. That is, the task performed has a strong relation to present
172 concerns outside the class room and there is an external party involved in the evaluation of the task
173 (peer review, supervisor, client, commissioning agent). In this process, peers for instance are then
174 recognized as 'legitimate peripheral participants' [17] in a community of practice. Students become
175 familiar with stakeholders outside the disciplinary knowledge context and their discipline related
176 expectations.

177 Without a prescribed or controlled experimental process flow, it is likely that students will arrive at
 178 different experimental outcomes or arrive at similar outcomes albeit via different pathways. In that
 179 sense, introducing authenticity by allowing ownership and responsibility, is also creating an inherently
 180 built in open-endedness in the learning experience. Such open-ended practical learning methods have
 181 been found to foster a good level of conceptual understanding and development of process skills
 182 even for low performing students [18]. The intellectual challenge presented by an authentic learning
 183 experience may be higher, yet due to the multi-faceted entry points to the challenge more students can
 184 find a pathway to improve their disciplinary knowledge and skills.

Table 1. Experiment styles and characteristic features.

	<i>Traditional</i>	<i>Inquiry</i>	<i>Authentic (theory)</i>	<i>Authentic (hands-on)</i>
Equipment	fixed	fixed	none, fixed master only	self-selected
Experimental Setup	fixed	fixed	none, fixed master only	self-selected
Starting Point	fixed	fixed	self-selected	self-selected
Procedure	prescribed	guided and prescribed	self-selected	self-selected
Aim	collect data, confirm textbook knowledge and quantity	collect data, confirm textbook knowledge and quantity	question validity of textbook knowledge	solve a complex problem
Outcome	fixed	fixed	self-selected textbook knowledge expansion	open variety

185

186 How does an authentic learning experience translate into a science (e.g. physics) laboratory class
 187 and how does that affect students' learning processes?

188 In our laboratory program we distinguish four different styles of laboratory learning experiences. In
 189 a *Traditional* or standard science laboratory class, experiments are designed for students to acknowledge
 190 predefined facts about a topic and well defined procedures to acquire experimental data about these
 191 facts with the aim to confirm another fact, often an equation or quantity from the textbook. Naturally,
 192 in order for the student to stay within the boundary of 'experiencing' these facts during class, the
 193 boundaries of the class design have to be well defined and a-priori fixed. For instance, the experimental
 194 setup is the same for all students and cannot be altered to ensure that all students learn the same facts
 195 and arrive at the same preset outcome (Table 1). In this type of learning experience it is assumed that
 196 students acquire knowledge by accumulating data in an experiment and associating this data with the
 197 science facts following the teacher's prescribed procedure. Students also learn about the mechanics
 198 of conducting a set experiment and collecting and evaluating data. These learning steps are then
 199 often repeated in subsequent laboratory classes, albeit within a different disciplinary context. In this
 200 kind of environment, all students work very much in sync, working alone or in small groups, and
 201 all are expected to completed their task with the same experimental outcome. Students are provided
 202 with step by step instructions to complete the experimental task, that is, settings for experimental
 203 equipment, sequence of steps to take in order to measure data about a fact and steps to take to evaluate

204 the measured data. Students are then well instructed to complete the task without needing frequent
205 affirmations throughout the process. However, later we will see that this does not seem to be the case
206 and students appear to be more focused on procedural matters than conceptual understanding.

207 An *Inquiry* based learning experience allows for more initiative taken by students. This type of
208 learning style was introduced in the 1990s to encourage independent thinking and some degree
209 of reflection. Other learning attributes were added later to accommodate some insights from the
210 emerging field the science of learning [19]. Here, we consider an early version of inquiry based
211 learning in a laboratory class setting which is still quite common in many laboratory programs both in
212 highschool and higher education. Students are provided with a set goal, that is, verifying a science
213 fact by conducting an predefined experiment and taking measurements to collect data in order to
214 substantiate a fact, formula or quantity mentioned in the textbook. The outcome of the experiment
215 and the procedures taken are as well defined as per the traditional experiment. The experimental
216 procedures are layed out in principle although not in as stepwise detail as in a traditional experiment
217 (Table 1). Students are given some flexibility with respect to order of steps to conduct the experiment
218 and hence some time is allowed for elements of exploration or inquiry, but it is very clear from the
219 beginning that there is a certain path to follow. With that in mind the experimental setup has then to
220 be very much the same for all students. Again, the general learning experience is that of measuring
221 and collecting data with some variation allowed for playing with the sequence of conducting the
222 experiment. By allowing some self-determined elements within their experimental investigation,
223 episodes of inquiry are introduced which encourage some unguided experimentation and critical
224 reasoning.

225 In order to allow students to engage in more active reflective thinking rather than the traditional
226 fact accumulation of textbook theory, we developed a range of textbook theory focused authentic
227 laboratory classes. We call these type of laboratory learning experiences *Authentic (theory)* learning
228 experiences. This type of learning experience takes place in the normal laboratory class where a
229 number of demonstration experiments have been set up. That is, students do not engage in setting
230 up or conducting an experiment, instead they are asked to numerically predict the outcome of the
231 experiments on display in the room, without further instructions as to how to go about this. Students
232 are encouraged to have a close look at the experiment but are not allowed to touch or execute the
233 experiment. For instance, a glass beaker filled with 1 liter of water is placed on a 1 kW electric heating
234 plate with a thermometer next to it showing the room temperature. Students in teams of 3 to 4 are
235 asked to predict the time it takes to bring the water to its boiling point. The textbook facts about the
236 heat capacity of water and that the amount of heat taken up by water is proportional to the temperature
237 increase can be readily looked up in the textbook. Conceptually, it is not a too difficult problem for
238 students to link the textbook relation to the given specifications of the experiment in front of them.
239 Students find the theoretical prediction fairly quickly, i.e., usually within the same time the water
240 should have boiled in theory. Yet, the water does not boil at the predicted time. It does not even boil
241 after twice the time has expired. Initially, students start to question the validity of their calculations
242 and since the calculation is fairly simply they quickly realize that their correctly calculated answer
243 may not apply to the real-world example in front of them. The reflective discussions within their
244 small groups quickly reveal that in the textbook theory there are some underlying assumptions that
245 do not translate to the reality as it unfolds in front of them. Eventually, students start to realize that a
246 heater plate is a three-dimensional object and not a flat object as depicted in the textbook, i.e., only a
247 small part of the top surface of the 1kW heater plate is actually available for heating water through the
248 bottom of the beaker. In addition, the sides and bottom parts of the heating plate dissipate part of the
249 available heat energy straight into the room. Encouraged by this insight, students can make a rough
250 estimate of how much power is actually available for heating the water and then redo their original

251 textbook calculation to arrive at an answer which is very close to what has been observed in the class
252 room.

253 In this learning experience the implied authenticity of a physics concept in the textbook in the familiar
254 form of some real-world relating wording and an accompanying illustration or photo suggesting a
255 real-world situation is placed in contrast with an actual physical situation in the room. Words from
256 the textbook and the real-time acting objects in the room have to be reconciled with the students'
257 conceptual understanding of the problem at hand. The actual physical power supplied from the mains
258 to the heating plate has to find its way into the textbook equation, so does the thermometer reading of
259 the room temperature and the final boiling stage of the water.

260 Initially, students find it somewhat challenging to reconcile the theory and relations in the textbook
261 with the physical actions in front of them. With some inquiry based guidance though all students
262 succeed with establishing a one-to-one mapping of textbook defined parameters and the physical
263 action in front of them. This process entails some reflection with respect to the meaning of the terms
264 and concepts in the textbook and how these manifest in their various occurrences in a live environment.
265 Due to the inability of the textbook science to describe a seemingly similar scene playing out in front
266 of them in real, students suddenly become an active part in the live scene, that is, they are no longer
267 spectators and it requires an intervention on their own part to question and amend their textbook
268 knowledge in order to confirm the truth playing out in front of them. A process of inquiry and
269 immediate authentic and personal experience is started with students questioning their own correct
270 application of textbook guided knowledge followed by a subsequent re-analysis of the experiment and
271 an articulation of a remedial hypothesis to amend the textbook theory which may then explain the
272 experienced outcome of the experiment.

273 Following the textbook knowledge that they thought they had mastered already and still failing
274 to predict the outcome of a simple, directly related experiment created a situation where students
275 were drawn into re-analyzing the textbook discipline knowledge in the context of an event they were
276 personally involved in. A truly personal and authenticity experience which does not mimic or simulate
277 the experience of person in a fictitious external real-world situation.

278 The ubiquitous real live reference to a box sliding down an incline so often mentioned in textbook
279 chapters covering the concept of motion, Newton's laws and energy conservation is another example
280 which is well suited for an *Authentic (theory)* experiment. A small wooden block is placed on a inclined
281 melamine board and allowed to slide down. Again, students are not allowed to conduct the experiment
282 but may watch the experiment as it unfolds. From visual inspection students may take note of the
283 angle of incline and position of the wooden block. The task here is to determine the mass of the wooden
284 block. Again, after identifying and applying Newton's laws correctly, or other suitable relations, the
285 textbook guided calculations deviate from the actual wooden block's mass considerably. Again, a
286 process of inquiry and immediate authentic and personal experience leads to a re-evaluation of the
287 situation in front of them. On reflection, steps are then taken to include yet unaccounted for physical
288 processes. In this case, the contribution of friction to the sliding needs to be somehow determined first
289 before the actual mass calculation can be carried out.

290 A well informed authentic learning experience is one that is embedded in an operating workplace,
291 e.g., in a work integrated learning period. In a work integrated learning environment, students are
292 directly exposed the physical work environment with all its additional features (hardware, work
293 divisions, skill sets), processes (safety, operations, task flows) and experienced workers on the task
294 solving problems of real value (monetary, support). However, work integrated learning though
295 is more suited for students with some demonstrated basic disciplinary knowledge and skills and
296 conversely workplaces are more adapt to accommodate students at that level. In order to bring
297 workplace experience and its immediate authenticity into the laboratory class, we created an "*Authentic*

298 (*hands-on*)" laboratory program with an industry integration. So, rather than students being integrated
299 in a workplace, we integrated an industry workplace into the curriculum design. That is, industry
300 is directly involved in the design of authentic learning experiences through the creation of student
301 experiments that closely resemble similar setups, aims and constraints as found at the actual industry
302 workplace. The skill sets required to perform the experimental tasks and the applied disciplinary
303 knowledge closely resemble those in the workplace. Another important aspect transferred from the
304 workplace to the learning experience is the value or importance of the experiment and its outcome as
305 benchmark for a credibility of the accomplished work. In this type of authentic learning experience
306 students are assessed according their application of disciplinary knowledge, experimental design
307 skills, data analysis skills, conciseness of their written professional reports and the usefulness of their
308 findings.

309 We developed the authentic laboratory program for a first year undergraduate engineering course
310 at the University of Technology Sydney where engineering students are required to take a one semester
311 physics course (Physical Modelling). We invited *Choice* from industry to actively participate in the
312 curriculum and experiments design. *Choice* is an independent consumer advocacy organization in
313 Australian founded in 1959. Apart from being involved in the national policy making of consumer
314 protection laws it also maintains a large accredited consumer products testing facility, on which the
315 authentic laboratory program is modeled. *Choice* engineers also present in a lecture about their testing
316 experiment process, from the commissioning of the work to the observation of international measuring
317 standards. They also participate as casual observers during the laboratory classes. We were fortunate
318 that *Choice* also provided us with a surplus of some of their already tested consumer products, which
319 as per their testing policy they purchase as new products in local stores.

320 So, the role that students were asked to take on is that of a product testing engineer working in a
321 small startup consulting company that is commissioned to investigate a particular consumer product.
322 As commissioning third party students could choose from three fictitious agencies; a marketing
323 company, a product manufacturer or government agency. The commissioning agency makes \$2500
324 available for testing, hiring of equipment and bench space and the production of a professional report
325 including recommendations. This adds a certain value to the work that students do as well as sets a
326 nominal benchmark for the quality of work that is expected.

327 As in the real-world industry, the experiments in these authentic learning experiences have no
328 unique or common starting point. There are no pre-defined or prescribed to be measured experimental
329 parameters and consequently there is also no set experimental measuring protocol. Since the task's
330 aim only asks that a physical quantity backed solution should be presented, there is no pre-defined
331 physical parameter to aim for.

332 In the real-world, one rarely finds multiple teams of engineers or scientists working in the same
333 room separately and independently on the same problem (unless in some fund raising competition),
334 they would quickly form a larger team and take advantage of the diversity of skills within the room. In
335 translating this observation to the laboratory class room, many different types of consumer products
336 were made available at the same time so that each laboratory bench is occupied with a different product,
337 consequently very different types of experiment are carried out at each bench given the groups of
338 student a sense of the uniqueness and originality of their approach. In practice, in our laboratory
339 program for about 620 students in laboratory classes of about 40 each we have 12 teams of 2-3 students
340 and 6 very different challenges for them to choose from. That means, that there are no more than two
341 teams having a similar object as their experimental challenge. After six sessions all teams will have
342 rotated through all challenges, although we generally limit this type of learning experience to three
343 sessions to provide students an opportunity to also participate in a *Traditional* as well as an *Authentic*
344 (*theory*) type of experiment.

345 Student teams work on up to six different commissioned projects. As each project and its product
346 testing aim is entirely defined by the student team (including the selection of experimental methods and
347 measuring tools/sensors) a high degree of critical thinking is required (client needs, social relevance,

348 time constraints, physics concepts, experimental methods) and student teams are encouraged to
349 take innovative approaches as they compete with other teams to meet the high expectations of their
350 clients. Students here are placed in a real workplace scenario under workplace-like conditions and are
351 rewarded for good multifaceted design and problem solving; innovative, complex and lateral thinking;
352 and professional articulation of their presented results. An example assessment rubric can be found in
353 the Appendix.

354 In focus groups conducted at the end of the teaching period students commented on the
355 authenticity of their laboratory experience and the importance of the link between theory and its
356 usefulness in real life, e.g., "When I'm doing the practical I get to experience different situations and
357 where and how I can apply the theory to them. I love every single bit of it", and "I really appreciated
358 doing real product testing. It was a taste of real engineering", and "It actually gives you a chance to
359 put into practice what you are learning in the lecture theater and it's good because it's a bit different."

360 Students also appreciated and commented on the opportunity for experimental versatility as well
361 as on the benefits of working in teams and having ownership over their entire work, e.g., "Better
362 than generic experiments that every other uni[versity] does," and "I found it helpful to work with a
363 lab partner. It was good to learn from each other," and "It was really helpful to work in teams as more
364 members means more ideas and more working hands. We could plan and implement ideas together."

365 We have not conducted a controlled comparative analysis to see whether this type of authentic
366 learning experience improves student learning as measured by student performance because of the
367 limited control we have over comparative student performance parameters in our program. There
368 were also concerns about inequity between one class running an authentic experimental program
369 and another class a benchmark traditional program. Further, these two types of programs address
370 and assess different learning expectations (graduate attributes) which prevents a clear comparison
371 of performance outcomes. Nevertheless, peeking in into one of our *Authentic (hands-on)* laboratory
372 classes reveals an immediate and stark different atmosphere in the class. There is a buzzing activity
373 throughout the class, all students are fully engaged in their activities and in deep discussions with
374 their group members while the teachers in the room are almost invisible amidst the activities.

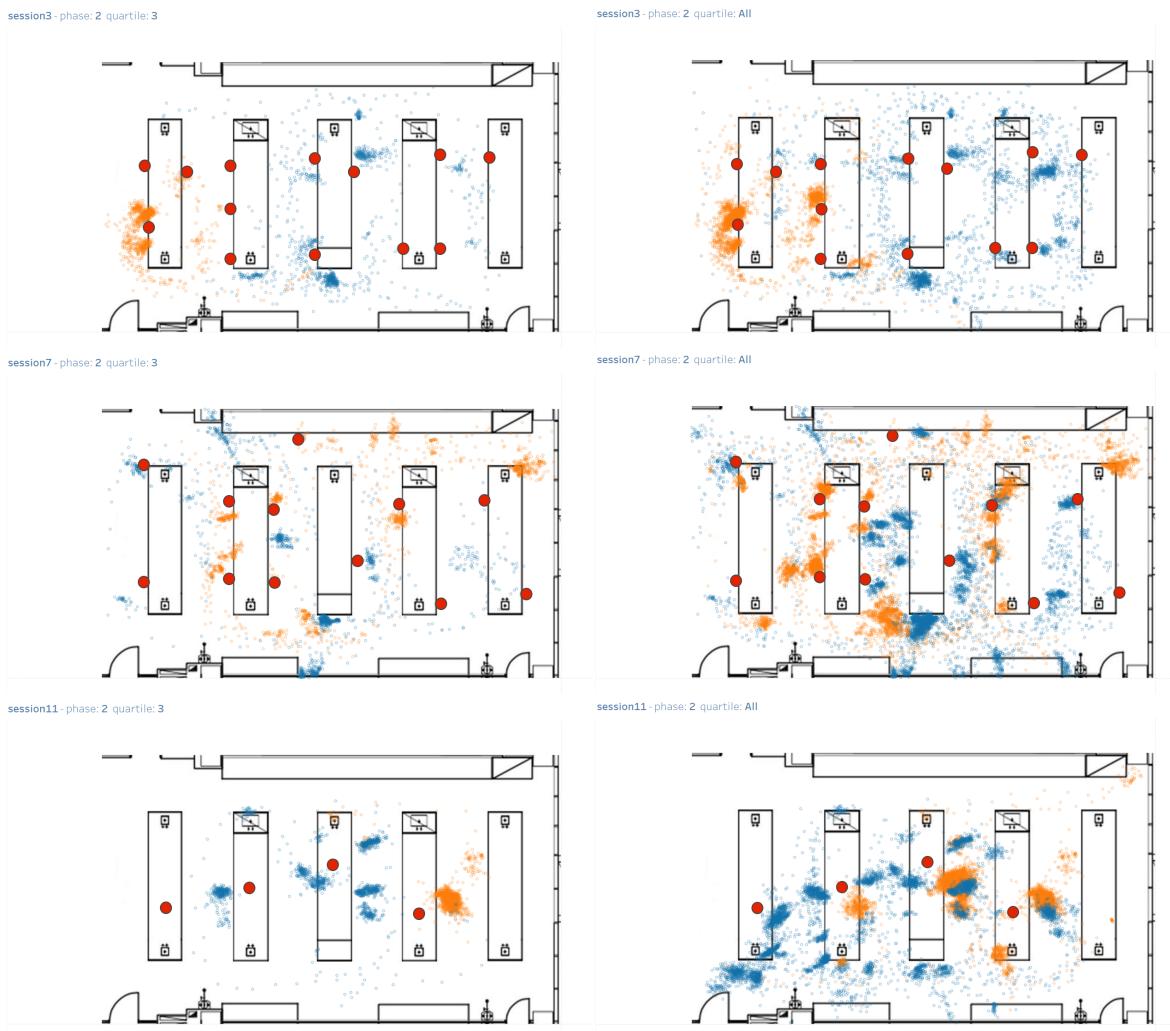
375 The *Traditional, Authentic (theory)* and *Authentic (hands-on)* learning experiences all were also subject
376 of a parallel, independent kinesics guided proxemics study [20], which looked into the interactions
377 between teacher and students in classes with group work. We made use of some of the data coming
378 out of this study and present findings in the following chapter.

379 4. Dynamics of laboratory learning experiences

380 In an attempt to gain a more quantifiable understanding of the vastly different learning dynamics
381 and student-teacher interactions which presented themselves so readily perceivable in the different
382 types of laboratory classes, we attempted to capture the interaction learning pattern in the class using
383 the Dimensions Observation Protocol (TDOP) tool developed by Hora [21]. The TDOP tool captures
384 instructional practices, student-teacher interactions, and instructional technology through minute,
385 direct observations and recording of the presence of key activities within the class room. The software
386 tool has a large number of interaction and other activities to choose from and when identified as
387 present in the class room at a particular time, its occurrence time, duration and frequency is recorded
388 by each time the observer clicks a respective activity button. This kind of observation seemed to work
389 well for a traditional or inquiry enhanced traditional type of laboratory class as long as the observer
390 focused on only a handful of student-teacher interaction types and as long as students conducted the
391 experiments very much in sync along a prescribed pattern that meets the class timetable. This kind
392 of active class observation is quite an intense exercise for the observer. Further, each observer has
393 to undergo a rigorous training to ensure observations of interactions and the interpretation of their
394 nature is recorded consistently. This type of observation regime proved to be unmanageable for our
395 *Authentic (theory)* and *Authentic (hands-on)* classes because of the large number of interaction types that
396 are present at the same time and the asynchronous organization of experiment activities.

397 Instead we decided to engage in a pilot with a monitoring approach that does not depend an
398 observer in the room and an immediate interpretation of the ongoing observation. For that purpose
399 we invited Dr Roberto Martinez-Maldonado from the Connected Intelligence Centre at the University
400 of Technology Sydney to use our laboratory classes for his kinesics guided proxemics study on class
401 room group work design and teacher reflection. Our hypothesis was that some of the data from
402 this proxemics study might also give us more insight into the characteristics of the different learning
403 experiences in our laboratories and the dynamics within the class.

404 Proxemics studies the use of physical space in social interactions, kinesics focuses on body
405 movements and how these may affect communication [22]. Translating these social interaction to our
406 laboratory classes, the proximity of a teacher to particular student group during class and the frequency
407 of visiting the group tells a story about the attention that the teacher is giving a particular group. It also
408 indicates the need of the student group for attention or teacher advise. The time averaged intervals of
409 the teachers spatial positions in class shows us the paths that teachers take to navigate through the
410 class amongst students and their experiments. It shows where across the room the teachers' advise is
411 requested most and where student-teacher interaction occurs away from the experimental setup or in
412 front of a white-board.


413 Figure 1 shows so called heatmaps of kinesics guided proxemics measurements taking in each one
414 of our *Traditional* (top), *Authentic (theory)* (middle) and *Authentic (hands-on)* (bottom) during the third
415 quartile period (left column) of a two and half hour laboratory class and the aggregated time summary
416 of over the entire class period (right column) [23].

417 For the proxemics measurement, the teacher and teacher assistant are equipped with the location
418 sensors which are tracked by a sensor tracking array of six detectors mounted at the class room walls.
419 Positions were tracked real-time at a rate of about 2Hz and during post-processing normalized to one
420 second intervals for better visual inspection. Thus, each orange (teacher) or blue (teacher assistant)
421 circle (Fig. 1) represents their respective average positions within a one second interval. Naturally, this
422 kind of time averaging attracts a triangulation error which in our case is around 20 cm. The large red
423 dots indicate experiments that have been set up at or close to the lab benches. As guidance for the
424 general scale of the laboratory and distances, the lab benches are 1.2 m wide and 6 m.

425 The recordings shown in Figure 1 are all of the same class, i.e., the same students in class sitting at
426 approximately the same relative position at their benches and the same teachers supervising the class.

427 The first row in Figure 1 shows the proxemics results of the real-time teacher position monitoring
428 of the *Traditional* learning experience during the third quartile of the lab session (left) and over the
429 entire period of lab class (right). The monitoring data was segmented in four quartiles to distinguish
430 four general periods of class activity; the introduction and getting ready period, the coming to terms
431 with the experimental work period, the middle of the experimental work period; and the experiment
432 conclusion and cleaning up period. The third quartile period was chosen here to look at each learning
433 experience when it is generally in full swing, that is from half way into the class period.

434 In the third quartile of the class period we can see that many student groups still require intense
435 consultation with teachers or request their attention although the *Traditional* learning experience was
436 guided by well defined step-by-step instructions in the lab manual which outline the sequence of
437 actions to take as well as how these are to be executed. It appeared that the prescribed instructions that
438 were given are prompting student requests to provide even more detail instructions or to seek assurance
439 for the correctness of each small step they take. This may suggest that the learning experience was
440 more focused on following instructions and collecting data points and less on reflection and concept
441 discussions within the small groups. The teacher proximity heatmap for this entire class (right) shows
442 how teachers moved from team to team and had to spend a long time with each of the teams. It can

Figure 1. Schematic of the laboratory class showing the recorded session dynamics[20] of a *Traditional* (top row), *Authentic (hands-on)* (middle row) and *Authentic (theory)* (bottom row) laboratory learning experience of the same class. The images on the left show dynamics of teacher movements recorded just during the 3rd quartile of the session, the images on the right show the dynamics aggregated over the entire class duration. They large red dots indicate the location of experiments, blue and orange circles indicate the locations that the teacher and teaching assistant frequented most.

also be seen that the teachers split up their spatial coverage of the class to meet consultation demand with one teacher serving the left part of the class and the other one the right part.

The second row in Figure 1 shows the results of the position monitoring in the *Authentic (hands-on)* learning experience. A first, cursory visual inspection shows that the teachers in this class experienced quite a different interaction pattern with the students groups. Compared to the *Traditional* learning experience, here quite some time is spent away from the benches and away from direct attention to the physical experiment. One teacher (blue circles) is frequently seen close at the classroom wall where there is a white board. Both teachers are recorded to spent time in normally less occupied spaces away from the experiments. This indicates that teachers no longer spent most of their time assisting students close to their experiments with requests for step by step instructions or laboratory notes, instead interactions are occurring away from experiment locations and student laboratory notes. Students take initiative to move away from their experiment to meet the teacher somewhere in the room to discuss their plans, ask for the availability of a particular measuring device or discuss professional quality

456 issues regarding their experiment and report. Inquiries are no longer procedure or lab manual centered
457 and hence can be articulated freely and away from the experimental setup. Teachers also don't seem to
458 walk in a pattern from experiment to experiment on students' request or to check on correct procedural
459 sequences, instead they spent most of their time in the larger class space where students can approach
460 and engage in discussions as needed. Since discussions occur away from the experiment location,
461 experiment procedural and detail are no longer a primary focus of student-teacher interaction. A
462 more freely and widely distributed teacher motion pattern also indicates that students have taken
463 more ownership of their work as teachers are no longer requested to attend individual groups at their
464 experimental set up.

465 The bottom row in Figure 1 shows the position monitoring of the *Authentic (theory)* learning
466 experience. Here, the teachers' motion pattern are again very much different from the other two
467 learning experiences, though there are some feature shared with the *Authentic (hands-on)* motion
468 pattern. To explain the differences, we recall the characteristic setup of this type of learning experience.
469 In the *Authentic (theory)* learning experience, students actually don't set up or conduct an experiment,
470 instead they are asked to develop their own model to predict the outcome of four different experiments
471 that are on display. That is, the four locations of the experiments (large red dots) shown in the images
472 are no longer related to the bench location where student teams are sitting. Student teams though
473 still sit appropriately at the same locations as shown in the other learning experiments. So, students
474 walk up to the display experiments to have a closer look or take some rough measurements of an
475 experiments geometric features if needed. There are clearly two spots of proxemics concentrations
476 where teachers move frequently and spent most of their time. One is close to the display experiments
477 where they may engage with students in discussions about their theoretical model or later in the
478 session conduct the experiment on students' request to test their model predictions. The other location
479 is away from the display experiments. This indicates that students feel content to work independently
480 in their small teams and trying to raise up to the challenge of proving their theoretical model, i.e.,
481 without the frequent request for teachers' attention to confirm steps or procedures. Again, discussions
482 are being held away from experiment locations, which indicate that in those discussions no pointing to
483 the experiment or working notes at the bench are required to conduct these discussion, i.e., discussions
484 are held in a larger disciplinary context driven by student interest and engagement.

485 The interpretation of the kinesics guided proxemics heatmaps in Figure 1 are of course very much
486 informed by our good knowledge of what actually happens in these laboratory classes and the nature
487 of communications that students usually have with their teachers and team members. Prior to the
488 independent monitoring of the student-teacher interaction the evaluation of learning experiences
489 relied on teachers' subjective and qualitative or anecdotal type of interpretation of what happened
490 during class (procedural driven, "more buzzing"), or on subjective student comments in student
491 feedback surveys or feedback in focus group sessions where a small number of students are asked
492 about their level of engagement or learning experience the laboratory classes. With the kinesics
493 guided proxemics heatmaps we are now one step closer to quantify differences in laboratory learning
494 experiences independently of the actors participating in it and independent of a direct observer's
495 interpretation of a particular interaction characteristic. Further exploration of the large amount of
496 data accumulated in this study may lead us to a formulation of teacher and student independent
497 quantitative indicators for types of learning experiences in laboratory classes and level of independent
498 learning, which might be useful for the monitoring of impacts of future changes to the program or
499 other pedagogical interventions.

500 5. Authenticity with industry collaboration in mind

501 The redesign of a the large first semester laboratory program from a traditional inquiry based
502 program to a sustainable, authentic learning experience that closely resembles a professional work

503 place in industry requires some steps that need to be considered carefully and well in advance of the
504 program's implementation. This chapter presents some the considerations we made in the processes
505 of creating an authentic learning experience close to what a graduate would experience in industry
506 workplace.

507 Our starting point was an inquiry based laboratory program that followed traditional laboratory
508 teaching pedagogy with step-by-step experimental task descriptions and scaffolded, prescribed
509 methods for collecting data and presenting results. As it is often the case in inquiry laboratory
510 programs, the inquiry components of experiments often relate to connecting the steps of each task
511 and finding out how to handle or operate the bench dedicated equipment, i.e., experiments can be
512 conducted with little or no preparation before the lab class.

513 There are a number of high-level aspect to consider in the redesign process. The redesign of
514 any large undergraduate laboratory program irrespective of the pedagogical aims can be a very time
515 and resources consuming undertaking. Even more so if a redesign goes beyond marginal changes
516 to experiments or a replacement. Sustainability and further scalability is another important factor to
517 consider since resources need to be committed long term and a new program should not be easily
518 compromised by fluctuations in student numbers.

519 The practice we followed in the past when making changes to our laboratory programs was
520 to introduce marginal changes to selected experimental setups (modernizing equipment), making
521 evidence based pedagogical adjustments to experimental procedures (change from procedural to
522 inquiry focus; identical experiment kits) or recycling suitable experiments from another laboratory
523 program. Most of our experiments evolved from classical, procedure driven experiments with a
524 central focus on verifying prominent aspects of a physics concept or exploring a functional relationship
525 between respective concept inherent parameters. The experiments of these type of learning experience
526 served their respective pedagogical goal and were not suitable to be turned into a real work place
527 simulating, authentic learning experience. A further constraint in changing to authentic industry
528 related activities is that academics and laboratory support staff are not experts in workplace practices,
529 common workplace infrastructure and workplace processes.

530 Since the expectation was set for the new undergraduate laboratory program to become an
531 authentic learning experience that closely resembles a professional work place, a suitable industry
532 needed to be identified that can consult on workplace tasks, authentic experiments and laboratory
533 processes. The redevelopment of an entire laboratory program, including all experiments, requires
534 substantial human and financial resources. With resource constraints and sustainability well in mind,
535 and our limited expertise in industry practices, it became evident that a successful conversion to an
536 authentic experimental laboratory program cannot be achieved without industry closely engaged
537 in the curriculum development, participating to some degree in the delivery of the program and its
538 evaluation, and having some self interest in being involved in the process. This became the starting
539 point for the planning of our developing journey.

540 The following is a summary of the process steps and considerations that in retrospect we found
541 essential for the program's development, implementation and its routine execution. It may serve as
542 guidance for similar laboratory program developments.

543 5.1. The High-level Planning

544 The high-level planning is concerned with general issues arising at the interphase between
545 university and industry, and what university and industry may expect from each other.

546 5.1.1. Identify industry practice suitable for embedding authentic learning experiences

547 Most academic environments at undergraduate level use equipment and ask for task processes
548 that are quite different from normal industry practices. Even where experimental equipment is
549 identical, the purpose of the experiment in industry and the motivation to conduct the experimental
550 task may have little to do with the task focus in a first year undergraduate laboratory or only cover a

551 very small part of the curriculum requirements or are beyond the disciplinary knowledge and skills at
552 that level.

553 5.1.2. Identify suitable industry for course support

554 'Industry' is a wide carrying expression and often industry from an academic perspective is
555 a specific, idealized, almost stereotyped, future working place of an ideal graduate. In addition,
556 graduates usually find employment in areas peripheral to their degree discipline. Thus, a potential
557 industry partner needs to be vetted not only for vicinity to course content but also for the suitability of
558 their actual working practices for undergraduates at first year level.

559 5.1.3. Design of student engaged learning activities to support content of laboratory work, course
560 outcomes and graduate attributes

561 Particular experiments and tasks carried out in industry are usually not stand alone activities
562 but a small contributing step within a larger context of a goal to be achieved. We found this larger
563 context to be an essential attribute of an authentic laboratory activity. The larger contexts ties in with
564 disciplinary and experimental skills that are to be developed as well as other learning outcomes such
565 as graduate attributes. This design aspect narrows down the number of potential industry workplaces
566 that would normally come to mind immediately. On the other hand, it also opens up opportunities to
567 look into industry and workplaces that one would normally not associate directly with the discipline.

568 5.1.4. Timeframe and Timetabling

569 The academic logistics surrounding the redesign of any laboratory program usually follows a
570 well-trodden path, although by no means without the equally usual bumps. In contrast, industry follows
571 industry practices and unforgiving industry timelines. The industry partner under consideration
572 should have the capacity work along university timelines and, if industry staff is involved in some
573 teaching activities, some capacity to release staff for that purpose should be available during the
574 planning period as well as at required university set teaching times.

575 5.2. *Embedding Authenticity*

576 5.2.1. What disciplinary knowledge (concepts) are students expected to learn?

577 The answer to this question is to a large extend prescribed by the degree course content, in
578 particular in first year which develops the foundation knowledge for subsequent courses. In the
579 context of an industry collaboration though, the question arises whether the targeted industry is
580 exposed to all, some or only one of the first year disciplinary concept. If authentic learning experiences
581 are to be embedded in an entire laboratory teaching program, ideally work practices at the industry
582 partner ought to cover all concepts that the laboratory program covers. Otherwise, multiple industry
583 partners will be needed which adversely impacts on logistic alignment as well as long term sustainability
584 of the program.

585 5.2.2. What practical skills are students expected to learn?

586 Practical skills in first year undergraduate laboratory programs are the very reason why these
587 programs exist. Yet, the specific practical skills to be learned are often not well articulated in the
588 curriculum and rarely assessed in their detail. It is more the outcome of the process of conducting an
589 experiment that is assessed rather than particular experimental skills. In that sense, conducting an
590 undergraduate experiment is then about learning about experimental procedures with, in our case),
591 physics concepts as contextualizing backdrop. Processes and procedures in undergraduate experiments
592 are generally disjunct from actual practices in the workplace. Putting on goggles, gloves and lab
593 coats and being mindful of occupational health and safety may be seen as simulating a professional

594 environment, but is only a ritual to be performed before the actual professional work may start. The
595 skills that we expect first year students to learn are the professional skills that are routinely applied in
596 industry today.

597 5.2.3. First year undergraduate skills used in industry in a non-trivial way

598 By their final year, closer to graduation, students have acquired advanced disciplinary knowledge
599 and skills and, hence, are in the position to conduct more sophisticated experiments and have been
600 trained to operate more sophisticated, high-end equipment which may also be found in high-end
601 industry. At first year undergraduate level, fundamental disciplinary concepts are still in the process of
602 being developed. The question arises then, where in industry are all or some these concepts routinely
603 applied in practice?

604 5.3. *Suitable industry partner*

605 5.3.1. Are the industry partners under consideration sufficiently resilient to maintain long-term
606 collaboration?

607 Common aspects to consider about the sustainability of a large first year university undergraduate
608 laboratory teaching program are whether required human and financial resources can be maintained
609 over the lifetime of the program and can adapt to student cohort size fluctuations without
610 compromising the program; and how long physical laboratory resources can last and whether all
611 consumables will be available over the period of the program. In a teaching program and teaching
612 pedagogy related interaction with industry, the desired period of continuous collaboration with
613 industry is likely be longer than e.g. one would see in a technology development relation at the
614 graduate or professional academic research level. The industry partner should be large enough so that
615 the different seasonal cycles of operations between the university laboratory program and industry
616 have little impact on the functional operation within their institution. Other factors to consider are
617 sufficient financial stability, staff turnover rates and whether the industry unit, department or division
618 size is large enough or has long term capacity to support a relation with a non-core business partner
619 (university) on non-revenue generating activities. Restructure within the industry organization may
620 place the undergraduate laboratory program at risk.

621 5.3.2. Suitability of industry

622 The disciplinary knowledge and skills requirement in a first year physics (or any other)
623 experimental undergraduate program are very basic and generally far away from the knowledge
624 and skills that are applied in the professional industry. On the other hand, the application of basics
625 science, technology, engineering or maths skills can be found in almost all industry, not just the one
626 that universities deal with at graduate of research level. For our objectives we ruled out Government
627 run national research laboratories. Although, in numbers, national research laboratories are the largest
628 sector industry that academia in Australia is collaborating with, only a very small number of graduates
629 will find their employment there. Government though comprises a number of policy enforcing agencies
630 such as environmental protection and law enforcement, and service agencies in transport, hospital
631 and work safety, all of which might have an interest in early engagement with future graduates.
632 Manufacturing is a term that spreads across a large range of sub-industries. Basic concepts of physics
633 are applied in many production stages in the automobile, construction, food, textile, recycling and
634 mining industry to name but a few. Other industries such service, financial and legal don't come readily
635 to mind when in the context of first year university physics and engineering, yet a large proportion of
636 graduates find employment in these sectors. Further, applications of basic physics concepts in those
637 sectors rarely find their way into lecture and laboratory teaching material. An industry partner from
638 the service industry may have a mutual interest to be involved in a physics undergraduate laboratory
639 program, e.g., a maintenance company (elevators, factory machines, bridges, buildings); insurance

640 evidence verification in financial industry; or a large patent offices in the legal industry. One industry
641 sector that is one of the most heterogeneous and yet often not seen as being part of what academics think
642 of “industry” are the Not-for-Profit Organization (NPO) and Non-Government-Organization (NGO)
643 sector. This sector engages in activities found in almost every area of industry. For instance, NPOs
644 and NGOs engage in engineering support in developing countries, practical aspects of environmental
645 protection and consumer protection. In our case, it turned out that the consumer protection industry
646 was an ideal candidate for our authentic laboratory program. While identifying a good match after a
647 long process of searching and elimination, the educator’s view of an ideal may not necessarily meet
648 the potential industry partner’s view. In addition to the educators set program requirements another
649 normally in education not often considered aspect has to be considered, the potential benefit of this
650 program to the industry.

651 5.3.3. Is there sufficient mutual benefit for a long-term collaboration?

652 Here, we are interested in a collaboration of mutual benefit at first year undergraduate level,
653 not in revenue generating research outcomes of mutual interest. The educational and pedagogical
654 value that direct industry collaboration can bring to a first year experimental science program in
655 terms of curriculum development, special lectures and possibly experimental equipment, sponsorships
656 and awards are obvious. Industry in turn may benefit from the brand affiliation with the university,
657 low cost top-level professional development opportunities for staff, marketing opportunities, brand
658 expansion to a younger audience, long term access to a large volume of experimental results, access to
659 innovative approaches and new ideas.

660 6. Conclusions

661 Students and educators may have different views on the authenticity of the science in action in
662 their laboratory programs. In the end we find that the benchmark for assessing the level of authenticity
663 always lies with the practitioner in the workforce because it is the science in the real world performed
664 by real practitioners that we wish students to relive in the student laboratory as close as possible. Yet,
665 an important factor in the learning experience is how students perceive authenticity in the laboratory
666 environment. It is not just the experiments and experimental processes that we expect to be authentic,
667 there is also a high level of emotional authenticity that goes along with the experience. The creation of
668 a sense of importance, the validity and value of the task, and the level self-determination, ownership
669 and reflective responsibility are all important factors in the design of an authentic laboratory program.

670 We explored some typical laboratory designs and noted three pedagogical shifts in designs, from
671 what we called traditional to the traditional topped up with elements of inquiry and the authentic
672 program design. In essence, all these types of experimental programs are striving for an authentic
673 learning experience, albeit in different pedagogical context. What is believed to be authentic in a
674 laboratory experience changed over time along with the changes in technology, workforce practices
675 and education policies trying to adjust for changing graduate attributes. The changes though occurred
676 distinct larger steps more in line with the university and educational policy cycle and inertia rather
677 than changes in the professional workforce landscape and practices.

678 We outlined the characteristic features of what we termed here as traditional laboratory experience,
679 which at the time may have been viewed as authentic since it was close to educators’ own laboratory
680 experience as well as suited their desired graduate attributes. The later introduction of a degree of
681 inquiry in these experiments allowed for some student curiosity and reflection which helped to keep
682 students’ interest up.

683 There is quantum leap between a traditional experimental program (inquiry or not) and today’s
684 types of authentic laboratory programs. A leap not only in the types of experimental activities that
685 have been developed but also in the expected discipline attributes. With the rapid advances in
686 communication technology around the turn of the millennium, such leap comes to no surprise. Students
687 within the same course are now trained for a much larger variety of workplaces and workplace

688 situations. They are expected to be ready for the workforce from the get-go, not only discipline
689 factually (traditional discipline knowledge) but also profession emotionally (communication, reflection,
690 responsibility, ethics)

691 We presented another form of authentic learning experience (*Authentic (theory)*) that we specifically
692 created to provide for a reflective hands-on experience of textbook theory, an aspect of discipline
693 knowledge and experience that we found missing in the other two types of laboratory programs.

694 We identified characteristic features of these three laboratory programs. The main differences
695 between the traditional experimental program and what we perceive today as authentic is the level of
696 responsibility and ownership that students have to plan and execute their task and the credibility of
697 experiments and experimental tasks.

698 We also asked the question whether it is possible to quantify the level of authenticity in a
699 laboratory program, i.e., we were looking for indicators that could be used to quantify characteristics
700 of authentic learning experiences that could be used for observer independent evaluation of future
701 laboratory programs. A proxemics based analysis of a *Traditional*, *Authentic (hands-on)* and *Authentic*
702 (*theory*) learning experience presented us with a participant independent image of the student-teacher
703 interaction. The visualization of the proxemics measurements in the different types of laboratory
704 designs provided us with some more insight into student-teacher interactions, learning activities and
705 intended learning experience. It revealed a serious short in the intended learning experience in the
706 *Traditional* laboratory where it was thought that providing detail, written step-by-step instructions
707 would assist students to focus on the disciplinary content and context, yet indicated that students
708 were more concerned about step procedures to complete the task. In the *Authentic* learning experience
709 it became evident that an intended elevated level of student engagement and independent working
710 can be identified without the presence of an observer or subjective feedback by teachers or students.
711 This first result of the proxemics measurement showed that distinct features of laboratory experiences
712 can be identified and differentiated, which is an important step and pre-cursor for the possibility
713 of formulating characteristic indicators for authentic learning experiences in a continuation of this
714 research.

715 **Funding:** This work has been supported in parts by a University of Technology Sydney (UTS) Faculty of Science -
716 SciMERIT 2017 grant.

717 **Acknowledgments:** The author is grateful to Dr Islam Hedayetu for a literature research on laboratory
718 class observation tools and the Teaching Dimensions Observation Protocol (TDOP) and to Dr Roberto
719 Martinez-Maldonado from the UTS Connected Intelligence Centre at the University of Technology Sydney
720 for providing the data from his proxemics measurements.

721 **Conflicts of Interest:** The author declares no conflict of interest. The funders had no role in the design of the
722 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
723 publish the results.

724 Appendix.

Authentic (hands-on) Assessment Rubric.

725

Criteria	0 Point	1 Point	2 Points	3 Points	4 Points
Project Plan	Project plan not presented on arrival at prac session.	Aim and methodology stated. Purpose not stated or interest value of experimental parameters trivial.	Aim, purpose and methodology stated. Experimental parameters trivial or of little value to target audience.	Aim, purpose and methodology stated. Plan for presentation missing.	Clearly articulated aim and purpose with well thought through steps of how to go about the experiment and its presentation.
Testing Objective	Objective lacks physics context and merit of work.	Objective includes physics context.	Objective includes physics context and merit.	Clearly articulated objective with view on commissioning agency, including physics context and merit of conduct the work	Clearly articulated systematic scientific approach to the task.
Testing Procedure	A sequence of steps has been mentioned. A Systematic approach for the whole of the experiment is not evident.	Some Systematic approach has been articulated.	Some systematic approach for the whole of the experiment has been articulated.	Sound systematic testing approach wrt to some of the physical parameters.	Clearly articulated systematic scientific approach to the task.
Analysis of Measurements (Tables, Graphs, Error Analysis)	Table of some Measured parameter. Attempt to present a graphs or table.	Table of all Parameters measured, including repeat measurements. Graphs and tables professionally labelled.	Table of all parameters measured, including repeat measurements. Graphs and tables professionally labelled, and analysed.	Table of all measured parameters and error analysis. Graphs and tables professionally labelled, and analysed.	Tables and graphs straight to the point of aim, error analysis. Scale line graphs and contour graphs and tables professionally labelled, presented and analysed.
Discussion of Results	Inconsistent interpretation of measurements and physics.	Correct interpretation of measurements, and correct mostly physics.	Correct interpretation of measurements, consistent with presented data and mostly correct physics.	Correct interpretation of measurements, consistent with presented data and correct physics.	Correct interpretation of measurements, including any explanation for unexpected results, consistent with presented data and correct physics.
Conclusion	Incorrect or incomprehensive concluding remarks. Missing relevance to commissioning organisation.	Some concluding remarks relating to presented work.	Conclusion relates correctly to presented results and recommendations are relevant to commissioning organisation.	Well articulated Conclusion, including concluding remarks and recommendations relevant to commissioning organisation.	Correct and well articulated conclusion related to objective, including concluding remarks and recommendations relevant to commissioning organisation.
References	Incorrect or no references.	Correct references provided.			
Discretionary Mark	Minus 3 (-3) points for report exceeds the allowed number of 3 pages.		One (1) discretionary bonus point for exceptional overall work, not exceeding the total achievable mark.		

726 References

727 1. Levin, E., Salehi, K. Graduate attributes: what are they and how do we know if students can achieve them?.
728 In *Lifelong learning: Whose responsibility and what is your contribution?*; P. A. Danaher, C. Macpherson, F.
729 Nouwens, and D. Orr (Eds.); Proceedings of the 3rd International lifelong learning conference, Yeppoon,
730 Queensland, Australia , 13 - 16 June 2004; pp. 211-217, <http://hdl.cqu.edu.au/10018/1762>

731 2. For an overview of graduate attributes and the graduate framework see: <https://www.uts.edu.au/research-and-teaching/learning-and-teaching/uts-model-learning/graduates-attributes>

732 3. Reeves, T.C., Herrington, J., Oliver, R. Authentic activities and online learning. In *Quality conversations: Research and Development in Higher Education 2002*; HERDSA Proceedings, Herrington T. (ed.) 25, pp. 562- 567

733 4. Donovan, M.; Bransford, J.; Pellegrino, J. *How people learn: Bridging research and practice, committee on learning, research and educational practice*. National Research Council: Washington, DC, USA, 1999; pp. 1-78; ISBN 978-0-309-18584-4.

734 5. Van Vorst, H., Dorshu, A., Fechner, S., Kuertz, A., Krabbe, H., Sumfleth, E. Charakterisierung und Strukturierung von Kontexten im naturwissenschaftlichen Unterricht – Vorschlag einer theoretischen Modellierung (Characterization and scaffolding of context in science education - A Theoretical Model). *Zeitschrift für Didaktik der Naturwissenschaften* 2014 21(1), 29-39

735 6. Brown, J.S., Collins, A., Dguid, P. Situated cognition and the culture of learning. *Educational Researcher* 1989 (18)1, 32-42

736 7. Newmann, F., Mark, H., and Gamoran, A. Authentic Pedagogy: standard that boost the students' performance. *Issues in Restructuring Schools* 1995, 8, pp. 1-12

737 8. Maina, F. W. Authentic Learning, Perspective from contemporary educators. *Journal of Authentic Learning* 2004 (1)1, pp. 1-8

738 9. Jonassen D.H. Context is everything. In: *Educational Technology* 1991, (31)6, pp. 35-37

739 10. Bennett, J., Hogart, S., Lubben F. *A systematic review of the effects of context-based and Science-Technology-Society (STS) approaches in the teaching of secondary science*. EPPI-Centre, Social Science Research Unit, Institute of Education 2003, University of London.

740 11. Bennett, J., Lubben F., Hogart, S. Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. *Science Education* 2007, (91)3, pp. 347-370

741 12. Voogt, J., Roblin, N. P. A Comparative Analysis of International Frameworks for 21st Century Competences: Implications for National Curriculum Policies. *Journal of Curriculum Studies* 2012 44, pp. 299-321, doi:10.1080/00220272.2012.668938

742 13. Sawyer, K. *The Cambridge handbook of the Learning Sciences* 2006. New York, NY: Cambridge University Press.

743 14. Handelsman J., Ebert-May D., Beichner R., Bruns P., Chang A., DeHaan R., Gentile J., Lauffer S., Stewart J., Tilghman S.M., William Wood W.B. (2004). Science Teaching. *Science* 2004, 23(304) 5670, pp. 521-522, doi: 10.1126/science.1096022

744 15. Herron, S. From cookbook to collaborative: Transformation a university biology laboratory course. *American Biology teacher* 2009, 71(9), pp. 548-552

745 16. Wood, W. Innovation in teaching undergraduate biology and why we need them. *Annual Review of Cell and Development Biology* 2009, 25, pp. 93-112

746 17. Hart, P. How should colleges prepare students to succeed in today's global economy? Online bf 2006, <http://www.aacu.org/leap/documents/Re8097abcombined.pdf>

747 18. Skinner, R. and Cowan, E. Authentic Assessment: Project for the Future. ERIC Document Reproduction Service 1995. No ED 392611.

748 19. Sawyer, K. Optimising Learning: Implications of Learning Sciences Research. OECD/CERI International Conference *Learning in the 21st Century: Research, Innovation and Policy* 2008, Paris (France), pp 1-14

749 20. Martinez-Maldonado, R., Echeverria, V., Santos, A., Santos, O., and Yacef, K. Physical Learning Analytics: A Multimodal Perspective. International Conference on Learning Analytics and Knowledge bf 2018, LAK 2018, pp. 375-379

750 21. Hora, M.T. Toward a Descriptive Science of Teaching: How the TDOP Illuminates the Multidimensional Nature of Active Learning in Postsecondary Classrooms. *Science Education* 2015 (99)5, pp. 783-818

751 22. Sorokowska, A. et al. Preferred Interpersonal Distances: A Global Comparison. *Journal of Cross-Cultural Psychology* 2017

778 23. Figure 1 images courtesy Roberto Martinez-Maldonado. Proxemics recordings of first semester physics
779 laboratory classes. Private communication 2018. Connected Intelligence Centre, University of Technology
780 Sydney.