Preprint
Article

Effects of Sodium Substitution on the Rate Performances of Spherical LiMn2O4 Cathode for Lithium Ion Batteries

Altmetrics

Downloads

392

Views

228

Comments

0

This version is not peer-reviewed

Submitted:

15 November 2018

Posted:

19 November 2018

You are already at the latest version

Alerts
Abstract
Sodium substitution Li1-xNaxMn2O4 cathodes were synthesized by a solid-state reaction method. The morphologies and crystal structures of Li1-xNaxMn2O4 were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. All Li1-xNaxMn2O4 samples exhibited a single phase LiMn2O4 spinel structure with good crystallinity. The effect of Na+ ions on the electrochemical performance of Li1-xNaxMn2O4 was investigated by galvanostatic charge-discharge test. The results showed that lithium substituted by sodium deteriorated its capacity retention but enhance its discharge capacity when it worked at large current densities. The initial discharge capacity was 114.2 mAh/g for Li0.94Na0.06Mn2O4, and 93.1 mAh/g remained after 300 cycles at a current density of 2220 mA/g in the voltage range 3.0–4.3 V at room temperature.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated