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Abstract: The increasing trend of studying the innate softness of robotic structures and amalgamating
it with the benefits of the extensive developments in the field of embodied intelligence has led to
sprouting of a relatively new yet extremely rewarding sphere of technology. The fusion of current
deep reinforcement algorithms with physical advantages of a soft bio-inspired structure certainly
directs us to a fruitful prospect of designing completely self-sufficient agents that are capable of
learning from observations collected from their environment to achieve a task they have been assigned.
For soft robotics structure possessing countless degrees of freedom, it is often not easy (something
not even possible) to formulate mathematical constraints necessary for training a deep reinforcement
learning (DRL) agent for the task in hand, hence, we resolve to imitation learning techniques due
to ease of manually performing such tasks like manipulation that could be comfortably mimicked
by our agent. Deploying current imitation learning algorithms on soft robotic systems have been
observed to provide satisfactory results but there are still challenges in doing so. This review article
thus posits an overview of various such algorithms along with instances of them being applied to
real world scenarios and yielding state-of-the-art results followed by brief descriptions on various
pristine branches of DRL research that may be centers of future research in this field of interest.
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1. Introduction

1.1. Soft robotics: a new surge in robotics

The past decade has seen engineering and biology coming together [1–5] leading to cropping up
of a relatively newer field of research- Soft Robotics (SoRo). SoRo has come to our aid by enhancing
physical potentialities of robotic structures amplifying the flexibility, rigidity and the strength and
hence, accelerating their performance. Biological organisms use to good advantage their soft structure
to maneuver in complex environments, giving motivation to exploit such physical attributes that
could be incorporated in our models to perform tasks that demand robust interactions with uncertain
environments. SoRo is capable of creating three dimensional bio-inspired structures[6] that are
capable of self-regulated homeostasis, resulting in robotics actuators that have the potential to mimic
biomimetic motions with simple, inexpensive actuation [7,8] and able to achieve bending, twisting,
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extension, flexion with non-rigid materials [5,9]. These developments in creating such robotic hardware
presents before us an opportunity to couple them with imitation learning techniques by exploiting the
special properties of these materials to clich much higher levels of precision and accuracy. Various
underlying physical properties including body shape, elasticity, viscosity, softness, density and many
more has certainly prompted us to employ such unconventional structures and morphologies in our
robotic systems bringing about a revolution in research domain of embodied intelligence. Developing
such technique would definitely lead to fabrication of robots that could invulnerably communicate
with the environment. SoRo also presents before us strong prospects of being melded with Tissue
Engineering giving rise to composite systems that could find vast applications in medical domain. [10]

Figure 1. The figure shows various application of SoRo in today’s world.

1.2. Deep learning: an overviewDeep Learning for Controls in Robotics

There has been a certain incline towards utilization of deep learning techniques for creating
autonomous systems that are capable to replace humans in varied domains. Deep learning [11]
approaches have shown tremendous amount of success when combined with reinforcement learning
(RL) tasks in the past decade and are known to produce state-of-art results in various diverse fields [12].
There have been several pioneer algorithms in this domain that have shown ground-breaking results in
tasks difficult to handle with former methods. The need for creating completely autonomous intelligent
robotic systems has led to the heavy dependence on the use of Deep RL to solve a set of complex real
world problems without any prior information about the environment. These continuously evolving
systems aid the agent to learn through a sequence of multiple time steps, gradually moving towards
an optimal solution. Robotics: perception & control

Essentially, all robotics tasks can be broken down into 2 different fragments, namely perception
[13,14] and control. The task of perception can be viewed as a relatively simpler problem wherein
agents are provided with necessary information about the environment via sensory inputs, from which
they may extract desired target quantities or properties. But in the case of learning a control policy,
the agent actively interacts with environment trying to achieve an optimal behaviour based on the
rewards received.

The problem of control goes one step further than the former due to the following factors:

• Data distribution : In case of Deep RL for perception, the observations are independent and
identically distributed while in case of controls, they are accumulated in an online manner due
to their continuous nature where each one is correlated to the previous ones[15].

• Supervision Signal : Complete supervision is often provided in case of perception in form of
ground truth labels while in controls there are only sparse rewards available.

• Data Collection : Dataset collection can be done offline in perception but requires online collection
in case of controls. Hence, this greatly affects the data we can collect due the fact that the agent
needs to execute actions in the real world which is not a primitive task in most scenarios.
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1.3. Deep learning in SoRo

The implementation of Deep Learning Techniques for solving compound problems in the task
of controls[16–18] in soft robotics has been one of the hottest topics of research. Hence, there has
been development of various algorithms that have certainly surpassed the accuracy and precision of
earlier approaches. There are innumerable control problems that exist but by far the most popular
and in-demands control task involves manipulation. The last decade has seen a huge dependence
on soft robotics (and/or bio-robotics) for solving the control related tasks, and applying such DRL
techniques on these soft robotics systems has become a focus point of heavy ongoing research. Hence,
the amalgamation of these budding fields of interests presents before us a challenge as well as potential
of building much smarter control systems[10] that can handle objects of varying shapes [19], adapt to
continuously diverging environments and perform substantial tasks of manipulation combining the
hardware capabilities of a soft robotic system alongside the learning procedures of a deep learning
agent. Hence, in this paper we focus applying DRL and imitation learning techniques to soft robots to
perform the task of control of robotic systems.

1.4. Forthcoming challenges

The next big step towards learning policy controls for robotic applications is imitation learning. In
such approaches, the agents learns to perform a task by mimicking the actions of an expert, gradually
improving its performance with time just as a Deep Reinforcement Learning agent. Even though,
it is really hard to design the reward/loss function in these cases due to the huge dimension of the
action space pertaining to the wide variety of motions possible in soft robots, these approaches are
extremely useful for humanoid robots or manipulators with high degrees of freedom where it is
easy to demonstrate desired behaviours as a result of the magnified flexibility and tensile strength.
Manipulation tasks especially the ones that involve the use of soft robotics are effectively integrated
with such imitation learning algorithms giving rise to agents that are able to imitate expert’s actions
much more accurately than normal robotic agent that do not make use of bio-inspired structures[3,20,
21]. Various factors including the extremely large dimension of the action space, varying composition
and structure of the soft robot and the alterations in the environment due to constant interactions
with our agent presents before us a variety of challenges that require intense surveillance and deep
research. Attempts have also been made to reduce the variations required to be made into our model
when transferring from one trained on a simulation to the one that functions effectively in real world.
These challenges not only appear as hindrances to achieve complete self-sufficiency but also act as
strong candidates for future of AI and Robotics research. In the paper, we list various DRL and
Imitation Learning algorithms that have been successfully applied to solve real world problems,
besides mentioning various such challenges that prevail and could act as centers of upcoming research.

1.5. Overview of the present study

This review article comprises of various sections broadly divided into two sub-categories - deep
reinforcement learning4 and imitation based learning10. The former gives a basic overview about
the algorithms in RL3 and Deep RL4 followed by descriptive explanation about the application of
Deep RL in Navigation6 and Manipulation7 mainly on SoRo environments. The succeeding section10
talks about behavioural cloning followed by inverse RL and generative adversarial imitation learning
alongside some famous examples where they have been applied to solve real world problems. The
paper also incorporates separate sections on problems faced while transferring learnt policies from
simulation to real world and possible solutions to avoid observing such a reality gap8 which gives
way to a section9 that talks about various simulation softwares available including some especially
designed for soft robots. We also include a section11 at the end on challenges of such technologies and
budding areas of global interest that may be future centers of DRL research for soft robotic systems.
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2. Brief Overview of Reinforcement Learning

Soft robots that intend to solve non-trivial tasks are generally required to have several adaptive
and evolving capabilities that make them proficient in interacting with their constantly varying
environments. Hence, for designing such intelligent embodied agents, we require the aid of
Reinforcement Learning. It is a branch of Artificial Intelligence that involves making machines
that are able to continually enhance their performance with respect to a certain context of a task they
aim to execute, identifying optimal behaviour in terms of a certain reward (or loss) function. Thus, in
short Reinforcement Learning can be expressed in simple terms as a procedure in which at each state s
the agent performs an action a, receiving a response in form of a reward from the environment on the
basis of which it decides the goodness of the previous state-action pairs and this process continues
until the agent has learned a policy good enough for our set standards. This is a process that involves
both exploration that refers to exploring different ways to achieve a particular task at a given state
as well as exploitation is the method of simply utilizing the current information gained and trying to
receive the largest reward possible at that given state.

Each robotics task that we wish to perform can be seen as a Markov Decision Process (MDP),
consisting of a 5-tuple such as :(i) S : set of all states; (ii) A : set of all actions; (iii) P : transition dynamics;
(iv) R : set of all rewards; and γ : discount factor. In most situations, we consider Episodic MDPs,
where there exists a terminal state which once obtained ends the learning procedure. Episodic MDPs
with time horizon T, ends after T time steps regardless of the fact that it has reached its goal or not.
In the problem of controls for robots, the information about the environment is gathered through the
sensors which might not be enough to collect all information that it requires to make a decision about
the action it must perform in the future time steps, such MDPs are called Partially Observable MDPs.
These are countered by either stacking all observations upto that time step before processing them or
by using a recurrent neural network. In any RL task, we intend to maximize the expected discount
return that is the weighted sum of rewards received by the agent [22]. For this purpose, we have two
type of policies namely stochastic (π(a|s)) where actions are drawn from a probability distribution and
deterministic (µ(s)) where they are selected specifically for every state. Then, we have Value functions
(Vπ(s)) that depict the expected outcome starting from state s and following policy π.

3. Reinforcement Learning Algorithms

This section provides an overview of major RL algorithms that have been extended by using deep
learning frameworks.

• Value-based Methods: These methods estimates the probability of being in a given state, using
which the control policy is determined. The sequential state estimation is done by making use
of Bellman’s Equations (Bellman’s Expectation Equation and Bellman’s Optimality Equation).
Most popular Value-based RL algorithms include State-Action-Reward-State-Action (SARSA)
and Q-Learning, which differ in their td-targets that is the target value to which Q-values are
recursively updated by a step size at each time step. SARSA is an on-policy method where the
value estimations are updated towards a policy while Q-Learning being an off-policy method
updates the value estimations towards a target optimal policy.This algorithm is a complex
algorithm that is used to expound various multiplex-looking problems but computational
constraints act as stepping stones to utilizing it, hence, not popularly exploited with soft
robots.Detailed explanation can be found in recent works like Dayan[23], Kulkarni et al.[24],
Barreto et al.[25], and Zhang et al.[26].

• Policy-based Methods: In contrast to the Value-based methods, Policy-based methods directly
update the policy without looking at the value estimations. They are quite a few waysslightly
better than value-based methods in the terms of convergence, solving problems with continuous
high dimensional data, and effectiveness in solving deterministic policies. They perform in two
broad ways - gradient-based and gradient-free[27,28] methods of parameter estimation. We
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focus on gradient-based methods where gradient descent seems to be the popular choice of
optimization algorithm. Here, we try to optimize the objective function as:

J(πθ) = Eπθ
[ fπθ

(.)] (1)

and the score function[29], given by fπθ
(.). In the previous equation, decides on how good

the current policy performs on the task in hand. A popular RL algorithm is the REINFORCE
algorithm[30], that simply plugs in the sample return equal to the score function given by:

fπθ
(.) = Gt. (2)

A baseline term b(s) is often subtracted from the sample return to reduce the variance of
estimation which updated the equation in the following manner:

fπθ
(.) = Gt − bt(st). (3)

While using Q-value function as our score function we can make use of either stochastic policy
gradient4 or deterministic policy gradient5[31] given by:

∇θ(πθ) = Es,a[∇θ log πθ(a|s).Qπ(s, a)] (4)

and
∇θ(µθ) = Es[∇θµθ(s).Qµ(s, µθ(s))]. (5)

It is observed that this method certainly overpowers the former in terms of computational time
and space limitations, and hence it more popularly employed to formulate control tasks, but still
it cannot be extended to tasks involving interaction with continuous evolving environments that
require the agent to be highly adaptive.

At times, it has been noted that it may not practically suitable to follow the policy gradient
on account of safety issues and hardware restrictions. Therefore, we often optimise using the
policy gradient on stochastic policies wherein integration is done over only state space due to
the extraordinarily large dimension of the action space in case of soft robots that can sustain
movements in almost all directions and angles possible.

• Actor Critic Method: These are algorithms that keep a clear representation of the policy and state
estimations. The score function for this is obtained by replacing the return Gt from equation 3 of
policy based methods with Qπθ (st,at) and baseline b(s) with Vπθ (st) that results in the following
equation:

fπθ
(.) = Qπθ

(st, at)−Vπθ
(st). (6)

The advantage function A(s,a) is given by:

A(s, a) = Q(s, a)−V(s). (7)

It is not wrong to say that actor critic methods could be described as an intersection of policy
based and value based methods, wherein it combines iterative learning methods of both the
methods.

• Integrating Planning and Learning: All algorithms discussed uptil now learn a control policy by
maximizing rewards obtained from actual experiences. There also exists methods wherein the
agent learns from experiences itself but also can collect imaginary roll-outs[32]. Such methods
have also been upgraded by using them alongside DRL methods[33,34]. Even though, they are
not as popular as the former ones mentioned above, still they could be extremely essential in
extending RL techniques to soft robotic systems as the droves of degrees of freedom they hold
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leads to exceptionally expensive interaction with environment and hence, compromising on the
training data available.

Table 1. Key differences between Value Based and Policy Based (along with Actor Critic Methods) on
various different factors of variation.

Algorithm Value Based Methods Policy Based Methods(and Actor Critic
Methods)

Examples Q-Learning, SARSA, Value Iteration REINFORCE, Advantage Actor Critic,
Cross Entropy Method

Steps Involved Finding optimal value function and find the
policy based on that (policy extraction) Policy evaluation and policy improvement

Iteration The two processes (listed in above cell) are
not repeated after once completed

The above two processes (listed in above
cell) are iteratively done to achieve
convergence

Convergence Relatively Slower Relatively Faster
Type of Problem
Solved Relatively Harder control problems Relatively Simpler control problems

Method of Learning Explicit Exploration Innate Exploration and Stochasticity

Advantages Simpler to train off-policy Blends well with supervised way of
learning

Process Basis Based on Optimality Bellman Operator- is
non-linear operator Based on Bellman Operator

4. Deep Reinforcement Learning Algorithms coupled with SoRo

The heavy benefits gained by roboticists in terms of physical and mechanical properties as well
as the added precision and accuracy due to increased degrees of freedom allowing a wide range of
actions while dealing with soft robots has lead to their involvements in almost all domains possible.
There are a good deal of sectors wherein soft robotics have found extensive applications:

Bio-medical: Soft Robots has found enormous applications in the domain of bio-medicine. They
have found wide range of applications that include development of soft robotic tools for surgery,
diagnosis, drug delivery, wearable medical devices, prostheses, artificial organs, active simulators
that copy the working of human tissues for training and bio-mechanical research. The fact that they
are highly durable and flexible makes them apt for applications involving maneuvering in close and
delicate areas where a possible human error could cause heavy damage. Certain special properties of
them being completely water-soluble or ingestible makes them a good candidate for future medication
delivery agent for human bodies.

Manipulation: Another domain wherein soft robots are considered to be extremely useful is for
autonomous picking, sorting, distributing, classifying and grasping capabilities in various workplaces
including warehouses, factories, and industries.

Mobile Robotics: Various types of diverse domain-specific robots that posses the ability to move
have been employed for countless purposes. Robots that could walk, climb, crawl or jump having
structures inspired from other animals that portray special movement capabilities may find applications
in inspection, monitoring, maintenance and cleaning tasks. The recent works in the field of swarm
technology has greatly enhanced the performance of robots that are mobile and posses such flexible
and adaptive structures.

Edible Robotics: The considerable developments in the 3D printing has lead to sharp rise in ease of
protyping soft robotic structure that are ingestible and may even be water soluble. Such biodegradable
robotic equipment could relive several damages that are incurred to the environment as a result of
interaction of these machine with environment contributing to all sorts of pollution especially the
damage done to the water bodies. These unique type of robots are generally composed of edible
polymers that could that could be extremely competent for use in the medical and food industry.
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Super-Strong Mechanics: Origami - a really atavistic concept that has been in use for hundreds of
years, has been imployed to enhance the physical strength of soft robotic systems. These robots that
have structures inspired from such a concept are capable of having varied sizes, shape and appearances
and are proficient in lifting weight upto 1000 times it’s own weight. These robots can find intensive
applications in various diverse industries that require lifting of heavy material.

Even apart from these there are innumerable fields whereing soft robots have found applications
in including motor control in machines, assistive robots, military reconnaissance, natural disaster relief,
pipe inspection and so much more.

The vast domain applications of soft robotics has made its study alongside DRL-based methods
even more necessary due to the fact that now not only do we have to make systems that can
perform compound tasks as a consequence of their special mechanical capabilities but also incorporate
self-adaptive and evolving models that learn from interactions from the environment. The following
table shows various domains wherein soft robots are considerably utilized but also some areas that
are capable of engulfing within them some DRL techniques those will be discussed in detail in the
sections to follow.

Neural networks have been real asset in approximating various optimal value functions in
Reinforcement Learning Algorithms and hence, have been extensively applied to predict the most
favourable control policy in robotics. Systems involving soft robots generally have more challenges
in policy optimisation due to large action and state spaces, and hence, in most scenarios we have to
incorporate neural networks in our models alongside adaptive reinforcement learning techniques. The
last decade has seen a sharp rise in the usage of DRL methods for performing a variety of tasks to
make use of the bio-inspired structures of soft robots. The following are the common DRL algorithms
that have been put in practise and have shown fine potential in solving such control problems:

• Deep Q-Network (DQN) [35]: In this approach the optimal value of Q-function is obtained using
a deep neural network (generally a CNN), just like we do in all other value-based algorithms.
We denote the weights of this Q-network by Q*(s,a) and the td-error and td-target are given by
equations:

δt
DQN = yt

DQN −Q(st, at; θt
Q) (8)

and
yt

DQN = Rt+1 + γ. (9)

The weights are recursively updated by the equation:

θt+1 ← θt − α(∂(δt
DQN(θt

Q))2/∂θt
Q). (10)

moving in the direction of decreasing gradient with a rate equal to the learning rate. These are
capable of solving problems involving high dimensional state spaces but restricted to discrete
low dimension when it comes to action space. These methods have been extremely useful when
applied to various problems of manipulation using soft robotics that have structure inspired from
biological creatures, combining which gives systems are able to interact with the environment
alongside additional flexibility and adaptation to changing situations.

Two main methods employed in DQN for learning are:

– Target Network: Target network Q- has same architecture as the Q-network but while
learning the weights of only the Q-network are updated, while repeatedly being copied
to weights of θ- network. In this procedure, td-target is computed from the output of θ-

function[17].
– Experience Replay: The collected data in form of state-action pairs with their rewards are

not directly utilized but are stored in a replay memory. While actual training, samples
are picked up from the memory to serve as mini-batches for the learning. The further
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Table 2. SoRo applied state-of-the-art results and sub-domains where utilization of DRL and imitation
learning techniques could be useful.

Domain of Application Basic Applications Methods in which DRL/Imitation
Learning Algorithms can be incorporated

Bio-Medical

• Equipment for
Surgeries, endoscopy,
laparoscopy etc.

• Prosthetics for the
impaired

• Autonomous surgeries, endoscopy,
laparoscopy etc. via Imitation
Learning

• Vision Capabilities via DRL
techniques for analysis of
ultrasounds, X-Rays etc.

• Automatic and in dependant
Manipulation abilities for soft
robotic gloves or other wearable
prosthetics using DRL techniques in
human-machine interface meant for
impaired.

Manipulation

• Automation of various
picking, placing,
grasping, sorting tasks
in industries, factories
and other workspaces

• Picking and placing
extremely heavy
objects using strength
of super strong soft
robots

• Imitation Learning techniques
for simple manipulation tasks
manipulation accompanied by
autonomous selection/classification
using DRL-based vision capabilities

• Meta-Learning - an effective
amalgamation of Imitation Learning
and DRL based learning for more
complex manipulation tasks

Mobile Robotics

• Various tasks
in warehouses,
industries, factories
etc. could be
automated that
require maintenance,
inspection and
cleaning applications

• Surveillance and
disaster management
applications

• Autonomous path planning using
DRL based techniques in compound
environments to perform perverse
tasks

• Imitation Learning techniques for
teaching simpler tasks like walking,
crawling, sprinting etc.
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The component that 
performs action a at a 
state s.

SoRo AGENT

A set of all states that 
are constantly varying 
and that the agent 
tries to influence when 
taking the action that 
he picks.

ENVIRONMENT

Figure 2. The figure depicts the training architecture of a DQN agent.

learning task follows the usual steps of using gradient descent to reduce loss between
learned Q-network and target Q-network.

These two methods are used to stabilize the learning in DQN by reducing the correlation between
estimated and target Q-values, and between consecutive observations respectively. Advanced
techniques for stabilizing and creating more efficient models include Double DQN[36] and
Dueling DQN[37].

• Deep Deterministic Policy Gradients (DDPG) [17]: This is a modification of the DQN combining
techniques from actor-critic methods allowing us to model problems with continuous high
dimensional action spaces. The training procedure of a DDPG agent is depicted in figure 3. The
equations for stochastic11 and deterministic12 policies are given by equations:

Qπ(st, at) = ERt+1,st+1∼E[Rt+1 + γEat+1∼π [Qπ(st+1, at+1)]] (11)

and
Qµ(st, at) = ERt+1,st+1∼E[Rt+1 + γQµ(st+1, µ(st+1))]. (12)

The difference between this and DQN lies in the dependence of Q-value on action where it is
represented by giving one value from each action in DQN and by taking action as input to theta
Q in case of DDPG. This method remains to be one of the premiere algorithms in the field of DRL
that have been successfully applied to systems have soft robotic structure.

• Normalised Advantage Function (NAF) [38] : This functions in a similar way as DDPG in the
sense that it also helps us to enable Q-learning in continuous high dimensional action spaces by
employing the use of deep learning. In NAF, Q-function Q(s,a) is represented so as to ensure
that its maximum value can easily be determined during the learning procedure. The difference
in NAF and DQN lies in the network output, wherein it outputs θV, θµ and θL in its last linear
layer of the neural network. θµ and θL help us predict the advantage necessary for the learning
technique. Similar to a DQN, it also makes use of Target Network and Experience Replays to
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The SoRo agent that 
performs action a at a 
state s.

Actor

This is what describes 
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Figure 3. The figure depicts the training architecture of a DDPG agent. The blue lines portray the
updation equations.
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ensure there is least correlation in observations collected over time. The advantage term in NAF
is given by:

A(s, a; θµ, θL) = −(1/2)(a− µ(s, θµ))T P(s; θL)(a− µ(s; θµ)) (13)

wherein,
P(s; θL) = L(s; θL)L(s; θL)T. (14)

This is a much simpler form of solving problems that can’t be solved using common DQN
techniques. Asynchronous NAF approach has also been introduced in the work by Gu et al.[39].

• Asynchronous Advantage Actor Critic (A3C) [40]: In several asynchronous DRL approaches,
various actors-learners are utilized to collect as many observations as possible, each storing
gradient for their respective observations that used to update the weights of the network.
A3C is the most commonly used algorithm of this type. This method always maintains a
policy representation π(a|s;θπ) and a value estimation V(s;θV) making use of score function
in form of an advantage function that is obtained by observations that are provided by all the
action-learners. Each actor-learner collects roll-outs of observations of its local environment upto
T steps, accumulating gradients from samples in the roll-outs. The approximation of advantage
function used in this approach is given by equation:

A(st, at; θπ , θV) = [
T−1

∑
k=t

[γk−t] + γT−tV(sT ; θV)−V(st; θV); θπ ]. (15)

The network parameters θV and θπ are updated repeatedly according to the equations given by:

dθπ ← dθπ +∇θπ log π(at|st; θπ)A(st, at; θπ , θV) (16)

and
dθtV ← dθV + ∂A(st, at; θπ , θV)2/∂θV . (17)

This approach doesn’t require learning stabilization techniques like memory replay as the
parameters are updated simultaneously rather than sequentially hence, eliminating the
correlation factor between them. Also, there are several action-learners involved in this method
that tend to explore a much wider view of the environment and helping learning a more optimal
policy. A3C has proven out to be the stepping stone for DRL research and a popular algorithm
that has been extremely efficient in providing state-of-art results alongside greatly reduced time
and space complexity and its range of problem solving capabilities.

• Advantage Actor Critic (A2C) [41,42]: In some scenarios, it is not necessary that asynchronous
methods lead to better performance. It has been shown in some papers, that synchronous version
of the previous algorithm also provides fine results wherein each actor-learner finishes collecting
observation after which they are averaged and an update is made.

• Guided Policy Search (GPS) [43]: This approach involves collecting samples making use of
current policy, generating a training trajectory at each iteration that are utilized to update the
current policy according to supervised learning. The change is bounded by adding it like
a regularization term in the cost function, to prevent sudden changes in policies leading to
instabilities.

• Trust Region Policy Optimization (TRPO) [44]: In Schulman et al.[44], an algorithm was proposed
for optimization of large nonlinear policies which gave some improvement in the accuracy.
Discount cost function for an infinite horizon MDP is given by replacing reward function with
cost function giving the equation:

η(π) = Eπ [
∞

∑
t=0

γtc(st)|s0 ∼ ρ0]. (18)
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Similarly, the same replacement made to state-value functions give us the following two
equations: (38) and (39) Hence, resulting in advantage function given by:

Aπ = Qpi(s, a)−Vπ(s). (19)

Optimizing equation 19 would result in giving us an updation rule for the policy as follows:

η(π) = η(πold) + E[
∞

∑
t=0

γt Aπold(st, at)|s0 ∼ ρ0]. (20)

This has been mathematically proved via advanced literatures by Kakade and Langford [45]
that this method greatly improves the performance by quite a bit, and hence its popularity. This
algorithm requires advanced optimization problem solving techniques using conjugate gradient
and then using line search[44].

STEP 4:
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value of KL 

STEP 3:
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Gradient Descent/ 
Conjugate Gradient  

or some other 
optimization 
method for n 
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Algorithm

STEP 1
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Figure 4. The figure depicts the training architectures of A3C and TRPO agents.

• Proximal Policy Optimization (PPO) [46]: This methods tries to solve soft constraint optimization
problem making use of standard Stochastic Gradient Descent problem, in which C is tuned
according the KL-divergence term. This is one of the most popular DRL algorithms due to its
simplicity and effectiveness in solving control problems. It has been widely applied to various
fields of policy estimation and is also the default algorithm in OpenAI.

• Actor Critic Kronecker-Factored Trust Region (ACKTR) [42]: This uses a form of trust region
gradient descent algorithm for a actor-critic with curvature estimated using Kronecker-Factored
approximation. It is effectively one of the most efficient DRL algorithms being computationally
better than TRPO. It makes use of natural gradient descent being much more sample efficient
than other methods using gradient descent.

These methods have shown great prospect when combined with the innumerable physical
capabilities of the soft structure of bio-inspired robots[3,20], and are topic of great interest. Various
works showcase that such neural network oriented approaches have been hugely successful
when dealing with controls tasks especially manipulation with soft robots.

5. Deep Reinforcement Learning Mechanisms

Many mechanisms have been proposed that can greatly affect the learning procedure while solving
control problems involving soft robots (especially for manipulation) by the aid of DRL algorithms.
These act as catalysts to the task in hand acting orthogonally to the actual algorithm. The task of
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solving DRL problems to obtain nearly optimal action with respect to each state for soft robotics has
achieved great success as well as attention of robotics researcher around the world, hence, increasing
the demand to not only formulate computationally less expensive DRL algorithms but also introduce
mechanisms that enhance the productivity and efficiency if these algorithms. Some of them that have
been common applied to diverse set of control tasks include :

• Auxiliary Tasks[47–51]: Usage of several other supervised and unsupervised machine learning
methods like regressing depth images from colour images, detecting loop closures etc. besides the
main algorithm to receive some information from sparse supervision signals in the environment.

• Prioritized Action Replay[52]: Prioritizing memory replay according to td-error
• Hindsight Action Replay[12]: Relabeling the rewards for the collected observations by more

effective use of failure trajectories along with using binary/sparse labels that speed the off-policy
methods.

• Curriculum Learning[53–55]: Exposing the agent to more sophisticated setting of the
environment helping it to learn to solve complex tasks.

• Curiosity-Driven Exploration[56]: Incorporating internal rewards besides external ones collected
from observations.

• Asymmetric Action Replay for Exploration[57]: The interplay between two forms of the same
learner generates a curricula, hence, driving exploration

• Noise in Parameter Space for Exploration[58,59]: Inserts additional noise so as to aid exploration
more in the learning procedure.

The persistently rising demands for creating not only structure that overpower humans in
the physical capabilities and potentialities in terms of flexibility, strength, rigidness etc. but also
systems that are completely autonomous and constantly evolving, has lead to heavy growth in the
developments in DRL that could be applied to soft robots. This has lead to employment of such robots
in almost all domains possible leading to a rise in the demand to create systems that are not only
capable of performing a task but executing it within hardware constraints, ensuring safety, reducing
environmental damage and using of minimum computational time and storage resources. This brings
about a need for incorporating such mechanisms (as mentioned in this section) in our models that
enhance and strengthen the impact of our DRL algorithms that are coupled with soft structure of our
robots.

6. Deep Reinforcement Learning for Soft Robotics Navigation

Autonomous driving tasks with completely automated navigation in which the goal of the agent
is to reach a given goal point avoiding static or moving obstacles in the path while following a
trajectory that is planned minimizing the cost/effort exerted remains to be one of the pioneer tasks
in robotic controls even with soft robotic systems.Deep RL approaches have turned out be an aid
for suchnavigation tasks helping to generate such trajectories by learning from observations taken
from the environment in form of state-action pairs. Similar to all other types of robots, Soft Robots
also require autonomous navigation capabilities that can be coupled with their essential mechanical
properties allowing them to execute onerous looking tasks with ease. Various soft robots that may be
meant for investigation, maintenance or monitoring purposes at various workplaces have walking,
climbing or crawling capabilities that require self-sufficient path planning potentialities for better
use. Completely reliable and independent movement is necessary for creating better systems that
perform tasks requiring continuous interaction with environment in order to find the path for desired
movements.

Like all other DRL problems, the navigation problem too is considered as a MDP that inputs
sensor (LIDAR scans and depth images from on-board camera) readings and in return outputting a
trajectory (policy in form of actions to be taken a particular states), that will help the agent to complete
the task of reaching the goal in the given span of time.
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Figure 5. The figure depicts the application of DRL techniques in the task of navigation.

Several experiments have been carried out in this growing field of research and some of them are
stated below:

• Zhu et al.[60] gave the A3C system the first-person view alongside the target image to conceive
the goal of reaching the destination point, by the aid of universal function approximators. The
network used for learning is a ResNet[61] that is trained using a simulator[62] that creates a
realistic environment consisting of various rooms each as a different scene for scene-specific
layers. The model gave 70% accuracy for predicting the policy for targets away by one step from
the trained targets and 42% for the ones two steps away. After being provided with images of a
real scene of an office the robot could navigate effectively and in a collision-free manner. An A3C
agent was trained on 100 million frames with an optimal solution of 17.6 steps over an average
trajectory length of 210.7[60].

• Zhang et al.[26] implemented a deep successor representation formulation for predicting Q-value
functions that learn representations interchangeable between navigation tasks that may be
related in some way. Successor feature representation[24,25] breaks down the learning into two
fragments - learning task-specific reward functions and task specific features alongside their
evolution for getting the task in hand done. This method takes motivation from other DRL
algorithms that make use of optimal function approximators to relate and utilize the information
gained from previous tasks for solving the tasks we currently intend to perform[26]. This method
has not only been observed to work effectively in transferring current policies to different goal
positions in the same environment and varied/scaled reward functions but also to newer complex
situations like new unseen environments. The models (pre-trained or transferred) attained high
accuracy (nearly best possible) in solving control problem given a 3D maze with given start and
goal point and RGB images for observation.

Both these methods intend to solve the problem of navigation for autonomous robots that have
inputs in form of RGB images of the environment by either getting the target image[60] or by
transferring information that is gained through previous processes[26,63]. In contrast, Tai et
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al.[63] proposes an approach in which it tries to create a trajectory for the mobile robot with
the help of relative position of the robot with respect to the ultimate destination position that
could be obtained with the help of Wi-fi or visible light localization. Such models are trained via
asynchronous DDPG for varied set of real and simulations of real environments.

• Mirowski et al.[47] made use of a popular DRL mechanism of using a additional supervision
signals available (especially loop closures and depth prediction losses) in the environment
allowing the robot to freely move between varying start and end point with increased accuracy
and efficiency.

• Chen et al.[64] proposed a solution for highly compound problems involving dynamic
environment (essentially obstacles) like navigating on a path with pedestrians as probable
obstacles. It utilizes a simple set of hardware to demonstrate the proposed algorithm in which
LIDAR sensor readings are used to predict the different properties associated with pedestrians
(like speed, position, radius) that contribute to forming the reward/loss function. Long et al.[65]
also makes use of PPO to conduct multi-agent obstacle avoidance task.

• Simultaneous Localisation and Mapping (SLAM)[66] have been at the heart of recent robotic
advancements with a loads of papers been written regularly annually in this field in the last
decade. SLAM may make use of DRL methodologies partially or completely and have shown to
produce one of the best results in such tasks of localisation and navigation.
• A popular imitation learning problem that will be dealt with later in more detail trains a Cognitive

Mapping and Planning (CMP)[67] model with DAGGer that inputs 3-channeled images and
with the aid of Value Iteration Networks (VIN) creates a map of the environment. The work of
Gupta et al.[68] has also introduced a new form of amalgamation of spatial reasoning and path
planning.
• Zhang et al.[54] also introduced a new form of SLAM called Neural SLAM that took inspiration

from works of Parisotto and Salakhutdinov[69] that allowed our agent to interact with Neural
Turing Machine(NTM). Graph-based SLAM[66][70] led way for Neural Graph Optimiser by
Parisotto et al.[71] which inserted this global pose optimiser in the network.

Further advanced readings on Navigation using DRL techniques include Zhu et al.[60], Schaul et
al.[72], He et al.[61], Kolve et al.[62], Zhu et al.[73], Long et al.[65], Gupta et al.[67], Khan et al.[74], Bruce
et al.[75], Chaplot et al.[76] and Savinov et al.[77].

7. Deep Reinforcement Learning for Soft Robotics Manipulation

The extensive use of soft robots in industrial applications, replacing human labour and accelerating
accuracy and efficiency has lead to sprouting of this new field of interest for roboticists. The application
of DRL techniques for Manipulation tasks like picking, dropping, reaching etc.[17,40,44,78]. The
enhanced rigidity, flexibility, strength and adaptation capability of soft robots over hard robots[79,80]
has lead to its extensive applications in the manipulation field and combining it with DRL has been
observed to give highly precise and satisfactory results. The coming of the soft robotics technologies
and its extremely effective blend with such deep learning technologies has often contributed to robots
becoming a crucial part of almost all manipulation tasks.

After great developments in the domain of soft robotics, we require much better learning
algorithms that can solve much complex manipulation tasks alongside taking care that we follow
all constraints that are enforced as a result of the physical structure of such bio-inspired robots[3,20].
Coming of DRL technologies have hugely influenced and more importantly enhanced the performance
of such agents.

In the past few years, we have witnessed a drastic increase in research focus towards DRL
techniques while dealing with soft robots. Some of the milestone papers of DRL used for manipulation
tasks are listed below:
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Figure 6. The figure depicts the application of DRL techniques (DQN Method) in the task of
manipulation.

• Gu et al.[39]: Gave a modified form of NAF that works in a asynchronous fashion in the task of
door opening taking state inputs like joint angles, end effector position, and position of target. It
gave a whopping 100% accuracy in this task and learning it in mere 2.5 hours of time.

• Levine et al.[50]: Proposed a visuomotor policy based model that is an extended deep version
of GPS algorithm studied earlier. The architecture of the network consists of convolutional
layers along with softmax activation function taking in as input images of the environment and
concatenating the necessary information gained along with the robot’s state information. The
required torques are predicted by passing this concatenated input to linear layers at the end of
the network. These experiments were carried out with a PR2 robot for various tasks like screwing
a bottle, inserting block into a shape sorting cube etc. Despite its highly desirable results, it is not
widely used in real world applications are it requires complete observability in state space that is
sometime difficult to obtain in real life.

• Finn et al.[81] and Tzeng et al.[82]: Made use of DRL techniques for predicting optimal control
policies by studying state representations.
• Fu et al.[83]: Introduced the use of a dynamic network for creating a one-shot model for

manipulation problems. There have been advancements in the area of manipulation using
multi-fingered bio-inspired hands that may be model-based[84,85] or model-free[86].

• Riedmiller et al.[48]: Gave a new algorithm that enhanced the learning procedure from the time
complexity as well as accuracy point of view. It said that sparse rewards for the model help
in attaining more optimal policy faster than providing binary rewards that may lead to policy
that not the desirable trajectories for the end effector. For this, another policy (referred to as
intentions) was learned for auxiliary tasks whose inputs are easily attainable via basic sensors
[87]. Alongside this, a scheduling policy is also learned for scheduling the intention policies.
Such a system have much better results than a normal DRL algorithm for the task of lifting that
took about 10 hours to learn from scratch.

Refer to figure ?? for images of some these ground-breaking works in field of DRL utilized for robotic
manipulation tasks.

Soft Robots have taken over major departments of the industrial sector due such heavy
developments in the fields of manipulation controls via DRL methods for their unquestionable
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superiority over other alternative methods. The accuracy, precise and efficiency displayed by these
autonomous bio-inspired industrial systems are huge in comparison to the human or hard robotic
counterparts[88]. Involving more of such soft robots in place of humans has also lead to a drastic
dip in chances of industrial disasters due to human error (as a result of their environment adaptation
property) and they have proven to be extremely useful for working environments that are unsuitable
for our bodies.

8. Difference between Simulation and Real World

Collecting training samples is not an easy task while solving the problem of controls in soft
robotics as it is in perception for similar systems. Collection of real world dataset (state-action pair) is
a costly operation due to the high dimensionality of the control spaces and the lack of availability of
a central source of control data for every environment. This causes what we call as reality gap which
refers to the difference in various factors in simulations and real world. This inflicts upon us various
challenges while bringing models that have been trained in simulation to real world scenarios. Even
though, we have various simulation software for soft robotics especially designed for manipulation
tasks like picking, dropping, placing etc. as well as navigation tasks like walking, jumping, crawling
etc., there are still challenges that act as hindrances in this problem of solving control tasks making use
of these flexible robots.

Soft robots that have bio-inspired designs and materials making use of DRL techniques like
the ones listed in the previous sections are known to yield satisfactory results, but still they face
various obstacles that hinder their performance when tested on real world problem after being trained
on simulation settings. Such a gap is most prevalently viewed in disparities in visual data[26] or
laser readings[63] and some papers have aimed at reducing the discrepancies by proposing certain
approaches. Following section provides an overview of some of them:

• Domain Adaptation: This basically just translates images from source domain to the destination
domain. Domain confusion loss that was first proposed in the paper Tzeng et al.[89] learns a
representation that is undeviated and steady towards changes in domain. But the limitation
to this approach lies in the fact that it requires the source and destination domain information
before the training step, which is not possible for most models. Visual data coming from multiple
sources is represented by X (simulator) and Y (on-board sensors). The problem arises when we
train the model on X and test it on Y, wherein we observe a considerable amount of performance
difference between the two. This problem of reality gap is a genuine problem faced while dealing
with systems involving soft robots due to the constant variations in the position of end-effector
in numerous degrees of freedom, hence, there is need of a system that is invariant to changes in
perspective (transform) with which the agent observes various key points in the environment.
Domain adaptation is a simple yet effective approach that is widely utilized to solve simpler
problems of low accuracy due to variations between simulation and real world accuracies.
• This problem can be solve if we have some kind of a mapping function that can map data from

one domain to the other one. This can be done by employing a deep generative model called
Generative Adversarial Network or commonly known as GANs[90–92]. GANs are deep models
that have two basic components - a discriminator and a generator. The job of the generator
or popular known as the decoder is produce images samples from the source domain to the
destination domain, while that of the discriminator is to differentiate between true and false
(generated) samples.

– CycleGAN[73]: First proposed in Zhu et al.[73], works on the principle that it is possible
and feasible to predict a mapping that maps from input domain to output domain simply
by adding a cycle consistent loss term as a regulariser for the original loss for making sure
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the mapping is reversible. It is a combination of two normal GANs and hence, two separate
encoders, decoders and discriminators are trained according to equations:

LGANY (GY, DY; X, Y) = Ey[log DY(y)] + Ex[log(1− DY(DY(x)))] (21)

and
LGANX (GX , DX ; Y, X) = Ex[log DX(x)] + Ey[log(1− DX(DX(y)))]. (22)

The loss term for the complete weight updation (after incorporating the cycle consistent
loss terms for each GAN) step now turns out to be:

L(GY, GX , DY, DX ; X, Y) = LGANY (GY, DY; X, Y) + LGANX (GX , DX ; Y, X)

+λcycLcycY (GX , GY; Y) + λcycLcycX (GY, GX ; X).
(23)

Hence, the final optimization problem turns out to be equation 24.

G∗Y, G∗X = arg min
GY ,GX

max
DY ,DX

L(GY, GX , DY, DX) (24)

This is known to produce desirable results for scenes where it is relatively simpler to draw
comparisons/relations between both domains but sometimes fails on complex domains
environments.

– CyCADA[93]: The problems that CycleGAN, that was first introduced in Hoffmann et
al.[93], faced were resolved by making use of the semantic consistency loss that could be
used to map complex environments. It trains a model to move from the source domain
containing semantic labels, helping us to map the domain images from X to that in Y. The
equations that is used for mapping using the decoder are given by:

LsemY (GY; X, fX) = CE( fX(X), fX(GY(X))) (25)

and

LsemX (GY; Y, fX) = CE( fX(Y), fX(GX(Y))). (26)

Here, CE(SX,fX(X)) represents the cross-entropy loss between data-points predicted by
pre-trained model and the true labels SX.

The training architecture of a CycleGAN and a CyCADA is described in figure 7.

Not just these two applications (Domain Adaptation and GANs) but there are many more
algorithms/techniques in which the usage of modern day deep learning frameworks like
GANs[90–92], VAEs[94], disentangled representations[95,96] and many that have greatly aided
the process of controls of soft robots. These developing frameworks have certainly widened the
perspective of DRL for robotic controls during the current era of technological advancements,
have proven that there is a huge scope for research in these fields and that they have ever growing
applications in robotics. The combination of two such extremely tender fields of technology
- soft robotics and modern deep learning frameworks (especially generative models) may be
something that might act as stepping stones to major technological advancement in the next
decade, and an essential part of all domains making use of robotics for controls (more generally
manipulation).

• Domain Adaptation for Visual DRL Policies: In such adaptation techniques, we try to transform
the policy from source domain to destination domain.

Bousmalis et al.[97] proposed a new way to solve problems of reality gap in policies trained on
simulations and applying them in real life scenarios.
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(A)

(B)

Figure 7. (A) Training Architecture of CycleGAN. (B) Training Architecture of a CyCADA.

There have been recent developments with the aim of developing newer training techniques
to avoid such a gap in efficiency while testing on simulation and real world scenarios besides
advancements in the simulation environments possible to create virtually. Tobin et al.[98] randomised
the lightning conditions, viewing angles and texture of objects to ensure the agent is manifested to
all disparities in the factors of variation. The works by Peng et al.[99] and Rusu et al.[100] also focus
on more such training methods. The recent advancements in VR Goggles[101] have separated policy
learning and its adaptation in order to minimize the transfer steps required for moving from simulation
to real world. A new optimization objective comprising of an additional shift loss regularisation term
was also deployed on such a model that borrows motivation from artistic style transfer proposed by
Ruder et al. [102]. Works in the domain of scene adaptation include indoor scene adaptation where
the semantic loss is not added (A VR Goggles[101] model tested on Gazebo [103] simulator using
a Turtlebot3 Waffle) and outdoor scene adaptation where we do add such a semantic loss term to
the original loss function. Outdoor scene adaptation involves collection of real world data through a
dataset like RobotCar [104] which is tested on a simulator(like CARLA [105]). The network is trained
using DeepLab Model [106] after adding the semantic loss term. Such a model may turn out to be
extremely useful for situations where the simulation fails to accurately represent the real agent [107].

The problem of making effective software that not just works on the simulation but is also
is effective in real world still remains to be the toughest challenges in the path of roboticists and
researchers that aim to make completely autonomous systems using designs that have biologically
similar structures and are composed of edible degradable materials. With sharp rise in number of
simulations softwares (and simulation methods [108]) available publically and the growth in the
hardware industry for soft robots - upcoming of 3D printed bio-robots[109–112] that are much effective
than normal ones for specific tasks for which they have been designed for alongside special flexible
electronics for such systems[113], there is still some scope for improvement in development of real
world soft robots with practical applications, making way for a hot topic for future research in the
upcoming years.
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9. Simulation Platforms

There are several platforms that are available for simulation purposes of DRL agents before testing
them on real world applications. Some of them are given below in table ??.

Table 3. The following tables lists down various simulation softwares available for simulating
real-looking environments for training of DRL agents alongside the modularities available with them
and their special domain of use.

Simulator Modalities Special Purpose of Use

Gazebo (Koenig et al.[103]) Sensor Plugins General Purpose
Vrep (Rohmer et al.[114]) Sensor Plugins General Purpose
Airsim (Shah et al.[115]) Depth/Color/Semantics Autonomous Driving

Carla (Dosovitskiy et al.[105]) Depth/Color/Semantics Autonomous Driving
Torcs (Pan et al.[116]) Color/Semantics Autonomous Drivings
AI-2 (Kolve et al.[62]) Color Indoor Navigation

Minos (Savva et al.[117]) Depth/Color/Semantics Indoor Navigation
House3D (Wu et al. [118]) Depth/Color/Semantics Indoor Navigation

The readily available softwares have lead to ease in robotics software development, and hence
contributing heavily to the upcoming research in the field of controls. The fact that soft robotics
hardware is relatively expensive and not easy to use and that a normal DRL agent requires lots
of training even before testing it in the real environments, makes the presence of special purpose
simulation tools more and more important. Hence, these upcoming simulation softwares have come to
the aid of robotics researchers who wish to contribute in this field of robotic research.

Another problem that arises when we utilize soft robots for solving control tasks in place
of the hard ones is that are there are much fewer simulation softwares available for soft robotics
applications[10] as compared to the hard ones. The fact that soft robotics is a relatively new field
results is the reason that there are scarcely any simulation softwares for manipulation tasks using a
soft robot. The number of such softwares are expected to rise at a much brisk rate due to the heavy
demand of soft robotics and the fact that DRL techniques are extremely expensive to train in real world
environments. One of the most famous soft robotics simulator is SOFA that allows the user to model,
simulate and control a soft robot. Soft-robotics toolkit[119] is a plugin that aids us to simulate soft
robots using SOFA framework[120]. Others that are also capable of modeling and simulating soft
robotics agents are V-REP simulator[121], Action simulation by Energid, and MATLAB (Simscape
modeling)[122]. Some of these simulation softwares are shown in figure 8.

Figure 8. Soft Robot Simulation on SOFA using Soft-robotics toolkit.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2018                   doi:10.20944/preprints201811.0510.v2

Peer-reviewed version available at Robotics 2019, 8, 4; doi:10.3390/robotics8010004

http://dx.doi.org/10.20944/preprints201811.0510.v2
http://dx.doi.org/10.3390/robotics8010004


21 of 33

10. Imitation Learning for Soft Robotic Actuators

There are several drawbacks of training a DRL agent to perform control tasks especially for soft
robots: relatively high training time and data that requires robot to interact with the real world which
is computationally expensive, a well formulated reward function which might not be practical to
obtain in some scenarios. Imitation Learning is a unique approach to perform a control task especially
the ones involving use of bio-inspired robots without the requirement of a reward function due to the
fact that it is inconvenient to formulate one in such cases where the problem is ill-posed, but requires
an expert whose actions are mimicked by the agent[15]. In situations where we have such an expert
present with high degrees of movement/action space leading to enormous computation time and
necessity of a huge training set and it is difficult to give a reward function to describe the problem,
Imitation Learning is extremely useful. An overview of the training procedure for an imitation learning
agent is shown in figure 9.

Execute Current Policy and Query Expert

Demonstration from 
Expert

New Data

ALL PREVIOUS 
DATA

Supervised Learning

Figure 9. The figure depicts the training procedure of an Imitation Learning Agent

The use of imitation learning for solving problems of manipulation like picking, dropping,
etc.[123,124] where we can exploit several benefits of soft robotics over hard ones have become
extremely essential. Controls tasks in such situations generally have tough to compute cost functions
due to high dimension of action space caused by the flexibility introduced in the motion of the
actuator/end-effector because of the soft structure of the robot leading to increased difficulty of
applying DRL techniques. Under such situations the study of imitation learning becomes a topic of
utmost significance due to the fact that it doesn’t require a cost function, all that it requires is an expert
agent which in most cases of manipulation using soft robotics is a person who performs the same
tasks that robot is required to copy. Therefore, manipulation with soft robotics and imitation learning
algorithms for performing the control task in hand really go hand in hand and compliment each other,
and hence, combining these two and finding new and better ways to do so may be a topic that gathers
much attention in the coming years.

The most primitive imitation learning algorithm is supervised learning problem. But simply
applying the normal steps of supervised learning to tasks involving formulation of control policy
doesn’t work. There are some minor and major changes/variations that must be made due to difference
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in common supervised learning problems and control problems. Following section provides overview
of some of the variations:

• Errors - Independent or Compound: The basic assumption of common supervised learning task
that assumes that the actions of the soft robotics agent do not affect the environment in any
way is violated in the case of imitation learning control tasks. The presupposition that all data
samples (observations) collected are independent and identically distributed is not valid for
imitation learning tasks, hence, causing error pr opagation making the system highly unstable
due to minor errors too.

• Time-step Decisions - Single or Multiple: Supervised learning models generally ignore the
dependence between consecutive decisions which might be different from what primitive robotic
approaches. The goal of imitation learning might be sometimes different from simply mimicking
the expert’s actions. At times, there is a hidden objective that is often missed by the agent while
simply copying the actions of the expert. These hidden objectives are somethings like avoiding
to collide with obstacles, increasing the chances to complete a specific task, or minimizing the
effort by the mobile robot.

In the next section, we describe three of the main imitation learning algorithms that have been
successfully applied to real life scenarios effectively.

• Behaviour Cloning: This is one of most basic imitation learning approaches in which we
train a supervised learning agent based on actions of the expert agent from input states to
output states via performed actions. Despite it also facing problems mentioned in the last
section, it gives reliable results provided we have good amount of training data available.
DAGGer(Data AGGregation)[125] is one of the algorithms described earlier that solves the
problem of propagation of errors in a sequential system. This simple yet useful algorithm is
quite similar to common supervised learning problems in which at each iteration the updated
(current) policy is applied and observations hence recorded are labeled by expert policy. The
data collected is concatenated to the data already available and the training procedure is applied
to it. This technique has been readily utilized in diverse domain applications due it simplicity
and effectiveness. Even though this algorithm has now been observed to give satisfactory results
in various fields of controls but this is still not believed to be effective with soft robots, and so in
those case we generally avoid using this due to lack of labelled data. Bojarski et al.[126] trained a
navigation control model that collected data from 72 hours of actual driving by the expert agent
and tried to mimic the state (images pixels) to actions (steering commands) with the help of a
mapping function. Similarly, Tai et al.[127] and Giusti et al.[128] also came up with imitation
learning applications for real life robotic control. Advanced readings also include Codevilla et
al.[129] and Dosovitskiy et al.[105].

Imitation learning is also effective in problems involving manipulation. Some of them are listed
below:

– Duan et al.[130] improved the one-shot imitation learning to formulate the low-dimensional
state to action mapping, using behavioural cloning that tries to reduce the differences in
agent’s and the expert actions. He used this method in order to make a robotic arm stack
various blocks in the way the expert does it, observing the relative position of the block at
each time step. The performance level achieved after incorporating various other additional
features like temporal dropouts and convolutions was similar to that of a DAGGer.

– Finn et al.[131] and Yu et al.[49] modified the already existing Model Agnostic Meta-Learning
(MAML)[132], which is a highly diverse algorithm that train a model on several varied tasks
and making it capable to solve a new unseen task when given it. The updation of weights is
quite similar to the common gradient algorithm and given by equation:

θ′i = θ − α∇θ LTi ( fθ). (27)
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The learning is done to achieve the objective function given by:

∑
Ti∼p(T)

LTi ( fθ′) = ∑
Ti∼p(T)

LTi ( fθ−α∇θLTi
( fθ)

) (28)

which leads us to the gradient descent step given by:

θ ← θ − β∇θ ∑
Ti∼p(T)

LTi ( fθ′i
) (29)

wherein β represents the meta step size.
– While Duan et al.[130] and Finn et al.[131] proposes a way to train a model that works on

newer set of samples as well the earlier described Yu et al.[49] is an effective algorithm in
case of domain shift problems. Eitel et al.[133] came up with a new approach wherein he
gave a new model that takes in over segmented RGB-D images as inputs and gives actions
as outputs for segregation of objects in an environment.

• Inverse Reinforcement Learning: This method aims to formulate the utility function that makes
the desired behaviour nearly optimal. Once, we have the utility function, our tasks is simplified
as we only have to apply reinforcement learning algorithms on it to find the correct policy. A
popular IRL algorithm called as Maximum Entropy IRL[134] uses an objective function as given
by equation:

arg max
c∈C

(min
π∈∏
−H(π) + Eπ [c(s, a)])− EπE [c(s, a)]. (30)

It is a highly appropriate algorithm for robotic applications where the robot is supposed to follow
a set a constraints[135–137] (like for a soft robot trying to pick and drop certain coloured boxes
the constraints could be to assemble them according to their colour) as in such situations it is not
viable to formulate an accurate reward function but these actions are easy to demonstrate. Soft
robotic systems generally have constraint issues due to the composition and configuration of
different materials of the actuators resulting in elimination of a certain part of the action space
(or sometimes state space also) hence, forcing us to involve IRL techniques under such situations.
This is an extremely fruitful algorithm for soft robotic systems unlike the one mentioned before
this, due to the ease of performing the task that we want to solve by the human expert due to the
flexibility and adaptability of the soft robot. Maximum Entropy IRL[138] has been successfully
used alongside deep convolutional networks to learn the multiplex representations in problems
involving a soft robot to copy the actions of a human expert for simple control tasks.

• Generative Adversarial Imitation Learning: Even though, IRL algorithms are highly effective but
they require large sets of data and huge training time. Hence, a more efficient alternative was
proposed by Ho and Ermon[139] who gave Generative Adversarial Imitation Learning (GAIL)
that comprises of an Generative Adversarial Network (GAN)[90]. Such generative models are
extremely essential when working with soft robotic systems as they require huge sets of training
data because of the wide variety of actions-state pairs possible in such cases and the fact that
GANs are much complex deep networks that are able to learn complex representations in the
latent space.

Like all other GANs, GAIL also consists of two separately and independently trained fragments -
generator (or the decoder) that tries to generate state-action pairs close to that of the expert and
the discriminator that learns to distinguish between samples created by the generator and real
samples. The objective function of such a model is given by equation:

Eπθ
[log(D(s, a))] + EπE [log(1− D(s, a))]− λH(πθ). (31)
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Some extensions of GAIL have been proposed in recent works including Baram et al.[140] and
Wang et al.[141]. GAIL has been extremely successful in solving imitation learning problems in
navigation (Li et al.[142] applied GAIL to autonomous navigation problems and Tai et al.[143]
applied it for the purpose of finding socially complaint policies) as well as manipulation (Stadie
et al.[144] used GAIL for mimicking an expert’s actions through domain agnostic representation).
This presents before us an opportunity to be applied to systems involving soft actuators for its
composite structure and unique learning technique.

Imitation learning for soft robotics being a relatively newer field of research, hasn’t yet been
explored to its fullest and has extreme potential for future research lying ahead of it. It is highly
effective in the domains of industrial applications, capable of replacing its human counterpart due
to its precision, accuracy, reliability, and efficiency. It is the future of robotic developments in all
areas where we have an expert agent (in most situations a person) whose actions can be mimicked to
perfection by an autonomous soft robotics agent. These are the go-to algorithms in fields that involve
tough and sometimes almost impossible formulation of an appropriate cost function due to high action
space dimensionality of soft robots. These techniques present before us a huge scope of combining
with common DRL approaches and could form a really effective amalgam that could copy the expert
as well as learn on it own via exploration depending on the situation in hand, and hence, must be a
center for future deep learning developments in soft robots.

11. Future Scope

Even though, deep learning has been successfully applied to innumerable real life problems and
has proven out to be the best alternative to solve control problems like manipulation in soft robots,
there are still various challenges that need to be conquered and hence, open new avenues for further
growth and research in this field. Further, we list some of the steps stones in the path of using deep
reinforcement approaches to solve such tasks that will certainly be hot topics of research in the near
future:

• Sample Efficiency: It takes great amount of effort and resources in collecting observations for
training by making our agent interact with the environments especially for soft robotic systems
due to the huge number of actions possible at each state pertaining to the biomimetic motions
possible [9,155] because of the flexible bio-inspired actuators, hence, making way for further
research in creating efficient systems who can collect experiences without much expense.

• Strong Real-time Requirements: Training huge networks with millions of neurons and tons of
tuneable parameters that requires special hardware and loads of time. The current policies need
to made compact in its representation to prevent wastage of time and hardware resources in
training. The dimensionality of the actions as well as the state space for soft robotic actuated
systems is much sizeable as compared to its hard counterpart leading to a rise in the number of
neurons in the deep network.

• Safety Concerns: The control policies need designed need to extremely precise in its decision
making process as robots like factories producing food items using soft robots are required to
operate in environments where even a small error could cause loss of life and property.

• Stability, Robustness and Interpretability[156]: Slight changes in configurations of parameters or
robotic hardware or chances in concentration or composition of material of soft robot over time
might affect the performance of the agent in a great way, hence making it unstable. Especially in
soft robotic systems a constant or static configuration of the agent is extremely hard to maintain
and the fact that our model is unable to operate for such changes after completion of training
is a challenges when involving these technologies on such systems. Some kind of a learned
representation that can detect adversarial scenarios could be of great use and a topic of interest
for researchers aiming to improve performance of DRL agents on soft robotic systems.

• Lifelong Learning: The appearance of the environment differs drastically when observed at
different moments, alongside the composition and configuration of soft robotics systems also
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Table 4. The following tables lists and describes few instances of bio-inspired soft robotics applications
that make (or may in the future) use DRL or Imitation Learning technologies.

Type of Soft Bio-Inspired Robot Features of Soft Physical
Structure

Applications of
DRL/Imitation Learning
Algorithms

MIT’s Soft Robotic Fish (SoFi)[145–149]

• 3D Movements
• Soft Fluidic Elastomer

Actuators
• Rapid Planar

Movements
• Continuum Body

Motion
• Multiple Degrees of

Freedom
• Quick Escape

Capabilities

• Completely
Autonomous
Maneuvering using
DRL navigation
techniques (described
in section 6)

• DRL techniques
imployed for
underwater vision
capabilites

Harvard’s Soft Octopus (Octobot)[150,151]

• Microfluidic logic
• Immense Strength

and Dexterity with no
internal skeleton

• Innumerable Degrees
of Freedom

• Ease in protyping due
3D printable structure

• Rapid Maneuvering
through tight spaces

• DRL and Imitation
Learning algorithms
extensively employed
for manipulation
capabilities like
grasping and picking

• Completely
Autonomous
navigation potential
via use of Deep
Learning techniques

CMU’s Inflatable Soft Robotic Arm[152,153] • Quick Planar
Movement via Soft
Artificial Muscle
Actuators, Soft and
Stretchable Elastic
Films and Flexible
Electronics

• Touch Sensors and
Pressure-Sensitive
Skins to predict the
shape of objects

• Highly precise
grasping, holding and
picking capabilities
via DRL techniques

• DRL and Deep
Learning Vision
abilities

Soft Caterpillar Micro-Robot[154]
• Light-sensitve rubby

material that harvest
energy from light

• Ease in protyping due
3D printable structure

• Horizontal/Vertical
Movement possible in
tough environment,
angles and conditions

• Strength to push items
10 times its mass

• Completely
Autonomous
Movement
Capabilities that could
involve Imitation
Learning or DRL
techniques
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varying with time could result in a certain dip in performance of the learned policies. Hence, this
problem provokes us to create adapting technologies that are always evolving and learning from
changes in the environmental conditions besides keeping the policies already learnt intact.

• Generalization between tasks: A completely trained model is able to perform well in the tasks it
has been trained on but performs poorly in new tasks and situations. For soft robotics systems
that are required to perform varied set of tasks that are correlated, it is necessary to come up
with methods that can transfer the learning from one training procedure when being tested on
some other (yet correlated in some way) task. So, there is a requirement of creating completely
autonomous systems that take up least resources for training and still are diverse in application.

Despite these challenges in control problems for soft robots, there are some topics that are gaining
attention of DRL researchers around due to future scope of development in these areas of research.
Two of them are:

• Unifying Reinforcement Learning and Imitation Learning: There have been quite a few
developments[157–160] with the aim to combine the two algorithms and reap the benefits
of both wherein the agent can learn from the actions of the expert agent alongside interacting and
collecting experiences from the environment itself. The learning from expert’s actions (generally
a person for soft robotic manipulation problems) can sometimes lead to less-optimal solutions
while using deep neural networks to train reinforcement learning agent can turn out to be an
expensive task. Current research in this domain focuses on creating a model where soft robotic
agent is able to learn from expert’s demonstrations and then as the time progresses it moves to
a more DRL based exploration technique wherein it interacts with the continuously evolving
environment to collect observations. In the near future, it may be quite possible to see completely
self-determining soft robotics systems that have the best of both worlds - can learn from the
expert in the beginning and equipped with capabilities to learn on its own when necessary
hence, resulting in giving full justice to the benefits of the amalgamated mechanical structure by
exploiting all its benefits. Such advancements could really boost their mechanical capabilities
and help them outperform not only humans but also robots trained only using either imitation
learning or DRL techniques.

• Meta-Learning: Methods proposed in Finn et al.[132] and by Nichol and Schulman[161] have
found out a way to find parameters that help agents to learn from relatively less data samples
and produce much better results on newer tasks that they have not been trained on. These
development can be prospective stepping stones to further developments leading to creation
of completely robust and universal policy solutions. This could be a milestone research item
when it comes to combining deep learning technologies with soft robotics, as generally it is hard
to retrieve a large dataset for soft robotic systems due to the heavy expenses in allowing it to
interact with its environment. Soft robotic systems are generally harder to deal with compared to
the harder ones and therefore, such learning procedures could aid our soft systems to perform
satisfactorily well even with a small set of training data.

Control of soft robots that have enhanced flexibility and strength due to their structure and
material that is inspired by living beings, has become one of the premier domains of recent research
and has caught the attention of robotics researchers around the globe. There have been numerous
DRL and imitation learning algorithms proposed for such systems but there is still some room for
enhancement due the challenges stated above. Some recent works have shown massive span for
further development including some that could branch out as separate areas of soft robotics research
themselves. These challenges have opened new doors for more such artificially intelligent algorithms
that will be a trending topic of discussion and debate for the coming decades. Combining deep learning
frameworks with soft robotic systems and extracting the benefits of both is seen a potential area of
future developments. It has been applied to countless scenarios and has observed to provide extremely
satisfactory results, some of them are shown in table??.
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12. Conclusion

This paper gives an overview of popular deep reinforcement learning and imitation learning
algorithms that have successfully been applied to problems involving control of soft robots and have
been observed to give state-of-art results in their domains of applications especially manipulation
where soft robots are extensively utilized. We have majorly described learning paradigms of various
such learning techniques, followed by the instances of them being applied to solve real life robotic
control problems. Despite the massive growth in research in this field of universal interest in the last
decade, there are still challenges in controls of soft robots (for it being a relatively new field of research
in robotics) that need more concentrated attention. Soft Robotics is a constantly growing academic
field that focuses on exploiting the mechanical structure by integration of materials, structures and
software, and when combined with the boons of imitation learning and other DRL mechanisms can
create systems capable of replacing human at each discipline possible. We also list the stepping stones
to the development such soft robots that are completely autonomous and self-adapting yet physically
strong systems, besides mentioning some future areas of research in this domain that has so much to
offer.

In the nutshell, the subject that gathers the attention of one and all remains to be - how the
incorporation of DRL and imitation learning approaches can help accelerate the ever so satisfactory
performances of soft robotic systems and unveil before us plethora of possibilities of creating altogether
self-sufficient systems in the near future.
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