Preprint
Article

Shape-memory Nanofiber Meshes with Programmable Cell Orientation

Altmetrics

Downloads

584

Views

293

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 November 2018

Posted:

26 November 2018

You are already at the latest version

Alerts
Abstract
This paper reports a rational design of temperature-responsive nanofiber meshes with shape-memory effect. The meshes were fabricated by electrospinning a poly(ε-caprolactone) (PCL)-based polyurethane with different contents of soft and hard segments. The effects of PCL diol/hexamethylene diisocyanate (HDI)/1,4-butanediol (BD) molar ratio in terms of the contents of soft and hard segments on the shape-memory properties were investigated. Although the mechanical property improved with increasing hard segment ratio, optimal shape-memory properties were obtained with a PCL/HDI/BD molar ratio of 1:4:3. At a microscopic level, the original nanofibrous structure was easily deformed into a temporary shape, and recovered its original structure when the sample was reheated. A higher recovery rate (>89%) was achieved even when the mesh was deformed up to 400%. Finally, the nanofiber meshes were used to control the alignment of human mesenchymal stem cells (hMSCs). The hMSCs aligned well along the fiber orientation. The proposed nanofibrous meshes with the shape-memory effect have the potential to serve as in vitro platforms for the investigation of cell functions as well as implantable scaffolds for wound-healing applications.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated