Preprint
Article

An Efficient Image Retrieval Based on Fusion of Low-Level Visual Features

Altmetrics

Downloads

308

Views

207

Comments

0

This version is not peer-reviewed

Submitted:

30 November 2018

Posted:

03 December 2018

You are already at the latest version

Alerts
Abstract
Due to an increase in the number of image achieves, Content-Based Image Retrieval (CBIR) has gained attention for research community of computer vision. The image visual contents are represented in a feature space in the form of numerical values that is considered as a feature vector of image. Images belonging to different classes may contain the common visuals and shapes that can result in the closeness of computed feature space of two different images belonging to separate classes. Due to this reason, feature extraction and image representation is selected with appropriate features as it directly affects the performance of image retrieval system. The commonly used visual features are image spatial layout, color, texture and shape. Image feature space is combined to achieve the discriminating ability that is not possible to achieve when the features are used separately. Due to this reason, in this paper, we aim to explore the low-level feature combination that are based on color and shape features. We selected color moments and color histogram to represent color while shape is represented by using invariant moments. We selected this combination, as these features are reported intuitive, compact and robust for image representation. We evaluated the performance of our proposed research by using the Corel, Coil and Ground Truth (GT) image datasets. We evaluated the proposed low-level feature fusion by calculating the precision, recall and time required for feature extraction. The precision, recall and feature extraction values obtained from the proposed low-level feature fusion outperforms the existing research of CBIR.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated