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Abstract: We quantitatively investigated the statistical behaviors of semiflexible polymer chains, 10 
which are simultaneously subjected to force stretching and rectangular tube confinement. Based 11 
on the wormlike chain model and Odijk deflection theory, we derived a new deflection length, by 12 
which new compact formulas are obtained for the confinement free energy and 13 
force-confinement-extension relation. These newly derived formulas have been justified by 14 
numerical solutions of an eigenvalue problem associated with the Fokker-Planck governing 15 
equation and extensive Brownian dynamics simulations based on the so-called Generalized 16 
Bead-Rod (GBR) model. We found that, comparing to the classical deflection theory, these new 17 
formulas are valid for a much extended range of the confinement-size /persistence-length ratio, 18 
and have no adjustable fitting parameters for sufficient long semiflexible chains in the whole 19 
deflection regime. 20 
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 24 

1. Introduction 25 

Statistical physics properties of single polymer chains can be significantly influenced or even 26 
determined by geometrical confinements and applied external forces [1–4]. A detailed 27 
understanding of the behaviors of polymers under such circumstances is still considered as an 28 
unsolved problem in polymer physics after more than half a century. However, even so, advances 29 
in the study of geometrically and potentially constraint polymers do have continuously promoted 30 
the development of many existing nanotechnologies of genomics and materials science etc. [5–7]. 31 

For polymers under confinements, the effects of constraints have usually been classified into 32 
three regimes, the weak, moderate, and strong confinements, which are distinguished in terms of 33 
the comparison between polymer’s unconfined radius of gyration, Rg, and Kuhn length, a, to the 34 
typical confinement length scale. In the regime of weak confinement, Casassa [8] has discussed the 35 
free energy of ideal chains trapped in pores with different shapes based on the theory of diffusion. 36 
Then de Gennes and his coworkers [9, 10] developed the so-called blob model to describe the 37 
statistical behaviors of polymers in moderate confinements and predicted the free energy 38 
expression as 39 
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where N represents the polymerization index and H the typical confinement length scale. A widely 40 
used physical model of single polymer chains is the wormlike chain (WLC) model characterized by 41 
the inextensible contour length, L, and persistence length, p=a/2, which was first proposed by 42 
Kratky and Porod in 1949 [11]. In the strong confinement regime, Odijk [12, 13] revealed that the 43 
free energy of confinement can be related to a deflection length scale, ߣ, so that statistical behaviors 44 
of the polymer at each deflection length can be in analogy with the movement of a particle in a 45 
potential field satisfied the classical limit [15, 16]. Based on this understanding, Odijk [12–14] 46 
obtained expressions of the confinement free energy, F, and average extension of the chain, ܴ||, in 47 
terms of ߣ as 48 

 B
LF k T


 ,  (2)

                     1
2
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where ߣ ∝  ଶ/ଷ [12] was suggested for the confinement of cylindrical tube with diameter D. 49ܦଵ/ଷ݌

For the confinement of a rectangular tube with height and width, Hh and Hw, the deflection length 50 

associated with the free energy calculation has been suggested as [17, 21] 51 
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In contrast, this deflection length associated with the average extension was given as 52 

 1/3 2/3 1/3 2/3
h w( )p H p H   .                          (5)

Prefactors in Equations (4) and (5) have been determined by using various numerical techniques 53 
and theoretical derivations, such as the Monte Carlo simulations [18, 19] and eigenvalue technique 54 
associated with the Fokker-Planck equations [17, 20]. Examples of the determined prefactors are 55 

illustrated in Table 1. We can see that the prefactors, 1 A  and  , respectively determined from 56 

the free energy and extension are in almost 10 times difference in quantity. 57 
 58 

Table 1. Prefactors of the Odijk deflection length scale 59 

A     

1.1036	[17]                     -- 
1.108 ± 0.013	[18]                     -- 
1.1038 ± 0.0006	[19] 0.09137 ± 0.00007	[19] 
1.1032 ± 0.0001	[20] 0.09143 ± 0.0001	[20] 

 60 

In addition, a slit of separation H can be regarded as a rectangular tube with height, Hh=H, and 61 

infinite width. Statistical properties of polymer chains confined in the slit have been extensively 62 

studied [22–27] based on Monte Carlo simulations and eigenvalue analysis. The deflection length in 63 

strong confinement regime has been confirmed to follow the Odijk scaling law 64 

       1/3 2 /3p H  . (6)
It can be observed from Equations (4) - (6) that the deflection length for the rectangular tube 65 

mentioned above can be viewed as the combination of that for two slits with heights, Hh and Hw, 66 

respectively [17]. 67 

Beyond the Odijk regime, Chen [26] numerically calculated the confinement free energy by 68 

treating the problem of confined polymer as an eigenvalue problem. He also suggested an 69 
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interpolating formula which can have very good agreement to that of the numerical calculations for 70 

the polymers under confinements of both strong and weak. In addition, an extended de Gennes 71 

regime [22, 28, 29] has also been identified based on the Monte Carlo simulations. 72 

Interestingly, external forces can pose similar effects to the statistical behaviors of single 73 

polymer chains as the geometrical confinements. For a polymer chain to be stretched by a 74 

sufficiently large force, ୱ݂, a deflection length also exists and can be expressed as [3, 30], 	ߣ௙ = ݌ ට መ݂ൗ , 75 

where መ݂ = ୱ݂݌/݇஻ܶ, so that the force-extension relation can be expressed as 76 

 
11
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Polymers in real microenvironments usually subject to both of the geometrical constraints and 77 

external forces. Wang and Gao [31] have revealed that the average extension of a strongly tube 78 

confined and force stretched polymer chain can be equivalent to that of an unconfined chain 79 

subjecting to an effective stretching force. Li and Wang [32] later confirmed that this property of 80 

equivalence is still valid for the tube confined polymers in a much extended Odijk regime. 81 

Therefore, for a semiflexible polymer chain in the deflection confinement regime, one can generally 82 

have 83 

c
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                                 (8) 84 

where መ݂௖ =  ଶ is the normalized effective force due to the existence of strong confinement, and 85ߣ/ଶ݌

 is the deflection length scale without stretching force. 86 ߣ

However, as we have pointed out above, the Odijk deflection lengths are very different in 87 

quantities for that determined based on the free energy and the extension calculations, respectively. 88 

Then a critical question arises. Which deflection length should be used if the polymer chain is 89 

simultaneously under both geometrical confinement and force stretching? Obviously, it is still an 90 

open question on how the Odijk length can be uniquely and precisely defined for the polymer 91 

chains confined in rectangular tubes. 92 

In this study, for the semiflexible polymer chains confined in rectangular tubes and slits, we 93 

will derive a modified deflection length, which is expected to be valid for a more extended range 94 

than the classical Odijk deflection length. And this extended deflection length will be directly used 95 

to quantitatively formulate both of the confinement free energy and force-extension relation. Then 96 

we will perform numerical calculations based on the eigenvalue technique developed by Chen and 97 

co-works [20, 36, 37], and the Brownian dynamics simulations in terms of the Generalized Bead Rod 98 

(GBR) model [33, 34] to justify our theoretical predictions. 99 

2. Materials and Methods  100 

2.1. Model 101 

 102 
Figure 1. Schematic of a WLC confined in a tube and stretched by a force. 103 
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 104 
We first consider a WLC confined in a rectangular tube with width, Hw, and height, Hh, as 105 

shown in Fig. 1. We assume that the tube is small so that chain’s configurations with the so-called 106 
“hairpin” structures rarely exist. That means statistical behaviors of the chain fall in the deflection 107 
regime. In order to obtain a universal deflection length scale, λ, to simultaneously characterize both 108 
of the free energy and extension of the chain. In terms of the idea of de Gennes [9, 10] and Odijk 109 
[12], the chain is assumed to behave like L/λ independent free segments, aligning one by one along 110 
the tube axis, so that the conformational free energy can still be scaled as Equation (1), and the 111 
average extension can be simply the sum of that for each free segment. On the other hand, when 112 
considering the average extension of the chain, quantitative behavior of each segment should be in 113 
analogy with a free chain of effective contour length, 1 mc  , in which the parameter, c1, actually 114 
reflects the influence of two artificial ends of each such segment. For a free WLC segment of contour 115 
length 1 mc  , projection of the position vector of one end, r(s2), to the tangential vector of the other 116 
end, u(s1), can be given by [35] 117 

1 m /
1 2( ) ( ) (1 )c ps s p e    r u .                         (9)_ 118 

Then average extension of the whole chain, can be estimated as 119 
1 m /

|| 2 1 2 2
m m

( ) ( ) (1 )c pL pLR c s s c e 

 
    r u                  (10) 120 

in which ܿଶ is introduced as an unknown dimensionless factor. Equation (10) should reproduce 121 
Equation (3) in the deflection regime, which can determine 1 8c A      and 2 1 /c  , so that 122 
eventually we have 123 

 m
||

m

1 pLpR e 


  .                               (11) 124 

For a tightly confined polymer in a channel with a rectangular cross section, Burkhardt and 125 
Yang et al. [18, 20] have derived that the confinement free energy of the polymer chain can be 126 
scaled by the average length of tube occupied by the polymer, which is the average extension of the 127 
polymer chain, as follows 128 

2 /3 2 /3B
h w1/3

||

( )k TF A H H
R p

   .                           (12) 129 

Assuming that m  should satisfy both of the Equations (2), (11) and (12), one has 130 

                          m2/3 2 /3
B h w1/3

m m

( ) 1 pBk TL Lpk T A H H e
p



 
                         (13) 131 

or 132 
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where h h
ˆ /H H p  and w w

ˆ /H H p . Equation (14) can be regarded as a new deflection length 134 
that fulfills both requirements for the free energy and statistics of geometrical quantities. We can see 135 
from Equation (14), as long as Min(ܪ୵, (୦ܪ p⁄ ≪ 1, low order Taylor expansion of this equation 136 
reproduce the result in Equation (4). Insertion of Equation (14) into Equation (2), we can obtain the 137 
confinement free energy as follows 138 

1 2 /3 2 / 3 1
h w

ˆ ˆln[1 ( ) ]B

F L
k T p A H H


    

 
 

.                       (15) 139 

For the extension of the chain under both confinement and stretching force as shown in Figure 1, 140 
Wang and Li [38] have suggested the force-extension relation as shown in Equation (8), which now 141 
can be rewritten as  142 
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 144 

2.3. Numerical Verifications 145 

2.3.1 Solutions to the Fokker-Planck Equation 146 

In order to verify the derived free energy expression, we consider the solutions to the 147 
Fokker-Planck equation, which can be used to describe the statistical behaviors of confined polymer 148 
chains. We first introduce ܚ)ݍ, ,ܝ s) to represent the probability that a polymer chain at arc length s 149 
has the end position vector r and end unit tangential vector u. Then we can have the partition 150 
function of the chain with contour length, L, as, ܼ = ∫dܚdܚ)ݍܝ, ,ܝ  and the Fokker-Planck 151 ,(ܮ
equation [36] 152 

  2

B

1 1( , , ) ( ) ( , , )
2

q s V q s
s p k T

 
             

r u r ur u u u u r r u  (17)

where  153 

                      w h

w h

0, | | / 2  and  | | / 2
( )

, | | / 2  and  | | / 2
x H y H

V
x H y H
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   
r                           (18) 154 

is the potential energy per unit length due to the confinement of rectangular tube. As suggested by 155 
Chen [20, 36], solution of Equation (17) can be expanded into a series of eigenfunctions associated 156 
with negative exponential terms of eigenvalues. By noting that the chain is sufficient long and high 157 
order eigenvalues are large enough, the solution can be approximated by the ground state 158 
eigenfunction, Ψ଴(ܚ,  ଴, as follows. 159ߤ	,and eigenvalue ,(ܝ

0
0( , , ) exp( ) ( , )

2
Lq L
p


  r u r u .                          (19) 160 

Then the free energy can be written as 161 

  0
B Bln

2
F k T Z k TL

p


   .   (20)

Comparing Equation (2) and Equation (20) gives 162 

 
0

2 p


 .  (21)

Chen and his co-works [20, 36, 37] have proposed an iteration method to numerically 163 
determine the ground state eigenvalue and eigenfunction. In this study, we have adopted this 164 
method to calculate the confinement free energy. As examples, we consider polymer chains 165 
confined in slits with different heights, H. When using Chen’s method to calculate	ߤ଴, we have set 166 
the tolerance error as	10ିସ. Figure 2 shows the comparison of the confinement free energy as a 167 
function of H/p obtained by numerical solutions of the ground state eigenvalue, Equation (15), and 168 
Equation (2) in terms of the classical Odijk length, respectively. It can be seen from Figure 2 that free 169 
energy based on the modified deflection length has a better agreement with the numerical results 170 
than that based on the classical one. 171 
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  172 

Figure 2. Normalized confinement free energy as a function of the normalized slit height, predicted based on the classical 173 

and modified deflection lengths, and the solutions of the eigenvalue problem. 174 

 175 

2.3.2 Brownian Dynamics Simulations 176 

We use the technique of statistical dynamics simulations to verify the derived force-extension 177 
relation on polymer chains subjected to both confinement of rectangular tubes and stretching of 178 
external forces. We perform the simulations by using our GBR model for Brownian dynamics of 179 
semiflexible polymer chains in confinements [33, 34]. This model has been successfully applied to 180 
the quantitative analysis of statistical behaviors of polymers confined on spherical surfaces [34] and 181 
in cylindrical tubes [31], and subjected to stretching forces [33]. In this GBR model, we consider the 182 
polymer chain as a discrete WLC with N identical virtual beads of radius, a, at different positions, 183 

( ) { ( ), ( ), ( )}'k k k kt x t y t z tr , where k=1, 2, …, N, linked by N-1 rods with inextensible length, b. The 184 
virtual beads are used to feel the hydrodynamic interactions. And angle changes of the adjacent 185 
rods are used to account the bending deformation. As long as the position vectors of all N beads at 186 
the nth time step, denoted as ( )nr ={ 1,( )nr , 2,( )nr , …, ,( )N nr }’, is obtained, the new position vector at 187 

the (n+1)th time step,  1nr  can be calculated from [33, 34] 188 

                 
wall

1 ( )( )n n n n n n n n n
B

t
k T


     r I T B r χ D F ξ T d                       (22) 189 

where kB is the Boltzmann constant, T the absolute temperature, t  the time step, 'nn  the 190 
Kronecker delta symbol,  nF  the collective vector of internal and external forces,    n nI T B  a 191 

projection matrix which together with  nT d  sets the inextensible constraints,  
wall
nχ  the penalty 192 

displacement vector for the tube/slit walls,  nD  the translational diffusion matrix determined 193 

through hydrodynamic interactions between beads,  nξ  the vector of random force generated at 194 

each time step from a Gaussian distribution with zero mean and variance equal to  195 

      '' 2 nnn n n t ξ ξ D .                                     (23) 196 

We have performed Brownian dynamics simulations for WLCs confined in square tubes, 197 
rectangular tubes and narrow slits of different sizes and subjected to various stretching forces. In all 198 
simulations, the chains are initially set in a straight configuration. Confinements and constant tensile 199 
forces are then applied during chains’ relaxation. At the nth time step, we record the end-to-end 200 
distance along z-axis (tube axis), zN,(n)-z0,(n). For each simulation, we run total 6 million time steps, so 201 
that the steady extension states can last sufficient long time (see Figure 3). For each case, average 202 
extension of the WLC is obtained by first averaging over time, and then averaging over 120 203 
independent trajectories with different random seeds, which is then denoted as ܴ|| . For the 204 
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simulation parameters, we should note that the contour length should be larger than, at least, two 205 
times of the persistence length, and much larger than the deflection length scale, m . As we are 206 

only interested in the equilibrium properties of the polymer chains, therefore specific values of bead 207 
radius and time steps are not the key factors as long as sufficient large numbers of different 208 
configurations of the polymer chain can be generated. And the bond length should be selected 209 
much smaller than the deflection length scale, m , and the persistence length. 210 

For all these Brownian dynamics simulations, we choose persistence length of the chain, p= 50 211 
nm, viscosity of water, 4

0 1.005725 10 Pa.s   , and absolute temperature, 293KT  . Figure 3 shows 212 
convergence of the simulations for the evolution of the ensemble average of the extension over 120 213 
different trajectories, ܴ||, for slit and sqaure tube confined WLCs under stretching. It can be seen 214 
from Figure 3 that the equilibrium state can last sufficient long time to gurantee the effectiveness of 215 
time averaging.  216 

Figures 4 - 6 show the comparison of Brownian dynamics simulation results and corresponding 217 
theoretical predictions based on the classical Odijk length in Equation (8) and the present new 218 
deflection length in Equation (16), for the normalized average extension of the WLCs stretched by 219 
different forces and confined in square tubes, rectangular tubes and slits of different sizes, 220 
respectively. Simulation parameters on bead radius, a, bond length, b, time step, t , and contour 221 
length, L, are listed in Tables 2 - 4 for different chains in different confinements . 222 

 223 
Table 2 Simulation parameters for the confinement of square tubes 224 

Confinement size 
 ݌/ܪ

Bead radius 
ܽ 

Bond length 
ܾ 

Time step 
 ݐ∆

Contour length 
 ܮ

0.2 1.85 nm 4 nm 10 ps 120 nm 
0.3 1.85 nm 4 nm 10 ps 120 nm 
0.4 1.85 nm 4 nm 20 ps 600 nm 
0.6 1.85 nm 4 nm 20ps 600 nm 

 225 
Table 3 Simulation parameters for the confinement of rectangular tubes 226 

Confinement size 
 ௬/pܪ,݌/௫ܪ

Bead radius 
ܽ 

Bond length 
ܾ 

Time step 
 ݐ∆

Contour length 
 ܮ

0.2, 0.3 2 nm 5 nm 20 ps 300 nm 
0.3, 0.4 1.85 nm 4 nm 20 ps 200 nm 
0.3, 0.6 1.85 nm 4 nm 20 ps 200 nm 
0.4, 0.6 2 nm 5 nm 20ps 300 nm 

 227 
Table 4 Simulation parameters for the confinement of slits 228 

Confinement size 
 ݌/ܪ

Bead radius 
ܽ 

Bond length 
ܾ 

Time step 
 ݐ∆

Contour length 
 p/ܮ

0.2 2 nm 5 nm 15 ps 200 nm 
0.3 2 nm 5 nm 20 ps 150 nm 
0.4 1.85 nm 4 nm 25 ps 400 nm 
0.6 1.85 nm 4 nm 20ps 400 nm 

 229 
It can be seen from Figures 4 - 6 that results based on the newly derived formula on the average 230 

extension of the confined WLC agree with the simulation results very well, and that based on the 231 
classical Odijk length shows apparent discrepancy with the simulation results when the tube 232 
diameter becomes large and stretching force is small.  233 

 234 
 235 
 236 
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 237 
(a) ܪ୦ ⁄݌ = ݌/௪ܪ,0.3 = ∞                  (b) ܪ௪ ⁄݌ = ݌/௛ܪ = 0.3 238 

Figure 3. Evolution of the extension for slit and tube confined WLCs under stretching. (a) Slit, 239 
௛ܪ ⁄݌ = ݌/௪ܪ,0.3 = ∞. (b) Square tube,	ܪ௪ ⁄݌ = ݌/௛ܪ = 0.3. 240 

 241 

 242 
(a) ܪ௪/݌ = ݌/௛ܪ = 0.2                    (b) ܪ௪/݌ = ݌/௛ܪ = 0.3 243 

 244 
(c) ܪ௪/݌ = ݌/௛ܪ = 0.4                   (d) ܪ௪/݌ = ݌/௛ܪ = 0.6 245 

Figure 4. Comparison of Brownian dynamics simulations and theoretical predictions on the relative 246 
average extension of the WLC under stretching forces and confinements of square tubes of sizes (a) 247 
݌/௪ܪ = ݌/௛ܪ = 0.2, (b) ܪ௪/݌ = ݌/௛ܪ = 0.3, (c) ܪ௪/݌ = ݌/௛ܪ = 0.4, and (d) ܪ௪/݌ = ݌/௛ܪ =248 
0.6. 249 

 250 

 251 
(a) ݓܪ ⁄݌ = ݌/ℎܪ,0.2 = 0.3                 (b) ܪ௪ ⁄݌ = 0.3, ݌/௛ܪ = 0.4                     252 
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 253 
             (c) ܪ௪/݌ = ݌/௛ܪ,0.3 = 0.6                  (d) ܪ௪/݌ = ݌/௛ܪ,0.4 = 0.6 254 

 255 
Figure 5. Comparison of Brownian dynamics simulations and theoretical predictions on the relative 256 
average extension of the WLC under stretching forces and confinements of rectangular tubes with 257 
sizes (a) ݓܪ ⁄݌ = ݌/ℎܪ,0.2 = 0.3, (b) ܪ௪ ⁄݌ = 0.3, ݌/௛ܪ = 0.4, (c) ܪ௪/݌ = ݌/௛ܪ,0.3 = 0.6, and 258 
(d) ܪ௪/݌ = ݌/௛ܪ,0.4 = 0.6. 259 

 260 
 261 

 262 
              (a) ܪℎ ⁄݌ = ݌/ݓܪ,0.2 = ∞                (b) ܪ௛ ⁄݌ = 0.3, ݌/௪ܪ = ∞                               263 

 264 
(c) ܪ௛/݌ = ݌/௪ܪ,0.4 = ∞                (d) ܪ௛/݌ = 0.6, ݌/௪ܪ = ∞ 265 

 266 
Figure 6. Comparison of Brownian dynamics simulations and theoretical predictions on the relative 267 
average extension of the WLC under stretching forces and confinements of slits with sizes (a) 268 
ℎܪ ⁄݌ = ݌/ݓܪ,0.2 = ∞, (b) ܪ௛ ⁄݌ = 0.3, ݌/௪ܪ = ∞, (c) ܪ௛/݌ = 0.4, ݌/௪ܪ = ∞, and (d) ܪ௛/݌ =269 
0.6, ݌/௪ܪ = ∞. 270 

 271 

4. Discussions 272 

Based on the WLC theory and existing results on statistical properties of strongly confined 273 
semiflexible polymers, we have theoretically and numerically studied the confinement free energy 274 
and force-confinement-extension relations of semiflexible polymer chains under stretching and 275 
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confinements of rectangular tubes in the deflection regime. We derived a modified deflection length 276 
without any adjustable parameters, which is valid for quantitative formulations of both of the free 277 
energy and geometrical extension. By using this deflection length scale, we have obtained compact 278 
formulas on the confinement free energy and force-extension relation without any fitting 279 
parameters. Numerical analysis based on the eigenvalue problem of the governing Fokker-Planck 280 
equations and the GBR Brownian dynamics simulations have justified these theoretical predictions 281 
to be valid for a much more extended range of the confinement/persistence length ratio than that 282 
based on the classical deflection length. 283 
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