

1 Article

2

On Predicting the Seismic Response of Acceleration- 3 Sensitive Non-Structural Components in Buildings

4 Carmine Lima ¹ and Enzo Martinelli ^{2,*}5 ¹ Department of Civil Engineering, University of Salerno, Fisciano (SA), Italy; clima@unisa.it6 ² Department of Civil Engineering, University of Salerno, Fisciano (SA), Italy; e.martinelli@unisa.it7 * Correspondence: e.martinelli@unisa.it; Tel.: +39-089-964098

8

9 **Abstract:** This paper is intended at highlighting the main mechanical parameters controlling the
10 behavior of the so-called "acceleration-sensitive" Non-Structural Components (NSCs). In the first
11 part a short review of the current state of knowledge and the critical issues related to the prediction
12 of the seismic response of NSCs is reported. Then, the paper presents the results of a numerical
13 parametric analysis intended to capture the key features of the dynamic response of a two-degree-
14 of-freedom (2DOF) system which is supposed to be representative of both the main structure and
15 the "non-structural" component (NSC). Particularly, it allows to simulate the coupled behaviour of
16 both main structure and NSC and evaluating their response. The main parameters controlling the
17 dynamic response of NSCs emerge from this study, which could pave the way towards formulating
18 more mechanically consistent relationships for evaluating the maximum accelerations induced by
19 seismic shakings on NSCs.20 **Keywords:** seismic analysis; non-structural components; nonlinear analysis; 2DOF; maximum
21 acceleration

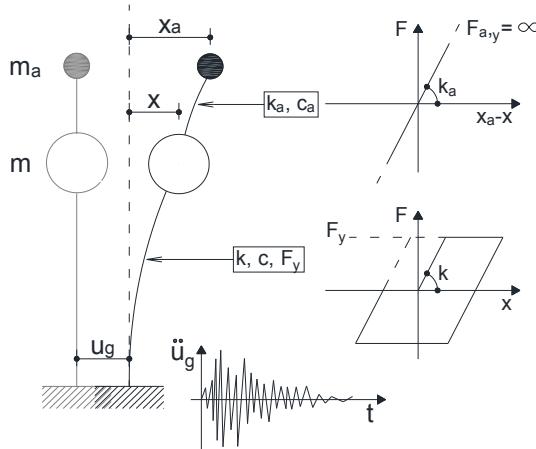
22

23

1. Introduction

24 Significant research efforts have been produced in the last decades in order to formulate sound
25 criteria for the design of structures in seismic areas resulting in the current generation of seismic
26 codes and guidelines [1,2]. Such codes provide designers with consistent performance-based
27 approaches for designing and assessing structures against earthquake-induced actions. However, a
28 series of critical issues, which are not completely assessed by the current code provisions, emerge by
29 analyzing damages suffered from existing structures in recent earthquake events [3]. Specifically, the
30 most evident critical issues are related to the not accurate prediction of the seismic response of "non-
31 structural components" (NSCs) [4-6] as it emerges in the aftermaths of the event occurred in Emilia
32 Region, Italy [7], where several precast buildings mainly suffered damage related to inadequate
33 design of connections between structural members and NSCs [8,9]. Therefore, predicting the seismic
34 response of NSCs is perceived as one of the most important challenges in the seismic engineering
35 community [10,11].36 Several definitions for the very wide class of objects often referred to as NSCs are available in
37 the scientific literature and recent seismic codes [2]. As a general definition any "object" which does
38 not contribute to support both gravity and seismic actions in the model considered in structural
39 analysis is considered a "non-structural" or "secondary" element. As matter of fact, partitions,
40 masonry infill, suspended ceilings, finishing, as well as specific equipment are the most common
41 NSCs in buildings.42 Moreover, recent scientific researches and technical codes introduced further definitions and
43 classifications of NSCs: a review of these definitions is available in the literature [12]. Generally, they
44 are based on different aspects, such as the component's purpose or function, its connection to the

45 main structure and the sensitivity to particular aspects of the dynamic response (acceleration,
46 displacement, and so on).


Over the classification of NSCs, the main objective of various seismic codes in force in earthquake-prone countries (e.g., [1,13-16]) is to evaluate the maximum acceleration, and thus the maximum inertial force, on NSC induced by the expected seismic shaking. However, rules and relationships provided with this purpose are generally simple (and often simplistic) and disregard fundamental parameters which could significantly affect the dynamic response of NSCs.

As matter of principle, rules and relationships currently provided involve few parameters dealing with the intensity of the expected earthquake, the elastic properties of both the main structure and the NSC and the position in height of the NSCs within the main structure. A thorough discussion about the limitation of code formulations has been recently proposed [12]; specifically, it emerges that the analyzed code-provisions either disregard or not explicitly consider the nonlinear behavior of the main structure which may clearly affect the excitation of the NSCs by “filtering” the seismic signal [17].

Therefore, this paper presents a wide parametric analysis based on a two-degree-of-freedom (2DOF) system used for simulating the dynamic response of a general structure equipped with a NSC. The study is aimed at quantifying the inertial forces induced on NSCs. The key results of the parametric analysis are summarized in section 3 which demonstrate what are the relevant parameters which affect the prediction of the maximum seismic actions induced on NSCs and their variations.

64 2. Parametric Investigation

65 The interaction which affect the dynamic response of the main structure and the NSC connected
 66 to the main structure itself is investigated considering a two-degree-of-freedom (2DOF) system. It is
 67 considered as a simple possible representation of the main structure directly shaken by the
 68 earthquake ground motion and the NSC. The system considered in this study is schematically
 69 represented in Figure 1.

Figure 1. The 2DOF system considered in the Nonlinear Time-History Analyses.

71 An elastic-perfectly-plastic behaviour is supposed for the main structure which is denoted in
 72 Figure 1 by the mass m . It is characterised by elastic stiffness k , viscous damping c and yielding force
 73 F_y (Figure 1). The parameters x and \dot{x} denote the relative displacement and velocity of the main
 74 structure with respect to the ground, respectively. The NSC is represented by its mass m_a and it is
 75 connected to the main structure by an elastic element with stiffness k_a . The relative displacement of
 76 the NSC with respect to the ground is denoted with x_a . The viscous damping coefficient c_a , which
 77 relates the viscous force with the relative velocity \dot{x}_a of the NSC with respect to the ground,
 78 completes the description of the 2DOF system under investigation.

79 However, nonlinear behavior is not considered for the NSC in this study, since it is mainly
 80 devoted at evaluating the maximum forces induced on secondary components without covering
 81 aspects related to displacements.

82 The system represented in Figure 1 allows to consider the coupled behaviour of the main
 83 structure and NSC and can result more appropriate than systems generally adopted in similar studies
 84 which are often based on the dynamic analysis of two uncoupled single-degree-of-freedom (SDOF)
 85 systems in series [18,19]. As matter of fact, the latter systems are based on the simulation of a SDOF
 86 system representing the main structure whose response is, subsequently, considered as the ground
 87 motion for the secondary SDOF system which simulates the NSC. Such a study can result in accurate
 88 prediction if the NSC-to-structure mass ratio is quite small (i.e., $m_a/m \rightarrow 0$) and thus the mass m_a does
 89 not influence the dynamic response of the main structure. For sake of generality, the present study
 90 does not consider this approximation and a system of coupled equilibrium equations is actually
 91 solved by means of a piecewise approach based on the Beta-Newmark numerical algorithm [20]. Such
 92 an algorithm is used in order to handle nonlinearities in the dynamic response of the following
 93 system:

$$\begin{cases} m\ddot{x} + c\dot{x} - c_a(\dot{x}_a - \dot{x}) - k_a(x_a - x) + F_r(x; k, F_y) = -m\ddot{u}_g \\ m_a\ddot{x}_a + c_a(\dot{x}_a - \dot{x}) + k_a(x_a - x) = -m_a\ddot{u}_g \end{cases} \quad (1)$$

94 In eq. (1) the reaction $F_r(x; k, F_y)$ is the unique nonlinear part which includes both the relative
 95 displacement x of the main structure and its stiffness k and yielding force F_y (Figure 1).

96 A set collecting 264 natural records has been employed as ground motion in the nonlinear time-
 97 history analyses of the 2DOF system described above carrying out a very wide parametric analysis.
 98 Such a set is based on the seismic events and records considered in an important study investigating
 99 the nonlinear response of SDOF systems [21].

100 The main parameters that govern the dynamic response of the 2SDOF system representing the
 101 main structure and NSC (Figure 1) can be easily derived from eq. (1). As matter of fact, the mass ratio
 102 m_a/m , as well as other parameters usually considered for describing the response of SDOF oscillators
 103 can be identified as key parameters which control the response of both the main structure and the
 104 NSC.

$$\text{- Main structure: } T_1 = 2\pi\sqrt{\frac{m}{k}}; \quad \xi = \frac{c}{2\sqrt{km}}; \quad (2)$$

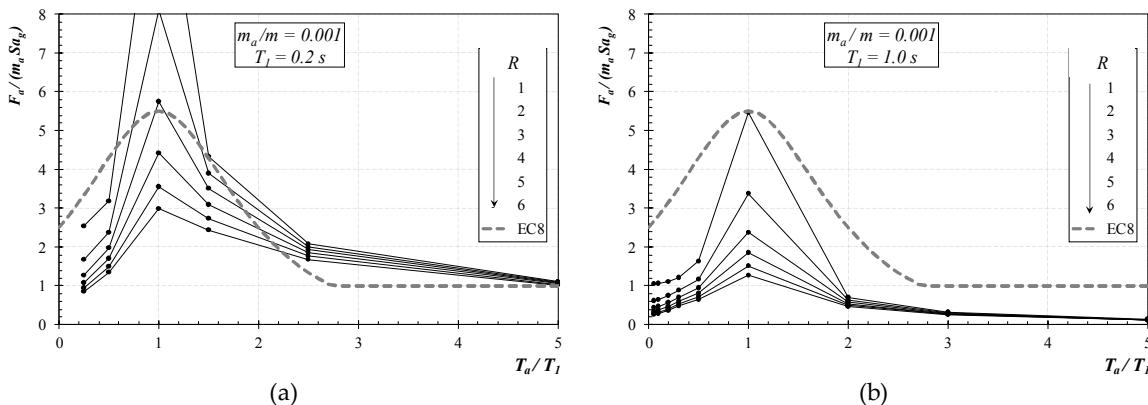
$$\text{- Non-structural component: } T_a = 2\pi\sqrt{\frac{m_a}{k_a}}; \quad \xi_a = \frac{c_a}{2\sqrt{k_a m_a}}. \quad (3)$$

105 The elastic period T and the damping ratio ξ [20] defined in eqs. (2) and (3) for the main structure
 106 and the NSC, respectively, completely control the response of the 2DOF system in the linear-elastic
 107 range. Thus, a linear time-history analysis performed for a given seismic record allows to evaluate
 108 both the maximum inertial force on the main structure F_{el} and the one induced on NSC $F_{a,el}$. Then, the
 109 elastic threshold F_y denoting the yielding of the main structure (Figure 1) can be easily defined as a
 110 further parameter of interest for the present parametric analysis as it corresponds in principle to a
 111 given value of the force reduction factor R :

$$F_y = \frac{F_{el}}{R}. \quad (4)$$

112 However, the yielding force of the NSCs could be defined in a completely similar way, but it is
 113 omitted in this study as the response of the NSC is kept in the linear range. Finally, the parameters
 114 defined above have been changed within the range of variation defined below:

115 • mass ratio $m_a/m \in \{0.01; 0.001\}$;
 116 • main structure period $T_1 \in [0.2 \text{ s}; 2.0 \text{ s}]$;


117 • secondary period $T_a \in [0.1 \text{ s}; 5.0 \text{ s}]$;
 118 • force-reduction factor $R \in [1; 6]$.

119 Otherwise, both damping ratios ξ and ξ_a referred to the main structure and NSC have been
 120 assumed constant and equal to 0.05. As one can see, the considered mass ratios refer to a class of
 121 NSCs (such as systems, ceilings, etc.) whose mass is significantly lower (and fairly negligible) with
 122 respect to the structural one. The values of period T_1 are intended to cover the whole range of low-
 123 medium rise buildings, either made of steel or concrete, meanwhile, the values assumed for T_a are
 124 intended to cover a wide spectrum of NSCs and their connections to the main structures, ranging
 125 from very stiff (and rigidly connected) components to fairly soft (or flexibly connected) ones. Finally,
 126 the values of R range from non-dissipative structures ($R=1$) up to highly dissipative ones ($R=6$),
 127 simulating high ductility steel frames).

128 **3. Results of the Parametric Analysis**

129 The parametric analysis has been performed considering the 264 seismic signals mentioned in
 130 section 2 [21] and the range of variation of the relevant parameters listed in the previous section. As
 131 a result, 142560 nonlinear time-history analyses have been carried out on 2DOF systems considering
 132 five values of T_1 (ranging between 0.2 s and 2.0 s) and nine for T_a (between 0.1 s e 5.0 s). Two mass
 133 ratios (0.01 and 0.001) and six values of the force-reduction factor R (from 1 to 6) have been also
 134 considered.

135 Figure 2 depicts the behaviour of the ratio between the maximum absolute acceleration F_a/m_a of
 136 NSC and the corresponding peak ground acceleration ($PGA=S \cdot a_g=\alpha \cdot S_g$) against the period ratio T_a/T_1 .
 137 The reduction factor R ranges from 1 to 6 and each point is the average of the results obtained from
 138 the 264 seismic signals considered in the parametric study. Furthermore, the response of the code
 139 provision reported in EC8 [1] is also depicted resulting in a unique trend as such code formulation
 140 does not depends from the inelastic behaviour of the main structure which is simulated by R in this
 141 study. Specifically, Figure 2,a refers to the case of main structures characterised by short period of
 142 vibration ($T=0.2 \text{ s}$) and demonstrates that the force reduction factor R significantly affect the
 143 maximum ratios $F_a/m_a \cdot S \cdot a_g$ corresponding to the resonance condition ($T_a=T_1$), while the effect of R
 144 results less important for long periods of NSC ($T_a/T_1 > 2$). Moreover, the simplified code provision
 145 reported in EC8 [1] miss this effect resulting in good agreement with numerical experiments only in
 146 the case of $R \approx 3 \div 4$, which is the range of values of the q-factor generally adopted for a large majority
 147 of new RC structures.

148 **Figure 2.** Maximum absolute acceleration on the structural components ($T_1=0.2 \text{ s}$ and $T_1=1.0 \text{ s}$).

149 A similar response is observed in Figure 2,b in which the case of a medium-to-long-period of the
 150 main structure is represented. Furthermore, the maximum values of the ratio $F_a/m_a \cdot S \cdot a_g$, obtained for
 151 medium-to-long period structures (Figure 2,b) are lower than the corresponding ones evaluated for
 152 short-period structures represented in Figure 2,a. This effect is due to the reduction in the acceleration
 153 induced on the main structure for long periods. However, the force reduction factor still affects

154 significantly the dynamic response of the NSC for ratios of periods $T_a/T_1 < 2$, while the prediction
 155 based on EC8 [1] results too conservative especially for high values of R .

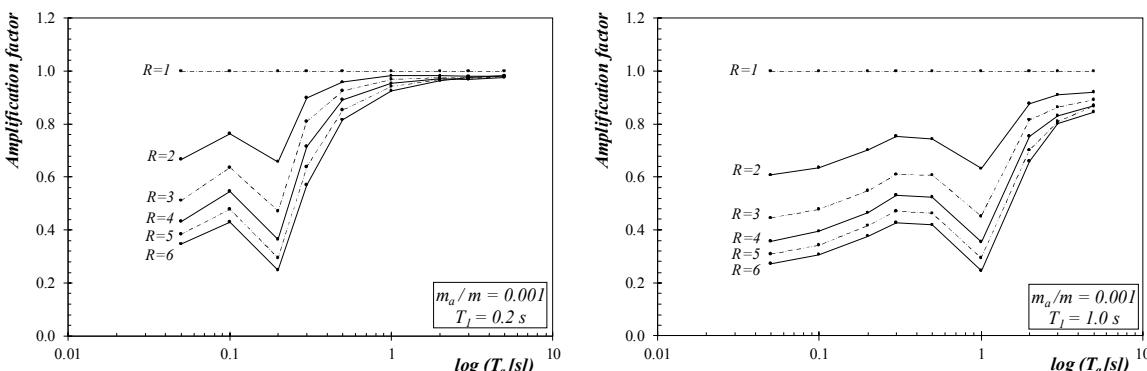
156 Moreover, the results obtained for the mass ratio $m_a/m=0.01$ overlap the ones obtained for
 157 $m_a/m=0.001$, pointing out that, in this range of values, the mass ratio has a negligible influence on the
 158 resulting response. Therefore, the results for $m_a/m=0.01$ are omitted hereinafter for sake of brevity.

159 As a final remark, easily supported by elementary mechanical intuition, Figure 2 shows that the
 160 two parameters T_1 and R play a fundamental role in determining the maximum absolute acceleration
 161 S_a of NSCs and should be considered as key parameters in order to improve the relationships
 162 currently available for evaluating the dynamic response of non-structural components [1] which
 163 generally does not take into account the effect of the force reduction factor R .

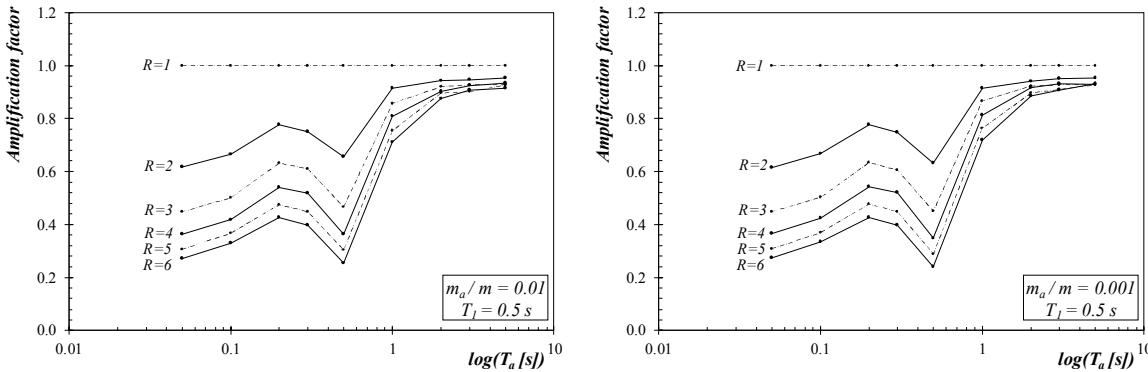
164 *3.1. Definition of relevant response parameters*

165 The results reported Figure 2 and, specifically, the comparison with the simplified formula
 166 adopted in EC8 [1] point out the significant lack of predictive capability affecting the aforementioned
 167 seismic code. As matter of fact, a wider number of parameters should be considered with the aim of
 168 enhancing the accuracy of formulations currently available. Moreover, more consistent response
 169 parameters can also be defined for describing the dynamic response of NSCs. For this purpose, [18,19]
 170 defined the following two parameters:

$$- \text{the Amplification Factor: } AF = \frac{F_a(R; T_1, T_a/T_1, m_a/m; \xi, \xi_a)}{F_a(R=1; T_1, T_a/T_1, m_a/m; \xi, \xi_a)}; \quad (5)$$


$$- \text{the Resonance Factor: } RF = \frac{F_a(R; T_1, T_a/T_1, m_a/m; \xi, \xi_a)/m_a}{F_r(R; T_1, T_a/T_1, m_a/m; \xi, \xi_a)/m}. \quad (6)$$

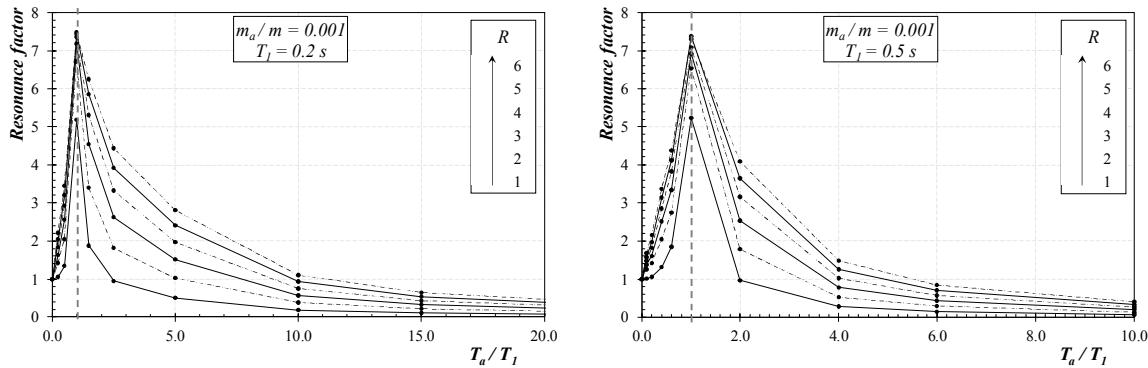
171 The AF is the ratio of the maximum total acceleration in the non-structural member evaluated
 172 for an inelastic main structure and the corresponding one derived by considering an elastic behaviour
 173 of the latter, while the RF is the ratio between the maximum total acceleration of the NSC and the
 174 maximum value of the total acceleration in the main structure.


175 In the following two subsections, the variation of the aforementioned parameters is deeply
 176 analyzed against the properties which fully describe the dynamic response of the system.

177 *3.1.1. The Amplification Factor*

178 The amplification factor AF is analysed and plotted against the period of the NSC for values of
 179 the factor R ranging from 1 to 6 and a given period T_1 . Specifically, Figure 3 reports this diagram for
 180 the case of $m_a/m=0.001$ for two values of T_1 (namely, 0.2 and 1.0 s) and confirms the non-monotonic
 181 shape of the curves already described in the literature [19]. Moreover, it highlights once again the key
 182 role played by the factor R (especially in the case of NSCs with low period of vibration) which is
 183 completely neglected by the current code formulations.

184 **Figure 3.** Amplification factor vs. the T_a ($T_1=0.2$ s; $T_1=1.0$ s).


185 **Figure 4.** Amplification factor vs. the T_a ($m_a/m=0.01$; $m_a/m=0.001$).

186 Moreover, Figure 4 consists of two diagrams reporting AF for the same fundamental period
 187 $T_1=0.5$ s and two different mass ratio m_a/m . It confirms that mass ratio is almost irrelevant for the
 188 resulting response, at least if it is kept lower than 0.01.

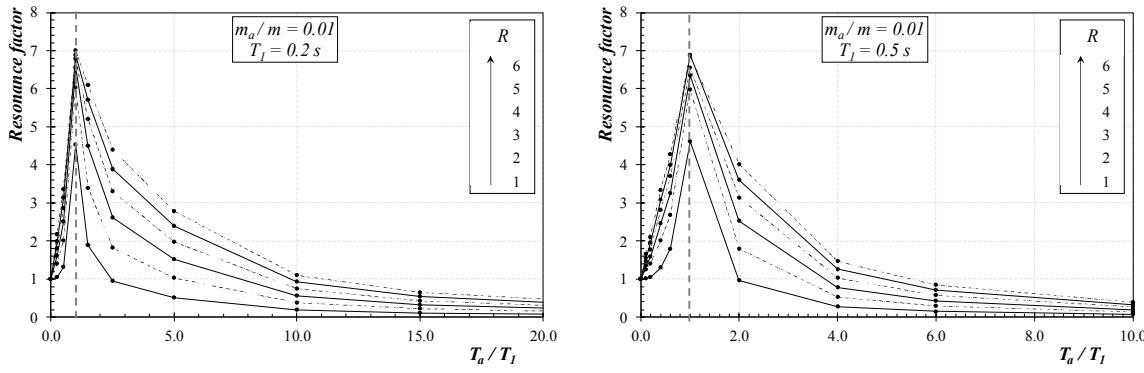
189 3.1.2. The Resonance Factor

190 The Resonance Factor allows to obtain a more compact and representative representation of the
 191 huge amount of numerical results obtained in the parametric analysis herein performed. As shown
 192 in eq. (6), the denominator of RF is clearly related to the elastic spectral pseudo-acceleration of the
 193 main structure for the period T_1 and the damping ratio ζ , thus the possible analytical description of
 194 RF in terms of the other relevant parameters would straightforwardly lead to the quantification of F_a
 195 which is the numerator in eq. (6).

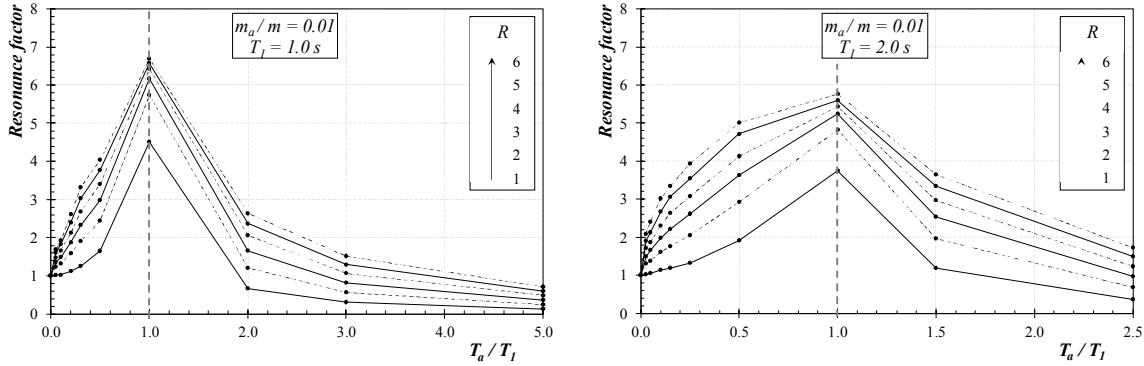
196 The following figures report the trend obtained for RF by the NLTH analyses. It is worthy to
 197 note that each point represents the average of 264 values derived by considering the set of seismic
 198 signals considered.

199 **Figure 5.** Mean value of RF vs. period ratio T_a/T_1 for $m_a/m=0.001$ ($T_1=0.2$ s and $T_1=0.5$ s).

200 Figure 5 reports the (mean) values of RF for the cases of $T_1 \in \{0.2$ s; 0.5 s $\}$ and mass ratio equal to
 201 0.001. As a result of the short period of the main structure and the range of variation of the secondary
 202 system periods (see section 2) the T_a/T_1 ratio spans in a rather wide range. Therefore, the curves (one
 203 for each value of the R factor) clearly highlight the following key features of RF:


204

- 205 all curves stem out from the unit at $T_a/T_1=0$, as a clear consequence of the definition of RF;
- 206 an almost linear branch connects the unit with the maximum value of RF (denoted as RF_{max} ,
 207 in the following) which depend on a resonance condition between the two components and
 208 is almost unaffected by R (at least for $R>2$);
- 209 a decreasing branch follows the resonance point and describes the behaviour of RF which
 210 clearly vanishes as $T_a/T_1 \rightarrow \infty$.


210 Similar shapes are represented in Figure 6 for longer periods and in Figures 7 and 8 which report
 211 the same results for the higher mass ratio $m_a/m=0.01$.

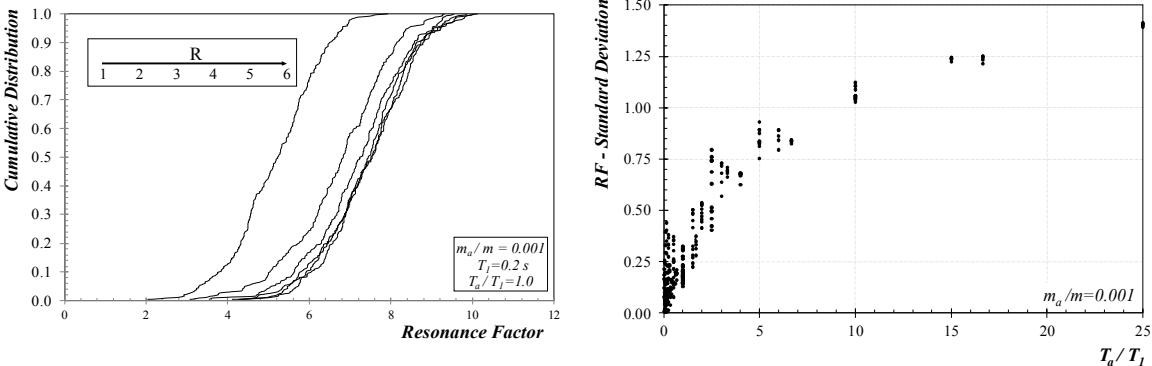

212

Figure 6. Mean value of RF vs. period ratio T_a/T_I for $m_a/m=0.001$ ($T_I=1.0$ s and $T_I=2.0$ s).

213

Figure 7. Mean value of RF vs. period ratio T_a/T_I for $m_a/m=0.01$ ($T_I=1.0$ s and $T_I=2.0$ s).

214

Figure 8. Mean value of RF vs. period ratio T_a/T_I for $m_a/m=0.01$ ($T_I=1.0$ s and $T_I=2.0$ s).215
216Figure 9. Typical distribution of RF for the considered seismic signals and its Standard Deviation against the period ratio T_a/T_I .

217 Finally, since only the mean values of the key numerical results have been reported in the
218 previous figures, further aspects dealing with the record-to-record variability of the RF need to be
219 addressed. Therefore Figure 9 reports both cumulative distribution and standard deviation of the RF
220 obtained for the structural systems analysed in this study. As for the former, the curves plotted in
221 Figure 9 shows that the R only influences the median value of RF. As for the latter, the standard
222 deviation is mainly controlled by the period ratio T_a/T_1 .

223 4. Concluding remarks

224 This paper addressed the issue of determining the maximum actions induced in NSCs of
225 structures under earthquake excitation. The results of the wide parametric analysis reported in this
226 paper can be summarized as follows:

- 227 • the available code provisions lack in predicting the seismic response of NSCs often
228 neglecting relevant parameters which control the dynamic response of such
229 components;
- 230 • the nonlinear behavior of the main structure, although neglected in the current code
231 provisions, significantly affect such a response;
- 232 • the definition of the "resonance factor" RF is a key step in quantifying the maximum
233 seismic-induced actions;
- 234 • the relationship between RF and the other parameters clearly emerged by the
235 parametric analysis; specifically, the main period T_1 , the ratio T_a/T_1 and the reduction
236 factor R are key quantities which influence the average value of RF determined in
237 the nonlinear time history analyses carried out on a wide set of recorded seismic
238 signals;
- 239 • the standard deviation of RF is basically affected by the period ratio T_a/T_1 .

240 Although further and more accurate calibrations might be proposed in the future, in the
241 Author's opinion, relating the non-structural response to the structural one is the key conceptual
242 contribution of this study.

243 **Acknowledgments:** This study is part of the DPC-ReLuis 2014-2018 Research Project whose financial support
244 is gratefully acknowledged. Moreover, the Author wishes to acknowledge the contribution of Mr. Claudio
245 Malangone who worked on the numerical analyses reported in this paper within the framework of his M.Sc.
246 Thesis in Civil Engineering at the University of Salerno.

247 References

- 248 1. Comité Européen de Normalisation. EN 1998-1 (2005). Eurocode 8 - Design of structures for earthquake
249 resistance. Part 1: General rules, seismic actions and rules for buildings. Brussels (BE), 2005.
- 250 2. Federal Emergency Management Agency. FEMA 356 (2000). Prestandard and commentary for the seismic
251 rehabilitation of buildings, 1st edition. Washington (USA), 2000.
- 252 3. Verderame, G.M.; Iervolino, I.; Ricci, P. Report on the damages on buildings following the seismic event of
253 6th April 2009 time 1:32 (UTC) - L'Aquila M = 5.8. *ReLuis Report 2009*. Available online: www.reluis.it.
254 (accessed on 28 Feb 2018).
- 255 4. Earthquake Engineering Research Institute. EERI (1984). Nonstructural Issues of Seismic Design and
256 Construction. Berkeley (USA), 1984.
- 257 5. National Institute for Educational Policy Research. Educational Facilities Research Center. EFRC (2005) -
258 Case Studies of Seismic Nonstructural Retrofitting in School Facilities. Tokyo (JP), 2005.
- 259 6. De Sortis, A.; Di Pasquale, G.; Dolce, M.; Gregolo, S.; Papa, S.; Rettore, G.F. Linee guida per la riduzione
260 della vulnerabilità di elementi non strutturali arredi e impianti. *Presidenza del Consiglio dei Ministri*
261 *Dipartimento della Protezione Civile* (in Italian), 2009.
- 262 7. Parisi, F.; De Luca, F.; Petruzzelli, F.; De Risi, R.; Chioccarelli, E.; Iervolino, I. Field inspection after the May
263 20th and 29th 2012 Emilia-Romagna earthquakes. 2012. Available online: www.reluis.it (accessed on 28 Feb
264 2018).

265 8. Magliulo, G.; Ercolino, M.; Petrone, C.; Coppola, O.; Manfredi, G. The Emilia Earthquake: Seismic
266 Performance of Precast RC Buildings. *Earthquake Spectra*, 2018, Vol. 30(2), 891-912.

267 9. Belleri, A.; Brunesi, E.; Nascimbene, R.; Pagani, M.; Riva, P. Seismic performance of precast industrial
268 facilities following major earthquakes in the Italian territory. *ASCE Journal of Performance of Constructed
269 Facilities*, 2015, Vol. 29(5).

270 10. Sullivan, T.J.; Calvi, P.M.; Nascimbene, R. Towards improved floor spectra estimates for seismic design.
271 *Earthquakes and Structures*, 2013, Vol. 4(1), 109-132.

272 11. Filiatrault, A.; Sullivan, T. Performance-based Seismic Design of Nonstructural Building Components: The
273 Next Frontier of Earthquake Engineering. *Earthquake Engineering and Engineering Vibration, Special Issue on
274 the State-of-the-Art and Future Challenges of Earthquake Engineering*, 2014, Vol. 13(1) Supplement:17-46.

275 12. Martinelli, E.; Faella, C. An overview of the current code provisions on the seismic response non-structural
276 components in buildings. *Applied Mechanics and Materials*, 2015, Vol. 847, 273-280.

277 13. Swiss Society of Engineers and Architects 261. SIA (2003) - Actions on Structures. Zurich (CH), 2003.

278 14. Western States Seismic Policy Council. International Code Council. Seismic Provisions of the 2006
279 International Building Code (IBC). Reno Nevada (USA), 2007.

280 15. Canadian Commission on Building and Fire Codes and National Research Council of Canada. NBCC (2005)
281 - National Building Code of Canada. Montreal, Ottawa (CA), 2005.

282 16. Standards Association of New Zealand. NZS (1992) - Code of practice for general structural design and
283 design loading for buildings, Volume 1: Code of Practice. Wellington (NZ), 1992.

284 17. Villaverde, R.; Chauduri, S.R. Effect of Building Nonlinearity on Seismic Response of Nonstructural
285 Components: A Parametric Study. *ASCE Journal of Structural Engineering*, 2008, Vol. 134(4), 661-670.

286 18. Oropeza, M.; Favez, P.; Lestuzzi, P. Seismic response of nonstructural components in case of nonlinear
287 structures based on floor response spectra method. *Bulletin of Earthquake Engineering*, 2010, Vol. 8(2), 387-
288 400.

289 19. Lin, J.; Mahin, S.A. Seismic Response of Light Subsystems on Inelastic Structures. *ASCE Journal of Structural
290 Engineering*, 1985, Vol. 111(2), 400-417.

291 20. Clough, R.W.; Penzien, J. Dynamics of Structures, 2nd Edition. McGraw-Hill Book Co., Singapore, 1993.

292 21. Miranda, E. Inelastic Displacement Ratios for Structures on Firm Sites. *ASCE Journal of Structural
293 Engineering*, 2000, Vol. 126(10), 1150-1158.