The phase composition design principle is introduced to obtain balanced properties of ionic conductivity and thermo-tolerant for zirconia solid electrolytes used in solid oxide fuel cells (SOFCs). The zirconia ceramic solid electrolytes are fabricated by two-step free sintering. With increasing Y/Mg ionic ratio from 1.78:1 to 1.88:1, the content of monoclinic phase fluctuates little (±3%). The ionic conductivity, including the total electrical resistance; grain electrical resistance and grain boundary electrical resistance at 1223K, are all gradually declining with the increasing of Y/Mg ionic ratio. Furthermore, the enrichment of Mg ion in grain boundary acts as a disincentive to grain boundary ionic conductivity. In addition, the maximum total equivalent conductivity at 1223K in this study reaches to 0.143 Scm-1 which can compare with that of certain YSZ. It will be beneficial to SOFCs application profited from increasing ionic conductivity of ceramic solid electrolytes.
Keywords:
Subject: Chemistry and Materials Science - Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.