You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Special Relativity Leads to a Trans-Planckian Crisis that Is Solved by Haug's Maximum Velocity for Matter

Altmetrics

Downloads

364

Views

441

Comments

0

This version is not peer-reviewed

Submitted:

07 December 2018

Posted:

10 December 2018

Withdrawn:

Invalid date

You are already at the latest version

Alerts
Abstract
In gravity theory, there is a well-known trans-Planckian problem, which is that general relativity theory leads to a shorter than Planck length and shorter than Planck time in relation to so-called black holes. However, there has been little focus on the fact that special relativity also leads to a trans-Planckian problem, something we will demonstrate here. According to special relativity, an object with mass must move slower than light, but special relativity has no limits on how close to the speed of light something with mass can move. This leads to a scenario where objects can undergo so much length contraction that they will become shorter than the Planck length as measured from another frame, and we can also have shorter time intervals than the Planck time. The trans-Planckian problem is easily solved by a small modi cation that assumes Haug's maximum velocity for matter is the ultimate speed limit for something with mass. This speed limit depends on the Planck length, which can be measured without any knowledge of Newton's gravitational constant or the Planck constant. After a long period of slow progress in theoretical physics, we are now in a Klondike "gold rush" period where many of the essential pieces are falling in place.
Keywords: 
Subject: Physical Sciences  -   Particle and Field Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated