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Abstract: Since the 1970s, land subsidence has been developing rapidly in the Beijing Plain, the 

systematic study of its evolution mechanism is of great significance to the sustainable development 

of the regional economy. First, based on ENVISAT ASAT and RADARSAT2 data, the land 

subsidence data in Beijing Plain were obtained using permanent interferometer technology. Second, 

based on the GIS platform and using fishing net tools, vector data of ground settlement with 

different resolutions were obtained. Through a series of tests, a scale of 960 metres was selected as 

the research unit, and the subsidence rate of the grid was obtained from 2004 to 2015. Finally, based 

on the Mann-Kendall mutation test method, a trend analysis of land subsidence changes in various 

grids was carried out. The results showed that single-year mutation mainly distributed in the 

middle and lower parts of the Yongding River alluvial fan and the Chaobai River alluvial fan, 

mainly occurring in 2015, 2005 and 2013, respectively. The upper and middle alluvial fan of the 

Chaobai River, the vicinity of the emergency water source and the edge velocity of the groundwater 

funnel have undergone several sudden changes. Combined with hydrogeology, basic geological 

conditions and the impact of the South-to-North Water transfer project, we analysed the causes of 

the mutations in the grid. The research results can provide a basis for the study and prevention of 

land subsidence in this area and help to further explore the trend characteristics of land subsidence 

in this area. 

Keywords: Land subsidence; InSAR; Small baseline interferometry; Mann-Kendall mutation test; 
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1. Introduction 

Land subsidence is a geological phenomenon caused by human engineering activities (e.g., 

groundwater exploitation) or natural factors, and in this phenomenon, the ground elevation is 

reduced within a certain area [1, 2]. The occurrence of land subsidence is almost irreversible. When 

severe local surface subsidence occurs, it will induce a series of geological environmental disasters, 

such as foundation sinking, house cracking and underground pipeline damage [3-5]; furthermore, 

subsidence has the characteristics of a long formation time, wide influence range and great difficulty 

in prevention and control. At present, more than 150 countries and regions have suffered land 

subsidence, which has caused large security risks and economic losses. In China, land subsidence 

mainly occurs in the North China Plain, the Yangtze River Delta, the Fenwei Basin and the Pearl River 
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Delta, and the process presents significant regional differences [6-11]. Among them, the continuous 

land subsidence in the North China Plain (Beijing-Tianjin-Hebei region) continues to increase, the 

Yangtze River Delta region has been effectively controlled, and the Fenwei Basin region is still 

developing rapidly. 

From the perspective of land subsidence monitoring technology, InSAR technology has become 

a new ground observation technology in the past 20 years [12-14]. Compared with traditional 

technology, InSAR technology has the advantages of a wide monitoring range and a high monitoring 

accuracy, and the technology has been widely used in land subsidence monitoring research by 

experts and scholars [14-20]. In 2002 and 2004, Berardino and Lanaride et al. proposed the small 

baseline set interferometry (SBAS-InSAR) technique, which is more suitable for the long-term slow 

deformation of surface monitoring. Subsequently, experts and scholars used this technology to select 

multi-source SAR data, such as ENVISAT ASAR and COSMO-SkyMed, and monitored the surface 

deformation information of Los Angeles, northern California, central Mexico and other areas [1, 21-

29]. From the perspective of the evolution mechanism of land subsidence, the causes of the occurrence 

and evolution of land subsidence include natural factors and human factors [30]. For a long time, 

experts and scholars have been focusing more on the land subsidence caused by human factors. At 

present, 80% of land subsidence is caused by the excessive exploitation of groundwater fluid 

resources [31]. 

Beijing, as the capital of China, has experienced rapid urban development and population 

growth since the 1960s, and Beijing's demand for water resources has increased daily. Over the years, 

the utilization of groundwater accounts for two-thirds of the total water supply in Beijing [32]. It is 

one of the few metropolises in the world that uses groundwater as the main source of its water supply 

[33]. With the long-term overexploitation of underground water, land subsidence has been 

developing rapidly in the Beijing area, and there is a trend in which the land subsidence funnel is 

connected into one piece [34]. By the end of 2015, the maximum cumulative settlement of Beijing 

plain area was approximately 1.4 metres, and the area with the cumulative settlement exceeding 1 

metres reached 4000 km2. Land subsidence has become a major threat to Beijing's urban construction 

planning and residential safety. Therefore, it is necessary to study the evolution rule and mechanism 

of land subsidence in the Beijing Plain. 

At present, the problem of land subsidence is mainly concerned with its spatial distribution and 

formation factors, and the temporal problem of the mutation of land subsidence is rarely studied on 

the basis of long time series data. This study used ENVISAT ASAR and RADARSAT 2 to obtain the 

surface deformation information of the Beijing Plain area from 2004 to 2015; furthermore, to verify 

the accuracy, the research area was divided into 5,575 grids of 960 m by 960 m using the Fishnet tool 

of the ArcGIS platform. Then, the land subsidence information was obtained as a long time series for 

each grid using a space analysis tool. Subsequently, the Mann-Kendall test was carried out for each 

grid using Python, and the land subsidence mutation information of the Beijing Plain area was 

obtained based on the grid. Finally, combined with hydrogeology and basic geological conditions, 

we tried to analyse the causes of sudden changes in land subsidence. 

2. Study area 

Beijing, as the capital of China, is the centre of national politics, economy and culture and is an 

international metropolis with a population of nearly 20 million people. This area is located on the 

north-western edge of the North China Plain and occupies the region between 39.4°N, 115.7°E and 

41.6°N, 117.4°E. In general, the topography is higher in the northwest and lower in the southeast. The 

geomorphologic features are divided into three parts: the western mountainous area, the northern 

mountainous area and the south-eastern plain (Figure 1). The total area of Beijing is 1,680,780 km2, 

and the plain area covers 38% of the total area. From 2000 to 2011, Beijing suffered a continuous 

drought, with an average rainfall of only 459.11 mm.  
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Figure 1. Geographic location of the study area. Figure a shows the location of Beijing. Figure b shows 

the range of the Beijing Plain. The red line represents the range of ENVISAT ASAR, and the black line 

represents the range of RADARSAT 2. Figure c shows the range of the study area. The grey dotted 

line represents the approximate fracture distribution of Beijing, and the dark red line represents the 

location of the hydrogeological profile. 

The Beijing Plain area is formed by the combination of five major water systems (e.g., the Juma 

River system, Yongding River system, Wenyu River system, Chaobai River system and Jiyunhe River 

system)[35]. As shown in Figure 2, the Quaternary loose sediments in the study area are widely 

distributed. At the top of the alluvial fan, the Quaternary thickness is approximately 20 ~ 40 m, which 

is represented by a single gravel layer or a thin viscous soil layer covered with gravel [36]. In the 

lower part of the alluvial fan, the Quaternary loose sediment thickness gradually increases, and the 

gradation increases, and the particles gradually become thinner. The lithology gradually transitions 

to a point where sand, gravel, and viscous soil intersect each other and is dominated by viscous soil 

[37].There are many fractures in the study area, and the trend is mostly southeast-northwest and 

northeast-southwest. 

 

Figure 2. Hydrogeological profile. 
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Land subsidence, as a surface response to the development, utilization and evolution of 

underground space, has become a global and multidisciplinary complex geological environment 

problem. Land subsidence first occurred in Beijing in 1935, and the main subsidence area was located 

in the area from Xidan to Dongdan. Since the 1970s, land subsidence in the Beijing Plain has entered 

a period of rapid development. In general, the subsidence area is divided into two major areas, i.e., 

north and south, and it has many subsidence centres [38]. "The North" is mainly distributed in the 

east and north of Beijing, including Chaoyang, Tongzhou, Changping, Haidian and Shunyi District. 

Among them, the Chaoyang and Tongzhou subsidence areas in the east of the plain are contiguous, 

and this area represents Beijing's most developed subsidence area [39]. The settlement rate of the four 

subsidence centres in the urban areas of Chaoyang (e.g., Jinzhan, Heizhuanghu and Sanjianfang) and 

Tongzhou exceeded 100 mm/year for many years. The subsidence centre in the north of the plain is 

found at the Changping Baxianzhuang and Haidian Xi Xiaoying areas. "The South" is mainly located 

in Daxing, and the settlement centre is in Lixian. Overall, the land subsidence is most developed in 

the eastern plain, followed by the northern region, and the south is mainly located in the vicinity of 

Hebei. As of the end of 2015, the area of land subsidence in Beijing reached 4842 km2, with an average 

annual subsidence of 21.6 mm/year and an annual maximum value of nearly 141 mm/year. 

3. Methodology 

3.1. Data source 

In this study, ENVISAT ASAR data and RADARSAT-2 data were selected to obtain the surface 

deformation information of Beijing from June 2003 to December 2015. ENVISAT is a solar 

synchronous polar orbiting satellite launched by the European Space Agency on March 1, 2002, and 

it has been out of contact since April 8, 2012; additionally, the largest sensor on it is a synthetic 

aperture radar. The ENVISAT ASAR sensor has an orbital altitude of 799.8 km, the operate band is a 

c-band with a wavelength of 5.6 cm, and the orbital repeat observation period is 35 days. This study 

obtained 47 images of the ascending orbit of ASAR data from June 2003 to August 2010, and the 

images covered most of the Beijing Plain except for the southernmost tip of Beijing. RADARSAT-2 is 

a radar satellite launched on December 14, 2007 by the Canadian Space Agency in collaboration with 

the MDA. It operates at the c-band with a wavelength of 5.6 cm, and the interval of orbital repeat 

observation period is 24 days. In this study, we obtained 48 RADARSAT-2 images that were from the 

descending orbit data from November 2010 to October 2015. 

This study is based on Doris (Delft object-oriented radar interferometric software), StaMPS 

(Stanford method for persistent scatterers, StaMPS) and SARPROZ commercial software. After a 

series of tests, it was deduced that the time baseline threshold and space baseline threshold of the 

ASAR image from 2003 to 2010 were 500 days and 500 metres, respectively, and the interference 

processing generated 46 interference images. In addition, the time baselines and spatial baselines of 

the Radarsat-2 images during 2010-2015 were 500 days and 500 metres, respectively. During 

processing, a total of 266 interferometric image pairs were generated. In the process, the required 

external reference digital elevation model (DEM) data were the STRM3 (spatial resolution is 90 m) 

obtained by the National Aeronautics and Space Administration (NASA). 

3.2. Processing of SBAS-InSAR based on StaMPS 

In this study, StaMPS were selected to perform SBAS-InSAR processing on 47 scenes of 

ENVISAT ASAR data with a resolution of 30 m and a time span of 18 June 2003 to 25 October 2010. 

Small baseline interferometry (SBAS-InSAR) is a reliable method for studying long-term slow surface 

deformation, and this method was originally proposed by Berardino and Lanari in 2002[15]. The 

principle of this method is that the SAR image in the same study area is formed into several baseline 

pairs according to the sizes of the spatial baseline and time baseline. Thus, the small baseline data are 

combined into several sets. The purport is that within the set, the baseline of the interference pair is 

small; between sets, the baseline of the interference pair is larger. After obtaining the available small 

baseline interferogram, the surface deformation sequences of each set were obtained by the least 
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squares method. Finally, using the singular value decomposition method, multiple small baseline 

sets are jointly solved to obtain the deformation rate. In 2004, Lanari et al. proposed a method to 

further identify single-view SDFP pixels after recognizing multi-view SDFP pixels [16]. This method 

solves the loss-related issues that occur during the process of the standard small baseline method. 

The method adopted in this paper was proposed by Hooper in 2008, and the difference in the method 

involves identifying single-view SDFP (slowly decorrelated filtered phase) pixels in a single-view 

image [12]. 

 

Figure 3. The small baseline segment from 2003 to 2010 was obtained by SBAS-InSAR technology. 

3.3. Quisin-PSInSAR processing based on SARPROZ  

In this study, the technical method of Quisin-PSInSAR in the SARPROZ software was selected 

to process 48-view RADARSAT-2 data. The RADARSAT-2 data resolution is 30 m, and the time span 

is from November 22, 2010 to November 20, 2015. The main steps include data set reading, main 

selection and registration, atmospheric phase analysis based on star topology and PS point 

deformation analysis based on custom structure. 

 

Figure 4. A small baseline set from 2010 to 2015 obtained by Quisin-PSInSAR technology. 

3.4. Mann-Kendall mutation test  
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Mann-Kendall is a nonparametric statistical test method, also known as the non-distribution test. 

Its advantage is that it does not require samples to obey a certain distribution, and the results are not 

affected by a few outliers [40]. The Mann-Kendall method has been used by many scholars to analyse 

the trend changes of elements, such as precipitation, runoff and temperature, with time series [41-

43]. In this paper, the test method is used to detect the change trend of land subsidence in the Beijing 

Plain. The method is summarized as follows: 

For the time series X with n samples, construct an order list: 

𝑆𝑘 = ∑ 𝑟𝑖
𝑘
𝑖=0         𝑟𝑖 = {

1, 𝑥𝑖 > 𝑥𝑗

0, 𝑒𝑙𝑠𝑒
   j = 1,2, … , i 

It can be seen that the order column Sk is the cumulative number of the number of values at time 

i greater than those at time j. Under the assumption of stochastic independence of time series, we 

define the following statistics: 

U𝐹𝐾=
𝑆𝑘−𝐸(𝑆𝑘)

√𝑉𝑎𝑟(𝑆𝑘)
    k=1,2,…,n 

Among them, UF1=0, E(Sk) and Var(Sk) are the mean and variance of cumulative Sk, respectively. 

When X1, X2,..., Xn are independent of each other and have the same continuous distribution, the 

following formula can be obtained: 

E(𝑆𝑘) =
𝑘(𝑘 − 1)

4
     Var(𝑠𝑘) =

𝑘(𝑘 − 1)(2𝑘 + 5)

72
 

where UFk is a standard normal distribution. It is a statistical sequence calculated in the order of 

time series X (x1, x2,..., xn). The significance level is given as α, and then the normal distribution 

table can be queried. If |UFk|＞Uα, it shows that the sequence has an obvious trend change. 

Similarly, the inverse order of UFk is calculated as UBk. The significance level selected in this study 

was α of 0.05, and the critical value was 𝑈0.025 = ±1.96. 

4. Results 

4.1. Acquisition of time series ground deformation information 

Based on the surface deformation information monitored by SBAS-InSAR and Quisin-PSInSAR 

and using the ArcGIS space analysis platform, the ground settlement rate distribution map was 

obtained for the Beijing Plain. As shown in Figure 5, the spatial distribution of land subsidence in the 

Beijing Plain is wide, and the spatial difference is dramatic. The areas with serious subsidence are 

mainly in the east of Chaoyang, the northwest of Tongzhou, the south of Changping, the northwest 

of Shunyi and the south of Daxing. A plurality of settling funnels were formed in the study area, and 

they were connected to one another. PS points were obtained based on ENVISAT ASAR data. The 

maximum annual average sedimentation rate was 134 mm/year in the plain area, and the minimum 

annual average sedimentation rate was 1 mm/year. Among them, the area where the sedimentation 

rate was greater than 25 mm/year reached 1078.5 km2, which accounted for 17.2% of the total area of 

the Beijing Plain. From 2011 to 2015, the number of PS points obtained based on RADARSAT-2 data 

was 100,515, the maximum average annual settlement rate in the plain area was approximately 141 

mm/year, and the minimum settlement rate was approximately 2 mm/year. The area with a 

settlement rate greater than 25 mm/year reached 1,139 km2, accounting for 17.8% of the area of the 

Beijing Plain. By the end of 2015, the area where the accumulative settlement of the Beijing Plain 

exceeded 300 mm reached 1,271 square kilometres, accounting for approximately 20% of the total 

area of the Beijing Plain. 
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Figure 5. The average land subsidence rate map in the Beijing Plain. The left figure shows the average 

rate from 2004 to 2010, and the right figure shows the average rate from 2010 to 2015 

4.2. InSAR accuracy verification 

Because the shape variables obtained by SBAS-InSAR are the deformation values in the line of 

sight, to ensure the accuracy of verification, it is necessary to decompose them into vertical shape 

variables according to the incident angle of the sensor. This study was verified in two steps. First, the 

second-class level deformation isoline of 2007 was selected, and the results of SBAS-InSAR were 

preliminarily tested as a whole. Figure 6 shows that the settlement of the PS point obtained by SBAS-

InSAR in 2007 has good consistency with the settlement of the level measurement in the overall 

spatial distribution. 

 

Figure 6. Verification map of land subsidence accuracy in the Beijing Plain area, in which the dark 

blue line represents the land subsidence contour of the levelling survey in 2007, and the green circle 

represents the position of the levelling point used for verification. 
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Furthermore, the data of 24 levelling points from 2003 to 2013 were selected in this verification. 

The levelling points were taken as the original point, and all monitoring points within a radius of 150 

m were extracted. The mean value of the extracted SDFP points and PS points were taken as the 

settlement estimation value and verified with the settlement of the levelling points. As shown in 

Figure 7, the correlation coefficient of the InSAR monitoring results and the level monitoring results 

from 2003 to 2010 was 0.95, the maximum absolute error was 17.9 mm/year, the minimum absolute 

error was 0.1 mm/year, and the standard deviation was 4 mm/year. From 2011 to 2013, the correlation 

coefficient of the InSAR monitoring results and the level monitoring results was 0.99, with a 

maximum absolute error of 17.3 mm/year, a minimum absolute error of 0.6 mm/year and a standard 

deviation of 3 mm/year. Although the PS point fail to coincide with the corresponding levelling 

points, they still reflect the high accuracy of the InSAR results. 

 

Figure 7. Comparison of InSAR-derived land subsidence rates and levelling measurement rate from 

2003-2013. The figure on the left shows the accuracy verification from 2004 to 2010, and the figure on 

the right shows the accuracy verification from 2011 to 2013. 

4.3. Mutation 

First, after a series of tests, the research area was divided into 960×960 meter grids using the 

Fishnet tool of the ARCGIS platform (we divided the study area into 30 m×30 m, 60 m×60 m, 90 m×90 

m...15,360 m×15,360 m grids, performed a mutation test on all of them and found the consistency of 

the trend. Finally, the grid of 960 m×960 m was chosen because it guaranteed that most of the grids 

(88%) had PS points of 2003-2015, and the grid can be refined as much as possible to express the 

research area.); in total, 5,575 grids were created. Second, according to the information of the PS points 

in 2004-2015 acquired by InSAR technology, the ground settlement information of each grid could be 

obtained based on the GIS platform. Finally, a Mann-Kendall mutation test was performed on each 

grid using Python, and the mutation information of ground settlement in the Beijing Plain area was 

obtained (as shown in Figure 8). 
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Figure 8. Land subsidence mutation information results of the Beijing Plain from 2004 to 2015. Among 

them, the dark blue line segment represents the 2001 underground water drop funnel, the grey line 

segment represents the boundary of the Beijing Plain, the white plane sign indicates that there is no 

continuous land subsidence from 2004 to 2015, the symbol of the grey slanted line indicates the grid 

that did not pass the significance test of 0.05, and the blue slanted grid represents the grid distribution 

with multiple mutations. Other monochromatic symbols represent grids with a single year of 

mutation. 

In total, 4,887 grids had settlement information from 2004 to 2015, of which 3,792 grids passed 

the significance test (p=0.05). Among them, 2,744 grids had a mutation, and 1,048 grids had multiple 

mutations. Among the single-mutation grids, 1,344 grids mutated only in 2015, 915 grids mutated 

only in 2005, 152 grids mutated only in 2013 and fewer single-mutation grids occurred in other years. 

Table 1-Beijing Plain Land subsidence Mutation Information 

Order Mutation years Count Order Mutation years Count 

1 2015 1344 18 2011-2013 20 

2 2005 915 19 2005,2007,2008 18 

3 2013,2015 238 20 2010,2012,2013,2015 18 

4 2013-2015 153 21 2007 16 

5 2013 152 22 2011,2013,2015 16 

6 2014 80 23 2005-2008 15 

7 2012 72 24 2010,2012,2015 15 

8 2011,2015 63 25 2008,2009 14 

9 2012,2015 58 26 2005,2006,2009 13 

10 2010 55 27 2006-2008 12 

11 2011-2013,2015 51 28 2008 12 

12 2011 47 29 2009 12 

13 2012,2014,2015 40 30 2010,2012,2013 12 

14 2006 39 31 2013,2014 12 

14 2006 39 31 2013,2014 12 
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Order Mutation years Count Order Mutation years Count 

15 2010,2015 37 32 2010,2011,2015 10 

16 2005,2008,2009 31 33 empty 1783 

17 2005-2007 20 34 others ＜10 

 In total 5575 

Among the 1,048 grids with multiple mutation years of the land subsidence rate, the grid 

containing the mutations in 2015 contained the most, as it contained 768 grid cells with mutation. 

Among them, there were a large number of grids that were simultaneously mutated in 2013 and 2015, 

totalling 238. In addition, there were 153 grid mutations from 2013 to 2015 and 63 grid mutations in 

both 2011 and 2015. For the grid containing the 2005 mutations, 127 grid cells were mutated. In 

addition, the number of grids with multiple mutations in other years was relatively small. 

5. Discussion 

From the overall trend of the land subsidence rate mutation distribution map, the grid with the 

single-year mutation was mostly distributed in the middle and lower part of the ChaoBai River 

alluvial-diluvial fan and YongDing River alluvial-diluvial fan, and the grid with multiple-year 

mutations was mostly distributed at the top of the alluvial-diluvial fan. The reason may be that the 

groundwater level of the Quaternary system has dropped drastically, resulting in a decrease in pore 

water pressure in the overburden layer and a loss of water in the soil layer. However, in the middle 

and upper parts of the alluvial fan, most of the Quaternary diving or shallow confined water has 

good permeability, and the groundwater level fluctuates greatly due to the influence of precipitation. 

The rainfall quantity and the rainfall intensity are different in different seasons. These differences 

may cause the groundwater level in the middle and upper parts of the alluvial fan to experience 

relatively large fluctuations; thus, the grid with sudden land subsidence may be more variable. On 

the other hand, the Huairou emergency water source, the Machikou emergency water source, the 

Xishan emergency water source and the Pinggu emergency water source are all in the middle and 

upper parts of the alluvial fan. Affected by the distribution of exploitation, the groundwater level 

was greatly changed, resulting in greater fluctuations of land subsidence. Figure 8 illustrates that at 

the edge of the Quaternary groundwater drop funnel, the grids with mutations in the land subsidence 

rate are very variable. In the following sections, by considering the hydrogeological conditions, we 

will attempt to discuss the causes of grid changes in a single year and grid changes in multiple years. 

5.1. Analysis of single-year mutation grid 

In the 2744 land subsidence grids with a single mutation, 1344 grids occurred in 2015 (Figure 

9). They are mainly distributed on the alluvial fans of the Chaobai River and Yongding River. First, 

the main reason may be that the “South-to-North Water Transfer Middle Line” project ran from the 

end of December 2014, and the water transfer year from 2014 to 2015 (the water transfer year refers 

to the annual water supply from November 1 to October 31) supplied 703 million cubic metres of 

water that was diverted to Beijing. Among them, 8 water plants used more than 2.2 million cubic 

metres of the "southern water" every day (accounting for 70% of the total water supply in Beijing's 

urban areas). At the same time, the Beijing municipal government has carried out a large-scale 

replacement project for self-provided wells, and the overall amount of groundwater extraction has 

decreased by 250 million cubic metres. This not only reduces the amount of groundwater exploitation 
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but also changes the distribution of groundwater exploitation, which may be one of the main reasons 

for the sudden change of the grid in 2015. Second, according to the Water Resources Bulletin, the 

average precipitation in Beijing in 2015 was 583 millimetres, which was 33% more than the 439 

millimetres of precipitation recorded in 2014. In terms of the precipitation temporal distribution, the 

accumulated precipitation during the flood season (i.e., from June to September) was 447 millimetres, 

accounting for 77% of the annual precipitation, and this value was 8% less than the annual average 

of 488 millimetres. This result means that the excessive rainfall is lower, and the effective supply of 

precipitation is greater. Third, according to the data of the Beijing Geological Environment 

Monitoring Station, 150 million cubic metres of water were recharged to the Beijing Plain every year 

from 2015 to 2020. Although the depth of recharge is typically approximately 50 metres, groundwater 

systems are interlinked, which may also be one of the reasons for the sudden change of the grid in 

2015. Finally, according to the Beijing subway official website, three subways were opened in 2015, 

and the dynamic load is one of the causes of land subsidence in Beijing. In addition, six subways were 

newly built in Beijing during the year, and the groundwater level will be artificially lowered during 

the subway construction period. This event may have caused some grids to mutate in that year. 

 

Figure 9. Spatial distribution of a single mutation grid in 2015. Among them, the blue-red dot pattern 

represents the emergency water source in the study area, the purple grid is the location where the 

land subsidence rate is abrupt only in 2015, and the surface pattern containing the brown dots 

represents the Yongding River alluvial fan range. The surface pattern of the black points represents 

the range of the Chaobai River alluvial fan. 

Figure 10 shows that a single abrupt change in land subsidence occurred in 2005, mostly in the 

upper and middle parts of the Yongding River alluvial fan, the Nankou alluvial fan and the lower 

part of the Chaobai River alluvial fan. From the perspective of the district, most of these sits were 

located in southeast Haidian, southeast Changping, southeast Chaoyang and northeast Tongzhou. 
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For the alluvial-diluvial fan of the Yongding River corresponding to the grid location, the reasons for 

the sudden change in 2005 may be as follows. First, the Xishan emergency water source area was built 

in 2005 in the area of groundwater exploitation. The mining target layer of the emergency water 

source area contains Quaternary groundwater, which is located in the upper part of the alluvial fan 

of the Yongding River. It is mainly composed of a single layer of sand and gravel with good 

permeability. The sudden increase in groundwater exploitation will lead to the sudden drop of the 

groundwater level, which may cause the sudden change of the corresponding grid land subsidence. 

According to the Water Resources Bulletin, the precipitation of the Yongding River was the lowest, 

at only 386 mm. This result shows that the groundwater system of the Yongding River has little 

recharge, which may be one of the reasons for the sudden change of land subsidence of the alluvial 

fan of the Yongding River in 2005. 

 

Figure 10. Spatial distribution of a single mutation grid in 2005. Among them, the yellow grid 

represents the locations where the land subsidence rate changed in only 2005. 

The reason for the sudden change of land subsidence of Nankou alluvial fan in 2005 is that, on 

the one hand, the Wenyu River groundwater system (where the Nankou alluvial fan is located) and 

the Chaobai River groundwater system belong to a subsystem of the same groundwater system, 

which has a certain boundary and hydraulic connection. However, the Huairou emergency water 

source located at the top of the Chaobai River groundwater system started operating in August 2003. 

After a period of operation, the water source will destroy the balance of the groundwater system, and 

the nearby Wenyu River groundwater system will supply it, which may have led to the sudden 

change at the southern mouth diluvial fan area at the lower part in 2005. Second, in terms of 

groundwater recharge, from the perspective of precipitation, the depositional particles at the location 

of the Nankou diluvial fan were larger and had better permeability, and the groundwater level 

fluctuated greatly under the influence of precipitation. The average annual precipitation in Beijing 
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was 468 millimetres in 2005, which was 13% less than that of the same period in 2004. From the 

regional distribution of precipitation, the precipitation in mountainous areas was greater than that in 

plain areas, and the former mountainous areas in the northwest and southwest had more 

precipitation. Part of the rainstorm centre was located in Nankou District. This result shows that in 

2005, the region not only supplied less but also supplied less effectively. For a small portion of the 

grid that is found in the lower part of the alluvial-diluvial fan of the Chaobai River, there may have 

been very little precipitation in that year. On the other hand, it is possible that there was a Huairou 

emergency water source in the upper part of the area (the water source was officially operated at the 

end of 2003) and a Pinggu water source (the water source started operation in August 2004), and the 

exploitation of the emergency water sources will cause a rapid decline in the nearby groundwater 

level. Thus, the direction of recharge-runoff-discharge of the groundwater system changes, which 

indirectly affects the groundwater level in the lower part of the alluvial fan. In summary, the reason 

for the sudden change in land subsidence in 2005 may have been the increase in groundwater 

exploitation and the small amount of effective precipitation replenishment. 

 

Figure 11. Spatial distribution of a single mutation grid in 2013. Among them, the red grid represents 

the locations where the land subsidence rate changed only in 2013. 

The 152 grids where land subsidence changed abruptly in 2013 were mainly distributed in the 

Chaobai River alluvial fan (as shown in Figure 11). From the administrative area, they are mainly 

distributed in Tongzhou District. The reason is that in September 2012, the Beijing municipal 

government announced the selection of Tongzhou District as a new city deputy centre. After 2013, 

Tongzhou developed rapidly. Second, the Tongzhou area became dramatically "higher" and "larger". 

However, the increasing number of buildings and the growing height were one cause of Beijing's 

land subsidence. Third, after 2013, the density of both roads and subways in the Tongzhou area 
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increased dramatically. In summary, the above three reasons may have caused the sudden change in 

land subsidence in some areas of Tongzhou in 2013. 

5.2. Analysis of grids with multiple land subsidence mutation years 

The 1,048 grids with multiple mutation years were mainly distributed at the top of the alluvial 

fan, the boundary of the groundwater system, and the edge of the groundwater funnel. The largest 

number of grids containing mutations in 2015 was 768, followed by 152 grids that contained 

mutations in 2005. The grid that contained multiple changes in years that include 2015 was mainly 

distributed at the top of the Chaobai River alluvial fan, near the Pinggu emergency water source, at 

the top of the Yongding River alluvial fan and at the bottom of the Chaobai River alluvial fan (as 

shown in Figure 12).  

 

Figure 12. The spatial distribution of multiple mutation grids that include 2015. Among them, the 

blue fringe grid represents the location where the land subsidence rate has mutated more than 1 year 

and contained the year 2015. 

In terms of the administrative area, the sites were mainly distributed in southern Huairou, 

northern Shunyi, southwest of Pinggu and eastern Tongzhou. The reasons are analysed as follows: 

first, after the water diversion project of the South-to-North water transfer project at the end of 2014, 

the underground water was reduced in many places, such as the Huairou emergency source, Chaobai 

River greening water source well and Pinggu emergency water source. The "southern water" was 

used to recharge groundwater in well-penetrated areas (such as in the Huairou emergency water 

source and Pinggu emergency water source area), and relevant departments have completed the 

replacement of several self-providing wells, which not only reduces the amount of groundwater 

exploitation and optimizes the groundwater exploitation layout but also effectively recharges and 

conserves the groundwater system. Second, the precipitation in this region was higher in 2015 than 
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in the past 10 years, and the groundwater recharge was relatively sufficient. Third, the Beijing 

government has taken a series of measures to save water and strengthen the use of reclaimed water, 

which indirectly protects groundwater resources. 

 

Figure 13. The spatial distribution of multiple mutation grids that contained 2013 and 2015. Among 

them, the yellow fringe grid represents the location where the land subsidence rate has mutated from 

2013 to 2015, and the yellow orange grid represents the location where the land subsidence rate 

mutated in both 2013 and 2015. 

Among the grids with multiple mutations including a mutation in 2015, the number of grids 

with simultaneous mutations was highest in 2013 and 2015, at 238 (as shown in Figure 13). The spatial 

distribution was almost completely in the upper and middle parts of the alluvial-diluvial fan of the 

Chaobai River. From the perspective of administrative regions, most of these sites were distributed 

in the southwest of Huairou, the south of Miyun, the west of Pinggu, Tongzhou District and the area 

of Shunyi. The reason for the sudden change in 2013 may be the long-term overexploitation of 

emergency water sources, which led to the imbalance of the groundwater system. 

Subsequently, there were 153 grids with multiple mutation years in 2013-2015, and they were 

mainly distributed in the Tongzhou area. The reason may be that after September 2012, Tongzhou 

was selected as the city deputy centre of Beijing. From 2013 to 2015, the Tongzhou area has been 

expanding continuously, the demand for water resources has been increasing, and its dynamic and 

static load density has been increasing. This is the reason for the great change in land subsidence in 

Tongzhou during this period. The number of grids with multiple-year mutations in other years is 

very small, and no more analysis must be performed here. 

6. Conclusion 
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This study used 47 ENVISAT ASAR data from June 2003 to October 2010 and 48 RADARSAT-

2 data from November 2010 to December 2015. The Doris/StaMPS algorithm and commercial 

SARPROZ software were used to analyse the SAR data. The surface deformation information of the 

Beijing Plain was obtained from 2004 to 2015, and its accuracy was verified. On the ARCGIS platform, 

the Fishnet tool was used to divide the research area into a grid of 960 by 960 metres, and the ground 

settlement information of each grid was obtained from 2004 to 2015 using spatial analysis technology. 

Using Python, the Mann-Kendall test was carried out for each grid, and the change characteristics of 

ground settlement were obtained for the Beijing Plain area. The reasons for the mutations were 

analysed, and the following conclusions were obtained. 

1) From 2004 to 2015, the spatial distribution of land subsidence in the Beijing Plain area was 

quite different, and many subsidence funnels were formed in the area. From 2004 to 2010, the average 

ground settlement rate in the study area was 134 mm/year, and from 2010 to 2015, the average ground 

settlement rate was 141 mm/year. By the end of 2015, the accumulative settlement of the Beijing Plain 

area exceeding 300 mm, and the area reached 1,271 square kilometres, accounting for approximately 

20% of the total area of the Beijing Plain. 

2) There are two kinds of land subsidence mutation grids, including single-year mutations and 

multiple-year mutations. Among them, the number of single-year grid changes was 2,744, and they 

were mainly distributed in the middle and lower parts of the alluvial-diluvial fans of the Yongding 

River and Chaobai River. The number of multiple-year grid mutations was 1,048, and they were 

mainly distributed in the middle and upper parts of the alluvial fan, near the emergency water source 

and at the edge of the underground water funnel. 

3) Among the 4,887 grids with ground settlement information from 2004 to 2015, 3,792 grids 

passed the significance test. Among them, the number of grids containing land subsidence mutations 

in 2015 was the highest, reaching as high as 2,112 grids and accounting for 56% of the number of 

grids; this value was followed by 995 grids containing mutations in 2005, which accounted for 27% 

of the number of grid passings. 

4) The grids that changed in 2015 were mainly distributed in the middle and lower parts of the 

alluvial-diluvial fans of the Chaobai River and Yongding River. The main reason may be that after 

the "southern water" entered Beijing at the end of 2014, the amount of underground water was 

reduced, and the relevant departments carried out underground water recharges; as a result, they 

replaced a large number of self-providing wells and optimized the distribution of underground water 

exploitation. In addition, the effective precipitation amount in the Beijing Plain was relatively large 

in 2015. Most grid changes occurred in 2015, which also suggested that the "southern water" entering 

Beijing had a certain role in alleviating land subsidence in Beijing. 

5) It cannot be ignored that in 2013, the number of sudden changes in the single-year land 

subsidence grids was 152, while in 2013-2015, the number of sudden changes was 153, and they were 

mainly distributed in Tongzhou. The main reason for this difference may be that after Tongzhou was 

selected as the sub-centre of Beijing in September 2012, the rapid development of Tongzhou in a short 

period was one of the main causes of the sudden change in land subsidence during 2013-2015. This 

further supports that the density of dynamic loads and static loads increased sharply, which was one 

of the reasons for the uneven land subsidence in the Beijing Plain. 
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Finally, it should be added that to some extent, the "southern water" in Beijing mitigates the 

trend of rapid development of Beijing land subsidence, but the land subsidence phenomenon in 

Beijing is still not negligible. Next, we will use more multi-source SAR and GRACE data [44], 

optimize the algorithm, adopt different software platforms, improve the monitoring density and 

accuracy of land subsidence in Beijing, and analyse its evolution mode from different perspectives. 

We will thoroughly combine hydrogeology, and basic geological conditions and geophysical 

exploration technologies; additionally, we will combine different mathematical methods and adopt 

interdisciplinary methods to further analyse the cause formation mechanism of land subsidence in 

the Beijing Plain. 
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