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Deep Learning is a recent and important addition to the
computational toolbox available for image reconstruction in
fluorescence microscopy. We review state-of-the-art appli-
cations such as image restoration and super-resolution, and
discuss how the latest Deep Learning research can be ap-
plied to other image reconstruction tasks such as structured
illumination, spectral deconvolution, and sample stabilisa-
tion. Despite its successes, Deep Learning also poses signif-
icant challenges, has often misunderstood capabilities, and
overlooked limits. We will address key questions, such as:
What are the challenges in obtaining training data? Can we
discover structures not present in the training data? And,
what is the danger of inferring unsubstantiated image de-
tails?
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Fluorescence microscopy is an indispensable tool in the
Biologist’s arsenal that has made possible the systematic spatio-
temporal dissection of life’s molecular machines1. In all mi-
croscopy modalities, the resolution and quality of the images
obtained is fundamentally limited by the optics, the photo-
chemistry of molecular probes, and sensor technology. Recent
developments such as super-resolution and structured illumina-
tion microscopy (SIM) can circumvent these limits by means of
clever experimental strategies followed by computation. The
final high quality images must be reconstructed from raw ac-
quisitions. In general, microscopy is becoming increasingly
dependent on computation as an integral part of the imaging
process. Any significant improvements in the algorithms used
for reconstruction would not only improve image quality but
also open the door to novel imaging modalities.

Deep Learning2 and its stunning successes at solving
hard and previously unsolved computational problems (see Box
1) explains why, in recent years, machine learning and in
particular deep Convolutional Neural Networks (CNN) have
impacted almost every discipline of science and engineer-
ing from Astronomy3 and Biology4 to High-Energy Physics5.
CNNs are particularly relevant in fields that produce or in-
terpret images. For example, medical imaging picked up the
trend early on and successfully applied deep CNNs to image
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processing of computed tomography and magnetic resonance
images6, 7. Fluorescence microscopy too, has recently bene-
fited from these advances, with deep CNNs applied to image
restoration8, deconvolution9, 10, super-resolution11–13, transla-
tion between label-free and fluorescence images14, 15, and ‘vir-
tual’ staining16.

Deep Learning for image reconstruction.
A common denominator between applications mentioned
above is the formulation of image reconstruction as a trans-
formation between acquired and reconstructed images. Classi-
cal approaches to image reconstruction have to be handcrafted
from first principles (see Box 2). For example, in deconvolu-
tion, this requires precise understanding of the optics and well
characterised noise statistics. This has led to the design of pop-
ular algorithms such as Richardson-Lucy deconvolution which
require knowledge of the point spread function of the micro-
scope and assumes Poisson noise statistics21. However, such
handcrafted algorithms are limited by the accuracy of their as-
sumptions. They fail to capture the nonideality of the imaging
process and the full statistical structure of microscopy images.
Hence, data-driven approaches can be more broadly applicable
and better suited than analytical ones to solve image reconstruc-
tion problems. Ideally, we want generic reconstruction algo-
rithms that can be trained from exemplary data obtained either
experimentally or from simulation. This is how Deep Learning
comes into play. Deep neural networks are capable of learning
end-to-end image transformations from data without the need
for explicit modelling (see Box 3).

Fluorescence microscopy image reconstruction.
Image reconstruction in fluorescence microscopy encompasses
a wide range of topics ranging from image denoising, de-
convolution, registration, stitching, fusion, super-resolution, as
well as challenges brought by more exotic acquisition modali-
ties such as tomographic, light-field, lens-less, and deep-tissue
imaging. Here, we review existing applications of Deep Learn-
ing in fluorescence microscopy and suggest promising new
ones.

Image Denoising. Image noise in fluorescence imaging is
typically caused by the combined effect of Poisson statistics of
photon-counting and imperfect electronics of the sensor. Early
on, denoising algorithms were recognised as an opportunity
to speed-up acquisition by using shorter exposures and reduce
photo-damage by decreasing illumination intensity31. Algo-
rithms were specially developed for fluorescence images that
leveraged compressed sensing32, image self-similarity31, 33 and
thresholding after wavelet transform34. Today, state-of-the-art
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BOX 1 The Deep Learning revolution.

In 2012 Krizhevsky, Sutskever and Hinton published their
now famous AlexNet paper17. In that work, they showed
that a deep convolutional neural network (CNN) could
win the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) by an unprecedented margin. AlexNet was
trained on 1.2 million high-resolution training examples to
classify images into a thousand object categories. The dou-
ble digit decrease in error rate acheived by Hinton’s team
astounded the computer vision community. One year later,
most competing teams used CNNs for what was considered

at the time the most challenging machine learning compe-
tition. Since 2012, deep CNNs have continued to break
records going from an error rate of 15.4%17 in 2012 to just
3.08%18 in 2018 – surpassing human accuracy. Nowadays,
deep CNNs are the state-of-the-art for major machine learn-
ing challenges on object18, and speech recognition19. Recent
striking Artificial Intelligence successes critically depend on
deep CNNs, e.g. DeepMind’s AlphaGo victory against the
second best human GO player20. This has contributed to the
enthusiasm, but also hype, surrounding Deep Learning.

classical denoising algorithms in computer vision research use
sparse coding techniques35, low-rank decomposition36, or im-
age self-similarity37, 38. The lesson learned over time is that
to effectively denoise an image, it is better to look beyond
small patches of pixels and gather information across multi-
ple image regions and ideally learn from a large sets of im-
ages. In 2009 Jain et al.39 trained a 5-layer CNN to denoise
natural images achieving a lower error rate and two orders of
magnitude faster processing than previous approaches. Since
then, numerous deep CNN architectures have been proposed
for denoising natural images40. Recently, Weigert et al.8 trained
networks with low-SNR (input) and high-SNR (target) image
pairs to demonstrate effective denoising of fluorescence mi-
croscopy images acquired under low light or short camera ex-
posure conditions (see Fig. 1a). They found that their method
maintains image quality while decreasing light exposure 60-
fold and outperforms classical denoising such as NLM37 or
BM3D38. Such Deep-Learning-based restoration can be useful
when specimens are light-sensitive, fluorophore bleaching is of
concern, or to study fast dynamics in live samples. A major ob-
stacle to applying Deep Learning for image denoising is obtain-
ing matched pairs of high-noise and low-noise training images.
This requirement can be relaxed as shown by recent develop-
ments in unsupervised and self-supervised image restoration
such as noise2noise41, 42, noise2self 43, noise2void44, 45, deep
image prior46, or novel unpaired image transformation schemes
such as cycleGAN47 (see Fig. 2h). We expect that these ad-
vances will widen applicability and facilitate adoption of CNN-
based denoisers in fluorescence microscopy.

Spatial Deconvolution. The resolution of images obtained
by fluorescence microscopy is fundamentally limited by the op-
tical parameters of the microscope. Image deconvolution can
improve image quality by enhancing high-frequency details. In
the case of 3D fluorescence microscopy this is particularly use-
ful for reducing axial blur and out-of-focus light48, 49. Classic
Bayesian approaches such as Richardson-Lucy deconvolution21

are still used extensively and have been successfully extended
to multi-view light-sheet microscopy50. A pervasive problem
in microscopy is poor axial sampling and resolution that leads
to 3D image anisotropy – i.e. lower resolution along the ob-

jective axis (z) than in the transverse (x-y) planes. To address
this, Weigert et. al8, 9 recently demonstrated a self-supervised
training strategy that can deconvolve axial (xz) images and re-
store isotropic resolution, significantly outperforming the pop-
ular Richardson Lucy algorithm. Challenges remain: when
imaging large samples, the point-spread-function (PSF) varies
in space and across views and even possibly over time. Sha-
jkofci et al. recently showed how a CNN can be used to es-
timate optical aberrations and improve image quality by 1dB
compared to other deconvolution algorithms10. It would be in-
teresting to investigate whether the same approach can be ap-
plied to volumetric imaging. Another interesting opportunity
would be to address challenges that are opto-mechanical in na-
ture: in light-sheet microscopy there is a limited choice of il-
lumination and detection objectives that can be placed orthog-
onal to each other. To solve this problem one could use lower
numerical aperture (NA) objectives that mechanically fit, and
apply Deep Learning to computationally increase the detection
NA (see Rivenson et al.51).

Super-resolution. PALM 52 and STORM 53 achieve super-
resolution by localising sparse fluorophore emissions in thou-
sands of images. These images are an intermediate product that
must be processed to reconstruct a super-resolved image of flu-
orophore locations54. In a technique called Deep-STORM13,
Nehme et al. have demonstrated the use of an encoder-decoder
network (see Box 4) to localise emitters (see Fig. 1b). Inter-
estingly, the authors used simulated pairs of diffraction-limited
and super-resolved images to train their network and obtain
high emitter detection efficiency of 88% on simulated im-
ages, and as high as 96% when trained with actual experimen-
tal data. Instead of predicting high-resolution images, Boyd
et al.55 demonstrated direct prediction of the coordinates of
emitters. In another application of Deep Learning to super-
resolution microscopy, Ouyang et al.12 trained a U-Net (see
Box 4) fed with sparsely sampled PALM images to predict their
densely sampled counterparts (see Fig. 1c). In contrast with
the mean-squared-error (MSE) training loss of Deep-STORM,
their ANNA-PALM method uses an ingenious combination of
L1, structural-similarity (SSIM), and conditional adversarial
losses29, 30 to obtain good quality image reconstruction. Us-
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BOX 2 Image reconstruction, inverse problems, and Deep Learning.

In most imaging modalities we have a well founded under-
standing of the physics behind the image formation process.
We can write formulas that describe, and code that sim-
ulates, how light propagates through optical elements to
eventually form an image on a detector – this is called the
‘forward model’ f . This model is a transformation from
the desired ideal image y to observed images x. Observed
images x are incomplete, degraded, or convoluted com-
pared to y. In the opposite direction, reconstructing the
true image y from the observed images x is a challenging
inverse problem. Finding the inverse of x necessitates a
pseudo-inverse function g that is classically implemented
as an iterative algorithm. One obstacle to inversion is that
forward processes are often stochastic. Another fundamen-
tal difficulty is that the forward model maps many images
to the same observation, and so there is no well-defined in-
verse but instead multiple confounding solutions (red line).
However, in most cases, we have a priori knowledge about
validity of solutions, which makes it possible to select one
inverse. Until recently, this prior information about the so-
lution had to be mathematically formulated by experts and
engineered into algorithms. These handcrafted priors typ-
ically prescribe, for example, that correct solutions should
be smooth (Tikhonov’s and total variation regularisations)
or admit a concise representation in some basis (wavelet

basis, dictionary) 22. However, the statistical structure of
real microscopy images is far more complex – limiting the
quality of images reconstructed with such priors. Hence
the advent of data-driven inversion schemes that learn a
pseudo-inverse f from large datasets of (x, y) pairs. These
pairs can be obtained by simulation – i.e. by computing f ,
or can be obtained empirically by means of clever experi-
mental strategies that produce both x and y. The learning
procedure not only learns the function g but also, implicitly,
the prior knowledge about ‘good’ solutions. Deep Learning
is one promising data-driven approach for solving inverse
problems, and by extension image reconstruction tasks23.

forward model

pseudo-inverse

possible solutions

true
images

observed 
images

true solution

given

learned

ing a similar network architecture and training loss, Wang et
al.11 have recently demonstrated that the resolution of diffrac-
tion limited confocal images can be enhanced (see Fig. 1d).
This work shows that use of structured losses – whether ex-
plicit (SSIM) or adversarially learned (cGAN, see Box 4) – re-
sult in output images that are sharper and of better perceptual
quality30. In order to perform super-resolved fluorescent imag-
ing on live cells, the sparsity requirement must be abandoned
which has led to the development of algorithms capable of han-
dling higher emission densities – such as SRRF56. We expect
that the use of CNNs in this challenging regime could have a
significant impact in further improving image quality and tem-
poral resolution.

Structured illumination. Another super-resolution approach
is structured illumination microscopy (SIM). It can surpass the
diffraction limit 2-fold by computational synthesis of images
acquired by shifted illumination patterns57, 58. However, cur-
rent algorithms require precise knowledge of the effective pat-
tern and are thus sensitive to distortions or attenuation caused
by the sample. While classical algorithms exist that can handle
unknown59, or distorted 60 illumination patterns; it would be in-
teresting to compare these with a CNN-based SIM reconstruc-
tion algorithm (see Fig. 2c) possibly leveraging ideas similar to
magnetic resonance imaging reconstruction with AUTOMAP7.
The training data could be generated by simulations that would

take into account all relevant degradations and distortions. We
believe that such an algorithm could help obtain better SIM re-
constructions under challenging signal-to-noise conditions.

Spectral Deconvolution. The trend in fluorescence imaging
is for faster acquisition with more colours. However, fluores-
cent proteins and dyes used for labelling have broad overlap-
ping emission spectra – which leads to channel mixing that
complicates interpretation. One solution that sacrifices speed
is to acquire the channels sequentially. Another solution is to
acquire the channels simultaneously – but that requires appli-
cation of spectral unmixing algorithms for channel separation.
To address this problem, algorithms such as linear unmixing61

or phasor approaches62 have been devised to deconvolve these
spectra into separate channels corresponding to distinct labels.
In some sense, unmixing multi-color acquisitions is a decon-
volution problem in the spectral dimension that is difficult in
low signal-to-noise conditions. Could CNNs be applied to de-
convolve more wavelengths in poor signal-to-noise conditions?
One straight-forward approach to obtain training data would be
to acquire each channel sequentially and then simultaneously
(see Fig. 2b), or use physics-based models to generate synthetic
training data.
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BOX 3 Deep Learning as Differential Learning

In Deep Learning non-linear parameterised processing
modules are combined to progressively transform an input
x into the desired output y. The adjective deep refers to the
large number of stacked modules required for this challeng-
ing task. The learning process begins with a random choice
for the parameters θ of the modules, which are iteratively
updated to improve the accuracy of the reconstruction. This
is possible because each module is differentiable, meaning
that we know exactly how changes in parameter values cause
changes in output values. More formally, we know the partial
derivatives ∂ŷ

∂θ of the output ŷ with respect to any parameter
θ. Artificial neural networks are the most popular implemen-
tation of such modules. Networks with a sufficient number
of parameters, and at least three layers, can theoretically ap-
proximate any function24.

The backpropagation algorithm25 uses the chain-rule to
efficiently compute all partial derivatives – or gradients –
with just one forward pass through the network followed
by a backward pass. The discrepancy between the desired
output y and the actual output ŷ is quantified using a loss
function l(ŷ, y). The parameters θ are updated to minimise
this loss using stochastic gradient descent. The speed pro-
vided by computing the updates on small batches of data,
in parallel, on GPUs, allows one to fit networks with mil-
lions of parameters on datasets with millions of observations.

Correcting uneven illumination and detection. Unfortu-
nately, in most microscopes, illumination and detection effi-
ciency are not uniform over the entire field of view. In wide-
field or spinning disk confocal microscopes63, uneven detection
efficiency often requires non-uniformity correction. In the case
of mesoscale light-sheet microscopy, the problem is far more
complex because illumination shadows are caused by sample-
induced occlusion64. We believe that CNNs are well positioned
to address this problem. Promising CNN-based techniques ex-
ist in computer vision for context-based inpainting of missing
image regions65, 66. Fortunately, in lightsheet microscopy infor-
mation is not completely absent because the occlusion is often-
times only partial. Moreover, in the case of multi-view imaging,
training data is readily available in the form of images acquired
from different detection arms or with light-sheets of distinct
propagation angles.

Scattered light haze reduction. Scattered light is a signifi-
cant cause of image quality deterioration in live fluorescence
imaging. For example, in lightsheet microscopy, background
induced by scattered light is often suppressed to facilitate sub-
sequent image processing steps such as image stitching and
fusion67. Yet, many challenges remain because scattering is
depth-sensitive and sample dependent. Recently, powerful hy-
brid approaches have been developed that combine CNNs and
optical modelling for dehazing natural scenes68. Could such

ideas be applied to microscopy to further improve the quality
of images? In multi-view light-sheet microscopy an obvious
way to obtain training data is to collect low/high-haze image
pairs from overlapping regions obtained from distinct views
(see Fig. 2a). In some cases, matching image pairs cannot
be obtained, such as for example when imaging deep within
a sample using a spinning-disk confocal microscope. Instead,
recent advances in unpaired image-to-image translation47 could
be used to learn to dehaze images using images at the surface
and deeper within the sample (see Fig. 2h).

Registration, stitching and fusion. Because of the limited
field-of-view of objectives and large size of some specimens, it
is often necessary to break-down an acquisition into 2D or 3D
tiles50. Reconstructing a complete image requires stitching the
tiles together after registration to a common reference frame.
State-of-the-art algorithms50, 69 rely on iterative schemes that
leverage direct image cross-correlation or matching fiducial
markers. One obvious way to apply Deep Learning to image
registration is to teach CNNs to find image correspondences70,
and thus have a Deep Learning component be part of a larger
algorithm. Yet, one key promise is that a single network can
be trained to solve a complex multi-step task in an end-to-end
fashion. Recently, Rohe et al.71 showed that pairs of large 3D
medical images can be non-rigidly registered in less than 30ms
using a fully convolutional CNN that directly outputs a defor-
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BOX 4 Architectures for image reconstruction

Image restoration or reconstruction require neural net-
works that map one or several input images to an output im-
age. Input and output images may be 2D or 3D and may
even have different dimensions. The encoder-decoder con-
volutional network architecture26 is one of the simplest net-
works capable of image-to-image translation. First, the input
image is successively and repeatedly downsampled and con-
volved – in addition to other normalisation and non-linear
operations typical for CNNs. At every step, the image di-
mensions are reduced while the number of image channels –
an additional dimension – is increased. This creates a repre-
sentation bottleneck that is then reversed with successive and
repeated upsampling and convolution steps. The bottleneck
forces the network to encode the image into a small set of
abstracted variables (often called latent variables) along the
channel dimension which are then decoded by the second
half of the network. This ensures that only the most relevant
features from the input images are retained and those that are
deemed unessential to the reconstruction are discarded.

The U-Net27 is a variation of the encoder-decoder net-
work. It adds shortcut or skip connections between the en-
coder and decoder branches. These additional connections
are beneficial for image restoration tasks because they send
fine image details directly to the decoder pass – skipping the
bottleneck. For image restoration tasks where the identity
function is a good first guess, additive skip connections can
be used to learn a residual mapping. Overall, skip and resid-
ual connections have been shown to help train deeper net-
works by preventing vanishing gradients28.

In the generative adversarial network (GAN)29 frame-
work, two networks, a generator and a discriminator, are
trained together. The generator learns to generate im-
ages that mimic examples from the training set while
the discriminator learns to classify images as real (from
the training set; label 1) or counterfeit (from the gener-

ator; label 0). In practise, this behaviour is achieved by
training the generator to minimise the loss function and
training the discriminator to maximise it. At the end of
training, the discriminator network is dropped and only
the generator is used for image reconstruction. A recent
improvement on GANs are conditional GANs (cGAN)
which also provide the input image to the discriminator30.
cGANs can be understood as an implicitly learned loss
function defined by the action of the discriminator.

mation vector field. Their method is more accurate and faster
than traditional approaches, does not require iterations of an op-
timiser, but does require a large amount of training data. Sim-
ilarly, Nguyen et al.72 demonstrated an unsupervised approach
for non-rigid transformation estimation than is faster and more
accurate than classical correlation-based or fiducial-based ap-
proaches. We expect that these ideas will eventually percolate
into the field of fluorescence imaging. An upcoming and ex-
citing challenge is imaging of live moving animals. For exam-
ple, C. elegans larvae twist incessantly before hatching making
the analysis of time-lapse data challenging. This requires spe-
cialised stabilisation algorithms capable of unfolding, straight-
ening and registration73. Can a CNN learn to stabilise 3D time-
lapses images of highly dynamic samples against a fixed tem-
plate shape (see Fig. 2d)?

Light-field, lens-less imaging, and tomography. Recently,
exotic forms of fluorescence imaging have emerged that pose
novel computational challenges. For example, light-field imag-
ing can multiplex an entire volume into a single 2D image ac-
quisition thus enabling rapid functional imaging at single neu-
ron resolution74. Recent work by Fei et al.75 demonstrated
some initial results on CNN-based light-field 3D image recon-
struction of live C. elegans worms. Similarly, lens-less imaging
schemes such as DiffuserCam achieve one-shot 3D imaging by
replacing the objective lens with a diffusing element placed in
front of the sensor76. Tomography is another indirect approach
to obtain 3D images from 2D acquisitions that is particularly
relevant for mesoscopic fluorescence imaging77. In both cases
the final 3D image is computationally reconstructed from a sin-
gle 2D image. We believe that both lens-less imaging and to-
mography will benefit from Deep-Learning-based algorithms –
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just as it has been demonstrated for light-field imaging. Indeed,
recent results give strong evidence that CNN-based approaches
are superior to classical handcrafted techniques for reconstruct-
ing 3D images from 2D acquisitions7.

Temporal consistency. Applications of Deep Learning to mi-
croscopy typically fail to capture temporal patterns: predictions
are made independently, frame-by-frame. As a consequence,
successive reconstructed images are not necessarily temporally
consistent and can exhibit artefacts that are clearly noticeable
when examined across time. Explicitly modelling the tem-
poral dimension and training with time-resolved data would
lead to more accurate reconstructions. A straightforward ap-
proach for augmenting any CNN with temporal consistency is
simply to treat time as an additional dimension (see Fig. 2f).
However, this can become intractable for large networks han-
dling long-term correlations. Instead, a better alternative is to
combine CNNs with state-of-the-art recurrent neural networks
which have been specifically designed for sequence prediction.
One obvious candidate is the convolutional Long-Short Term
Memory (convLSTM) architecture which combine CNNs for
space and LSTMs for time and have been successfully applied
to weather forecasting78.

Beyond fluorescence. In some cases, fluorescence measure-
ments are a proxy for other quantities. For example, measuring
flow by fluorescence is an important tool in the emerging field
of cell mechanobiology79. Unfortunately, current hand-crafted
optical flow algorithms typically fail to produce smooth flow
fields in challenging imaging conditions. CNN-based optical
flow estimation algorithms recently developed for self-driving
cars80 could be a source of inspiration for designing more ro-
bust algorithms (see Fig.2e). Another interesting challenge
is registering electron microscopy (EM) and fluorescence mi-
croscopy images. This task often requires placement of fiducial
markers visible in both modalities81. Recent work on virtual
fluorescence labelling14–16 suggests that it could be possible to
automatically translate images across microscopy modalities.
Unsupervised approaches for learning image correspondence
such as cycleGAN47 could be a powerful approach in correl-
ative electron-fluorescence imaging. A CNN could be trained
to translate between electron and fluorescence microscopy im-
ages from unregistered pairs. Fiducial markers could then be
localised between EM and fluorescence images for image reg-
istration.

Deep Learning for adaptive and smart imaging. State-of-
the-art microscopes – in particular light-sheet microscopes –
are becoming adaptive machines capable of closed-loop con-
trol and real-time image analysis82, 83. Yet, current adaptive
microscopes rely on time-consuming and complex iterative
schemes82 or direct measurements83. What if one could design
a system that quickly and correctly guesses the best imaging pa-
rameters from few measurements? This is an inverse problem,
because it may be easy to deduce the consequence of a particu-
lar choice of parameters, but difficult to determine which choice

will lead to the desired image. There exist already some limited
examples that show, for example, how to train a CNN to focus
light deep within turbid media84. Yet, the true challenge going
forward will be to optimise multi-step imaging strategies: the
microscope will observe, make moves that change imaging pa-
rameters, and thus play a game with the ultimate goal of gaining
the most information about the sample (see Fig.2i). Deep rein-
forcement learning – another key concept behind DeepMind’s
AlphaGo success20 (see Box 1) – could be used to automat-
ically learn such strategies. Ultimately, we expect that most
of the human decision making required for optimising imaging
will be be done automatically – something that will also neces-
sarily require extensive end-to-end robotic automation so that
the ‘game’ can be restarted at will.

Limits, challenges and pitfalls
Despite its successes, Deep Learning also comes with risks, has
limits, and brings new challenges.

The hallucination problem. The most serious issue when
applying Deep Learning for discovery is that of hallucination.
When looking at random patterns such as clouds, our brains can
perceive shapes of objects and animals. Similarly, Deep Learn-
ing systems can hallucinate details and make mistakes when
provided with inadequate training data (see Box 5). Some net-
work architectures – such as GANs – are particularly suscepti-
ble to hallucination because their explicit goal is to fool a dis-
criminator by forging persuasive details. Conditional adversar-
ial networks (cGANs, see Box 4) as used by Isola et al.30 still
produce plausible image details that are not necessarily sup-
ported by the input images, which is a potential concern for
using GANs or cGANs for discovery. A possible mitigation
strategy is to add additional consistency losses to prevent hal-
lucinations as done in ANNA-PALM12. In general, mistakes
made by neural networks can be highly plausible and more sub-
tle than those of classical algorithms.

The over-fitting problem. Another failure mode of neural
networks is over-learning or over-fitting: the neural network
memorises exactly the training data and looses the ability to
generalise to unseen data. This can be caused by insufficient
training data, or by a poor choice of network parameters. Ar-
chitectural features such as drop-out regularisation can help, but
the best way to avoid over-fitting is to train with data that ex-
ceeds the memorisation capacity of the networks. Yet, in prac-
tice, even if networks do not overfit per-se, they do remain frag-
ile to subtle variations between training and application data85.
Moreover, imperceptible image variations can be engineered to
confuse neural networks86. Overall, current Deep Learning ap-
proaches cannot generalise well to data obtained from a differ-
ent microscope or under different conditions8.

Limits imposed by quality and availability of training data.
The success of Deep Learning depends critically on availabil-
ity of training data. If the amount of training data is not suffi-
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Figure 1: Review of current applications of Deep Learning to fluorescence microscopy. (a) Content-aware image restoration
(CARE) for denoising, super-resolution and axial deconvolution8, 9. (b) DeepStorm for STORM super-resolution13. (c) AN-
NAPALM for accelerated PALM super-resolution12. (d) Computational fluorescence super-resolution by learning to translate
from low to high numerical aperture (NA) images11. (e) Fluorescence light-field reconstruction for high-speed high-resolution
volumetric imaging75.
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Figure 2: Potential applications of Deep Learning in fluorescence microscopy and key concepts. (a) Learning to reduce scattered
light ’haze’ in light-sheet microscopy. (b) Learning spectral unmixing of simultaneous multi-color acquisitions. (c) Learning
to reconstruct super-resolved images from structured illumination acquisitions. (d) Learning to straighten live dynamic samples
with weak supervision against a template shape. (e) Fluorescence optical flow with Deep Learning. Forward model simulations
can produce time-lapse data for given vector fields, and a network can be trained to compute the inverse: vector fields from
fluorescence spatio-temporal fluctuations. (f) Leveraging the time dimension by enforcing temporal consistency in predictions
to further improve image quality – applicable to any image reconstruction task. (g) Transfer learning and other approaches to
facilitate training and reducing the need of specialised curated training datasets will be key for the success of Deep Learning in
microscopy. (h) Unsupervised learning is another research direction that will reduce the need for curation. For example, unpaired
image translation (CycleGANs47) are a promising approach. (i) Deep Reinforcement Learning could drive smart microscopes
able to conduct complex imaging experiments with the goal of acquiring the best possible image.
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BOX 5 Deep Learning based discovery, and its limits.

Does data-driven image reconstruction preclude discovery?
Can novel structures and unknown patterns be discovered
even if absent from the training data? To shed some light on
this subtle but important question we will use an analogy:
let us train a neural network (U-Net) to restore a highly de-
graded image of an ancient English word: ‘Witenagemot’.
First, we use a training dataset consisting of images of all
3 letter sub-strings occurring in the most common English
words. Importantly, we exclude ‘Witenagemot’ and its vari-
ants. As shown, the word is successfully recovered. We have
just discovered a word that is not present in the training data.
Knowing which alphabet to expect does not preclude the dis-
covery of new words, sentences or ideas. What if we exclude
the letters ‘a’ and ‘e’ from the training data? In that case,
the network fails to recognise these letters, and discovery of
the word is hampered. Now, if one uses the wrong alphabet
for training, i.e. 6000 Chinese characters, discovery is now
impossible. The mistakes made are interesting in their own
right: the network tries to reconcile the inadequate prior with

the information present in the degraded image – leading to
creative hallucinations. Finally, we can rescue the restora-
tion by using instead a 50%-50% mix of Chinese and Latin
characters. However, we also see that some characters like
the ‘m’ are decorated with artefacts of Chinese provenance.

abcdefg

中文王国
abcdefg 

a中b文c 

...

...

...

...

cient, poor performance will ensue (see Box 5). Yet, a com-
mon misconception is that Deep Learning always requires a
very large number of training examples. More accurately, the
needed amount really depends on the problem difficulty. Far
less training data is required in fluorescence microscopy than
is needed to distinguish between, for example, 800 different
kinds of birds in natural images (ImageNet challenge17). In-
deed, in some rare cases, the training and inference can be done
on the very same image (see Isonet9). In fact, as shown in Box
5, the quality of the data and its suitability for the problem is
perhaps more important. In any case, fluorescence microscopy
needs creative experimental and computational strategies to ob-
tain more and better training data.

Challenges in obtaining training data. A classic approach
to increase the number of training examples is data augmen-
tation which creates variants of existing images through im-
age rotation, scaling, lighting, etc. In cases where the physics
of the image degradation process is well understood, forward-
model simulations can also be used to generate training data8, 13.
Interestingly, neural networks could also be used to improve
the quality of these simulations. For example, Osokin et al.87

trained a GAN model to generate realistic images of fluores-
cently tagged yeast cells – which could in turn be used for
training restoration or reconstruction algorithms. Another pop-
ular approach is transfer learning that has been shown to accel-
erate convergence and improve generalisation by pre-training
networks on distinct and large datasets88 (see Fig.2g). It re-
lies on the observation that the first layers of a neural net-
work function as detectors of universally applicable textures
and patterns89. As an example, Estava et al.90 recently demon-
strated how Google’s Inception network trained on ImageNet

images can be re-trained to classify dermatological images for
melanoma classification. Instead of using ImageNet, could we
use existing large collections of fluorescence microscopy im-
ages? Prime candidates are the cellular and organelle fluores-
cence images from the Human Protein Atlas91 or the Broad
Bioimage Benchmark Collection92. Sullivan et al.93 combined
crowd-sourced annotations with machine learning on an image-
classification task – could some of these ideas be applied to flu-
orescence image reconstruction? Or, at least, could such repos-
itories be used for transfer learning?

Interpreting and trusting the black box. Another crucial
challenge is that deep neural networks are black-box models
whose operation is opaque and difficult to interpret. For Deep
Learning to become a trusted component of the microscopy-
based discovery pipeline, we need conceptual frameworks, and
interactive graphical tools, to help explain how a particular re-
sult is attained. Fortunately, progress has been made within the
computer vision community in this direction with techniques
developed to: (a) better understand which parts of the input
image are essential to predicting the output94, (b) analyse the
function of intermediate layers89, (c) tease apart contributions
from different network layers with ablation studies89, (d) build
hierarchical explanatory graphs across layers95, and (e) design
network architectures that are interpretable by design96. These
ideas need to be adapted to fluorescence imaging and tools
should be built to facilitate the interpretation of results. One
possibility is to devise tools that would provide explanations
for given predictions. Take for example, low-contrast images
of fluorescently labelled cell membranes that would be restored
using a CNN. The user could select pixels along a predicted
membrane and ask for an explanation – for example in the form
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of a covariance map – that could be presented interactively to
show which pixels and patterns in the input image justify the
reconstruction and why. Yet, it is not enough to explain how a
result is attained, it is also necessary to quantify the confidence
in these results. Recently, several methods for computing pixel-
wise confidence measures and confidence intervals have been
proposed that leverage ensemble of predictors and adversarial
training8, 97. Another promising approach is to utilise internal
consistency checks – for example by comparing the input of
the network to the output transformed by the forward model as
done during inference in ANNA-PALM12.

Is discovery possible? An oft-asked question is: “Is it pos-
sible to reconstruct structures or patterns that are not present
in the training data?”. To illustrate this problem, we use the
restoration of degraded text as an analogy for image recon-
struction in microscopy – see Box 5. What are the lessons
to be learned? First, data-driven discovery is possible, but it
depends critically on the quality and compatibility of the train-
ing data. There are also serious hallucination risks when the
training data contains less or more information than strictly re-
quired. The same is true for microscopy: the recognition of
image features does not preclude further analysis of their spa-
tial organisation nor the study of their temporal dynamics. For
example, being able to super-resolve microtubules with fewer
raw image acquisitions makes it possible to make observations
at higher temporal resolution, and consequently opens the door
to new discoveries12, 13. And yet, mistakes can be made if the
training data is inadequate. In light of these results, it is our
opinion that Deep Learning results cannot be blindly trusted
– something certainly true of any singular piece of evidence.
While confidence measures are needed8, discoveries must be
confirmed from multiple lines of evidence gathered from dis-
tinct experiments.

Reproducibility. Reproducibility is the bedrock of modern
science and it is only natural to expect independent validation
of published Deep Learning results. However, a lack of exper-
imental consistency and reporting guidelines sometimes pre-
vents Deep Learning researchers from replicating each other’s
results98. Moreover, the statistical significance of measured
performance metrics is rarely reported in the published liter-
ature because of high cost (in terms of time and resources) as-
sociated with training99. To ameliorate this, researchers should
adopt a set of guidelines when publishing their results. Such
best practices could include, for example: (i) making the source
code and trained models freely available, (ii) allowing access
to the dataset that was used to train the models, (iii) full disclo-
sure of all hyper-parameters used during training, (iv) report-
ing the statistical significance of observed results, and (v) re-
porting failure cases in addition to exemplary ones. Such ap-
proaches will increase confidence in the results and facilitate
widespread adoption of Deep Learning techniques in fluores-
cence microscopy.

Dissemination.
In order to accelerate adoption of Deep Learning in microscopy,
novel software frameworks tailored for biologists are needed
for using, adapting, training, validating and interpreting deep
neural networks8. In particular, tools with better ergonomics,
user-friendly graphical interfaces, and smart parameter-free or
auto-tuning algorithms would help lower the technical bar to
adoption. Another potential obstacle is the cost of hardware for
training. While a custom-built desktop computer outfitted with
GPUs is relatively affordable, assembling and maintaining such
a machine requires significant technical skills. An alternative is
pay-as-you-go cloud-based Deep Learning platforms which are
best reserved for short-term high-intensity workloads.

Conclusion
Deep Learning holds many promises for fluorescence mi-
croscopy. Some will stand the test of time, others will fall
short. Some applications will be redefined by it, others will
continue to rely on simpler methods. In either case, learned al-
gorithms will be key for upcoming computational advances in
microscopy. In future, we expect that Deep Learning models
trained end-to-end will blur the frontier between image recon-
struction and image analysis. At present, input and outputs are
images, but in future we foresee models capable of transform-
ing images directly into knowledge.

Bibliography

1. Lichtman, J. W. & Conchello, J.-A. Fluorescence mi-
croscopy. Nature methods 2, 910–919 (2005).

2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature
521, 436 (2015).

3. Lam, C. & Kipping, D. A machine learns to predict the
stability of circumbinary planets. Monthly Notices of the
Royal Astronomical Society 476, 5692–5697 (2018).

4. Webb, S. Deep learning for biology. Nature 554, 555–557
(2018).

5. Radovic, A. et al. Machine learning at the energy and in-
tensity frontiers of particle physics. Nature 560, 41–48
(2018).

6. Xu, Y. et al. Deep learning of feature representation
with multiple instance learning for medical image analy-
sis (2014).

7. Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. R. & Rosen,
M. S. Image reconstruction by domain-transform manifold
learning. Nature 555, 487–492 (2018).

8. Weigert, M. et al. Content-Aware Image Restoration:
Pushing the Limits of Fluorescence Microscopy (2017).

9. Weigert, M., Royer, L., Jug, F. & Myers, G. Isotropic Re-
construction of 3d Fluorescence Microscopy Images Us-
ing Convolutional Neural Networks. In Medical Image

10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 February 2019                   doi:10.20944/preprints201812.0137.v2

http://dx.doi.org/10.20944/preprints201812.0137.v2


Computing and Computer-Assisted Intervention − MIC-
CAI 2017, 126–134 (Springer International Publishing,
2017).

10. Shajkofci, A. & Liebling, M. Semi-blind spatially-
variant deconvolution in optical microscopy with local
point spread function estimation by use of convolutional
neural networks. arXiv preprint arXiv:1803.07452 (2018).

11. Wang, H. et al. Deep learning achieves super-resolution in
fluorescence microscopy. bioRxiv 309641 (2018).

12. Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer,
C. Deep learning massively accelerates super-resolution
localization microscopy. Nat. Biotechnol. 36, 460–468
(2018).

13. Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman,
Y. Deep-STORM: super-resolution single-molecule mi-
croscopy by deep learning. Optica, OPTICA 5, 458–464
(2018).

14. Christiansen, E. M. et al. In Silico Labeling: Predicting
Fluorescent Labels in Unlabeled Images. Cell 173, 792–
803.e19 (2018).

15. Ounkomol, C., Seshamani, S., Maleckar, M. M., Coll-
man, F. & Johnson, G. R. Label-free prediction of three-
dimensional fluorescence images from transmitted-light
microscopy. Nature methods 15, 917–920 (2018).

16. Rivenson, Y. et al. Deep learning-based virtual histol-
ogy staining using auto-fluorescence of label-free tissue
http://arxiv.org/abs/1803.11293v1.

17. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet
Classification with Deep Convolutional Neural Networks.
In Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger,
K. Q. (eds.) Advances in Neural Information Processing
Systems 25, 1097–1105 (Curran Associates, Inc., 2012).

18. Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, vol. 4, 12 (2017).

19. Zhao, H., Zarar, S., Tashev, I. & Lee, C.-H. Convolutional-
recurrent neural networks for speech enhancement. arXiv
preprint arXiv:1805.00579 (2018).

20. Silver, D. et al. Mastering the game of go with deep neural
networks and tree search. Nature 529, 484–489 (2016).

21. Richardson, W. H. Bayesian-based iterative method of im-
age restoration. JOSA 62, 55–59 (1972).

22. McCann, M. T., Jin, K. H. & Unser, M. A review of convo-
lutional neural networks for inverse problems in imaging.
arXiv preprint arXiv:1710.04011 (2017).

23. Lucas, A., Iliadis, M., Molina, R. & Katsaggelos, A. K.
Using deep neural networks for inverse problems in imag-
ing: beyond analytical methods. IEEE Signal Processing
Magazine 35, 20–36 (2018).

24. Hornik, K., Stinchcombe, M. & White, H. Multilayer feed-
forward networks are universal approximators. Neural net-
works 2, 359–366 (1989).

25. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning
representations by back-propagating errors. Nature 323,
533–536 (1986).

26. Masci, J., Meier, U., Cireşan, D. & Schmidhuber, J.
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