Preprint
Article

CuFusion2: Accurate and Denoised Volumetric 3D Object Reconstruction Using Depth Cameras

Altmetrics

Downloads

485

Views

495

Comments

0

This version is not peer-reviewed

Submitted:

08 April 2019

Posted:

09 April 2019

You are already at the latest version

Alerts
Abstract
3D object reconstruction from depth image streams using Kinect-style depth cameras has been extensively studied. In this paper, we propose an approach for accurate camera tracking and volumetric dense surface reconstruction assuming a known cuboid reference object is present in the scene. Our contribu¬tion is three-fold. (a) We maintain drift-free camera pose tracking by incorporating the 3D geometric constraints of the cuboid reference object into the image registration process. (b) We reformulate the problem of depth stream fusion as a binary classification problem, enabling high-fidelity surface reconstruction, especially in the con¬cave zones of objects. (c) We further present a surface denoising strategy to mitigate the topological inconsistency (e.g., holes and dangling triangles), which facilitates the generation of a noise-free triangle mesh. We extend our public dataset CU3D with several new image sequences, test our algorithm on these sequences and quantitatively compare them with other state-of-the-art algorithms. Both our dataset and our algorithm are available as open-source content at https://github.com/zhangxaochen/CuFusion for oth-er researchers to reproduce and verify our results.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated