Preprint
Article

Fluid Flow Turbulence in the Proximities of the Metal-Slag Interface in Ladle Stirring Operations

Altmetrics

Downloads

342

Views

254

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

13 December 2018

Posted:

17 December 2018

You are already at the latest version

Alerts
Abstract
Three-phase interactions (metal-slag-argon) in ladle stirring operations have strong effects on metal-slag mass transfer processes. Specifically, the thickness of the slag controls the fluid turbulence to an extent that once trespassing a critical thickness, increases of stirring strength have not further effects on the flow. To analyze these conditions, a physical model considering the three phases was built to study liquid turbulence in the proximities of the metal-slag interface. A velocity probe placed close to the interface permitted the continuous monitoring and statistical analyses of turbulence. The slag-eye opening was found to be strongly dependent on the stirring conditions, and the mixing times decreased with thin slag thicknesses. Slag entrainment was enhanced with thick slag layers, and high flow rates of the gas phase. A multiphase model was developed to simulate these results finding a good agreement between experimental and numerical results.
Keywords: 
Subject: Chemistry and Materials Science  -   Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated