A peer-reviewed article of this preprint also exists.
Abstract
The many-body problem in quantum physics originates from the difficulty of describing the non-trivial correlations encoded in the exponential complexity of the many-body wave function. Motivated by the Giuseppe Carleo's work titled solving the quantum many-body problem with artificial neural networks [Science, 2017, 355: 602], we focus on finding the NNQS approximation of the unknown ground state of a given Hamiltonian $H$ in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides, we illustrate our method with some examples.
Keywords:
Subject:
Physical Sciences - Mathematical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.