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Abstract: The many-body problem in quantum physics originates from the difficulty of describing
the non-trivial correlations encoded in the exponential complexity of the many-body wave function.
Motivated by the Giuseppe Carleo’s work titled solving the quantum many-body problem with
artificial neural networks [Science, 2017, 355: 602], we focus on finding the NNQS approximation of
the unknown ground state of a given Hamiltonian H in terms of the best relative error and explore
the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides,
we illustrate our method with some examples.
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An artificial neural network (ANN) is an information processing paradigm that is inspired by the
way biological nervous systems, such as the brain, process information. Up to now, there is a lot of
research on the approximation ability of neural network architectures, such as Kolmogorov [1], Hornik
[2], Cybenko [3], Funahashi [4], Hornik [5], Roux [6].

The many-body problem is a general name for a vast category of physical problems pertaining to
the properties of microscopic systems made of a large number of interacting particles. In such
a quantum system, the repeated interactions between particles create quantum correlations, or
entanglement. As a consequence, the wave function of the system is a complicated object holding
a large amount of information, which usually makes exact or analytical calculations impractical or
even impossible. Thus, many-body theoretical physics most often relies on a set of approximations
specific to the problem at hand, and ranks among the most computationally intensive fields of science.
Recently, an idea that received a lot of attention from the scientific community consists in using
neural networks as variational wave functions to approximate ground states of many-body quantum
systems. In this direction, the networks are trained or optimized by the standard variational Monte
Carlo (VMC) method while a few different neural-network architectures were tested [7–10], and
the most promising results so far have been achieved with Boltzmann machines [10]. In particular,
state-of-the-art numerical results have been obtained on popular models with restricted Boltzmann
machines (RBM), and recent effort has demonstrated the power of deep Boltzmann machines to
represent ground states of many-body Hamiltonians with polynomial-size gap and quantum states
generated by any polynomial size quantum circuits [11,12]. Carleo and Troyer in [7] demonstrated the
remarkable power of a reinforcement learning approach in calculating the ground state or simulating
the unitary time evolution of complex quantum systems with strong interactions. Deng et al [13,14]
show that this representation can be used to describe topological states. Besides, they have constructed
exact representations for SPT states and intrinsic topologically ordered states. Very recently, Glasser et
al [15] show that there are strong connections between neural network quantum states in the form of
RBM and some classes of tensor-network states in arbitrary dimensions and obtain that neural network
quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall
state exactly. In addition, there are a lot of related studies, such as [16–19].

Despite such exciting development, but it is unknown whether a general state can be expressed
by neural networks efficiently. Generalizing the idea of [7], we introduced in [20] first neural networks
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quantum states (NNQSs) baced on general input observables and explored some related properties
about NNQSs, such as tensor product, local unitary operation and so on. Secondly, based on the
construction of neural network representations for the cluster state in 1D, we proved necessary and
sufficient conditions for a general graph state to be represented by an NNQS. We illustrated our method
with some examples and observed that some N-qubit states can be represented by a normalized NNQS,
such as any separable pure state, every Bell state, GHZ states and so on.

In this paper, based on the NNQSs introduced in [20], we focus on finding the NNQS
approximation of the unknown ground state of a given Hamiltonian H. The remainder part of
this paper are organized as follows. In Section 2, we recall the concept and the related properties
of NNQSs introduced in [20]. In Section 3, we explore the NNQS approximation of the unknown
ground state of a given Hamiltonian H in terms of the best relative error and consider the influence of
sum, tensor product, local unitary of Hamiltonian on the best relative error. Besides, we illustrate our
method with some examples.

2. Neural-network quantum states

To start with, let us recall the concept and the related properties of NNQSs introduced in [20]. Let
Q1, Q2, . . . , QN be n quantum systems with state spacesH1,H2, . . . ,HN of dimensions d1, d2, . . . , dN ,
respectively. We consider the composite system Q of Q1, Q2, . . . , Qn with state spaceH := H1 ⊗H2 ⊗
. . .⊗HN .

Let S1, S2, . . . , SN are non-degenerate observables of systems Q1, Q2, . . . , QN , respectively. Then

S = S1 ⊗ S2 ⊗ . . .⊗ SN is an observable of the composite system Q. Use {|ψkj
〉}dj−1

kj=0 to denote the

eigenbasis of Sj corresponding to eigenvalues {λkj
}dj−1

kj=0 . Thus,

Sj|ψkj
〉 = λkj

|ψkj
〉(k j = 0, 1, . . . , dj − 1). (1)

It is easy to check that the eigenvalues and corresponding eigenbasis of S = S1 ⊗ S2 ⊗ . . .⊗ SN are

λk1 λk2 . . . λkN and |ψk1〉 ⊗ |ψk2〉 ⊗ . . .⊗ |ψkN 〉(k j = 0, 1, . . . , dj − 1), (2)

respectively. Put

V(S) =
{

Λk1k2 ...kN ≡
(
λk1 , λk2 , . . . , λkN

)T : k j = 0, 1, . . . , dj − 1
}

,

called an input space. For parameters

a = (a1, a2, . . . , aN)
T ∈ CN , b = (b1, b2, . . . , bM)T ∈ CM, W = [Wij] ∈ CM×N ,

write Ω = (a, b, W) and put

ΨS,Ω(λk1 , λk2 , . . . , λkN ) = ∑
hi=±1

exp

(
N

∑
j=1

ajλkj
+

M

∑
i=1

bihi +
M

∑
i=1

N

∑
j=1

Wijhiλkj

)
. (3)

Then we obtain a complex-valued function ΨS,Ω(λk1 , λk2 , . . . , λkN ) of the input variable Λk1k2 ...kN . We
call it a neural network quantum wave function (NNQWF). It may be identically zero. In what follows,
we assume that this is not the case, that is, assume that ΨS,Ω(λk1 , λk2 , . . . , λkN ) 6= 0 for some input
variable Λk1k2 ...kN . Then we define

|ΨS,Ω〉 = ∑
Λk1k2...kN

∈V(S)
ΨS,Ω(λk1 , λk2 , . . . , λkN )|ψk1〉 ⊗ |ψk2〉 ⊗ . . .⊗ |ψkN 〉, (4)
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which is a nonzero vector (not necessarily normalized) of the Hilbert space H. We call it a neural
network quantum state (NNQS) induced by the parameter Ω = (a, b, W) and the input observable
S = S1 ⊗ S2 ⊗ . . .⊗ SN (Figure 1).
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Figure 1. Artificial neural network encoding an NNQS. It is a restricted Boltzmann machine architecture
that features a set of N visible artificial neurons (blue disks) and a set of M hidden neurons (yellow
disks). For each value Λk1k2 ...kN of the input observable S, the neural network computes the value of
the ΨS,Ω(λk1

, λk2 , . . . , λkN ).

NNQWF can be reduced to

ΨS,Ω(λk1 , λk2 , . . . , λkN ) =
N

∏
j=1

e
ajλkj ·

M

∏
i=1

2 cosh

(
bi +

N

∑
j=1

Wijλkj

)
. (5)

It is can be described by the following “quantum artificial neural network", see Figure 2 where a = 0
and

∑bi
(x1, x2, . . . , xN) = bi + ∑N

j=1 xj, 2 cosh(z) = ez + e−z, Π(y1, y2, . . . , yM) = ΠM
i=1yi,

and the final outcome ΨS,Ω(λk1 , λk2 , . . . , λkN ) is given by (5).
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Figure 2. Quantum artificial neural network with parameter Ω = (0, b, W).

We call this network a quantum artificial neural network because that its inputs eigenvalues of
quantum observables and the outcomes are values of an NNQWF, while it has a network structure
similar to a usual artificial neural network.

Next, let us consider the tensor product of the two NNQSs. We have proved the following.

Proposition 1. [20] Suppose that |Ψ′S′ ,Ω′〉 and |Ψ′′S′′ ,Ω′′〉 are two NNQSs with parameters

S′ = S′1 ⊗ . . .⊗ S′N′ , S′′ = S′′1 ⊗ . . .⊗ S′′N′′ , Ω′ = (a′, b′, W ′), Ω′′ = (a′′, b′′, W ′′),

respectively. Then |Ψ′S′ ,Ω′〉 ⊗ |Ψ
′′
S′′ ,Ω′′〉 is also an NNQS |ΦS,Ω〉 with parameters

S = S′ ⊗ S′′, Ω = (a, b, W), N = N′ + N′′, M = M′ + M′′,
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a =

(
a′

a′′

)
, b =

(
b′

b′′

)
, W = [Wij] =

(
W ′M′×N′ 0

0 W ′′M′′×N′′

)
.

Now, we discuss the influence of local unitary operation (LUO) on an NNQS. We conclude this
conclusion as following.

Proposition 2. [20] Suppose that |ΨS,Ω〉 is an NNQS and U = U1 ⊗ U2 ⊗ . . . ⊗ UN is a local unitary
operator onH. Then U|ΨS,Ω〉 = |ΨUSU† ,Ω〉, which is also an NNQS with the input observable USU† and the
parameter Ω, and has the same NNQWF as |ΨS,Ω〉.

Remark 1. It can be seen from Proposition 2 that if two pure states are LU-equivalent and an NNQS
representation of one of the two states is easily given, then that of another state can be obtained from that
of the former.

As the end of this section, we discuss a special classes of NNQSs.
When S = σz

1 ⊗ σz
2 ⊗ . . .⊗ σz

N , we have

λkj
=

{
1, k j = 0
−1, k j = 1

, |ψkj
〉 =

{
|0〉, k j = 0
|1〉, k j = 1

(1 ≤ j ≤ N),

and V(S) = {1,−1}N .
In this case, the NNQS (4) becomes

|ΨS,Ω〉 = ∑
Λk1k2...kN

∈{1,−1}N

ΨS,Ω(λk1 , λk2 , . . . , λkN )|ψk1〉 ⊗ |ψk2〉 ⊗ . . .⊗ |ψkN 〉. (6)

This leads to the NNQS induced in [7] and discussed in [13]. We call such an NNQS a spin-z NNQS.

3. Approximating ground states by neural network quantum states

In this section, we try to find approximate solution to the static Schrödinger equation H|ψ〉 = E|ψ〉
for a given Hamiltonian H. For example, to find approximation of ground states by neural network
quantum states.

Let |ΨS,Ω〉 be an NNQS given by Eq.(4) and H be a Hamiltonian whose smallest eigenvalue Eexact

is not zero. Put

EH(S, Ω) =
〈ΨS,Ω|H|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

.

We seek the minimum relative error between EH(S, Ω) and Eexact over Ω,

ε = min
Ω

|EH(S, Ω)− Eexact|
|Eexact|

. (7)

We call ε the best relative error between EH(S, Ω) and Eexact. The neural network quantum state |ΨS,Ω〉
corresponding to the minimum of ε is the best neural network representation of the ground state of H.

Generally, EH(S, Ω) ≥ Eexact. Hence, ε can also be expressed as

ε = min
Ω

EH(S, Ω)− Eexact

|Eexact|
.

Next, we discuss the influence of the sum of Hamiltonians on the best relative error. We obtain
the following conclusion.
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Proposition 3. Suppose that H1 and H2 are two Hamiltonians, E′exact, E′′exact and Eexact are the smallest
eigenvalue of H1, H2 and H1 + H2, respectively, |ΨS,Ω〉 is an NNQS. Then

EH1+H2(S, Ω) = EH1(S, Ω) + EH2(S, Ω).

Furthermore, if minΩ(EH1(S, Ω) + EH2(S, Ω)) = minΩ EH1(S, Ω) + minΩ EH2(S, Ω), then

0 ≤ ε ≤ ε1 + ε2,

where

ε1 = min
Ω

|EH1(S, Ω)− E′exact|
|E′exact|

, ε2 = min
Ω

|EH2(S, Ω)− E′′exact|
|E′′exact|

, ε = min
Ω

|EH1+H2(S, Ω)− Eexact|
|Eexact|

.

Proof. We can easily compute that

EH1+H2(S, Ω) =
〈ΨS,Ω|H1 + H2|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

=
〈ΨS,Ω|H1|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

+
〈ΨS,Ω|H2|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

= EH1(S, Ω) + EH2(S, Ω).

It is easily see that ε ≥ 0. Generally,

min
Ω

EH1(S, Ω) ≥ E′exact, min
Ω

EH2(S, Ω) ≥ E′′exact, min
Ω

EH1+H2(S, Ω) ≥ Eexact.

Besides, when minΩ(EH1(S, Ω) + EH2(S, Ω)) = minΩ EH1(S, Ω) + minΩ EH2(S, Ω), we see from
Eexact ≥ E′exact + E′′exact that

ε =
|minΩ EH1+H2(S, Ω)− Eexact|

|Eexact|

=
|minΩ(EH1(S, Ω) + EH2(S, Ω))− Eexact|

|Eexact|

≤
|minΩ EH1(S, Ω) + minΩ EH2(S, Ω)− E′exact − E′′exact|

|E′exact + E′′exact|

≤
|minΩ EH1(S, Ω)− E′exact|

|E′exact|
+
|minΩ EH2(S, Ω)− E′′exact|

|E′′exact|
= ε1 + ε2.

Now, we discuss the influence of tensor product of Hamiltonians on the best relative error. We
get this conclusion as following.

Proposition 4. Suppose that H1 and H2 are two Hamiltonians, E′exact, E′′exact and Eexact are the smallest
eigenvalue of H1, H2 and H1 ⊗ H2, respectively. |Ψ′S′ ,Ω′〉 and |Ψ′′S′′ ,Ω′′〉 are two NNQSs with parameters

S′ = S′1 ⊗ . . .⊗ S′N′ , S′′ = S′′1 ⊗ . . .⊗ S′′N′′ , Ω′ = (a′, b′, W ′), Ω′′ = (a′′, b′′, W ′′),

respectively. Let

S0 = S′ ⊗ S′′, Ω0 = (a0, b0, W0), N = N′ + N′′, M0 = M′ + M′′,
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a0 =

(
a′

a′′

)
, b0 =

(
b′

b′′

)
, W0 = [Wij] =

(
W ′M′×N′ 0

0 W ′′M′′×N′′

)
.

Then
EH1⊗H2(S0, Ω0) = EH1(S

′, Ω′) · EH2(S
′′, Ω′′).

Furthermore, if H1 and H2 are positive definite, then ε′ε′′ ≤ ε0 where

ε′ = min
Ω′

|EH1(S
′, Ω′)− E′exact|
|E′exact|

, ε′′ = min
Ω′′

|EH2(S
′′, Ω′′)− E′′exact|
|E′′exact|

,

ε0 = min
Ω0

|EH1⊗H2(S0, Ω0)− Eexact|
|Eexact|

.

Proof. Since |Ψ′S′ ,Ω′〉 and |Ψ′′S′′ ,Ω′′〉 are two NNQSs, we know from Proposition 1 that |Ψ′S′ ,Ω′〉 ⊗
|Ψ′′S′′ ,Ω′′〉 = |ΦS0,Ω0〉 is also an NNQS. Furthermore, we can compute

EH1⊗H2(S0, Ω0) =
〈ΨS0,Ω0 |H1 ⊗ H2|ΨS0,Ω0〉
〈ΨS0,Ω0 |ΨS0,Ω0〉

=
〈ΨS′ ,Ω′ |H1|ΨS′ ,Ω′〉
〈ΨS′ ,Ω′ |ΨS′ ,Ω′〉

·
〈ΨS′′ ,Ω′′ |H2|ΨS′′ ,Ω′′〉
〈ΨS′′ ,Ω′′ |ΨS′′ ,Ω′′〉

= EH1(S
′, Ω′) · EH2(S

′′, Ω′′).

Since H1 and H2 are positive, Eexact = E′exactE
′′
exact. Observe that

min
Ω′

EH1(S
′, Ω′) ≥ E′exact > 0, min

Ω′′
EH2(S

′′, Ω′′) ≥ E′′exact > 0, min
Ω0

EH1⊗H2(S0, Ω0) ≥ Eexact > 0.

Thus, we have

ε0 =
|minΩ0 EH1⊗H2(S0, Ω0)− Eexact|

|Eexact|

=
|minΩ′ EH1(S

′, Ω′) ·minΩ′′ EH2(S
′′, Ω′′)− E′exactE

′′
exact|

|E′exact| · |E′′exact|

≥
|minΩ′ EH1(S

′, Ω′)− E′exact|
|E′exact|

·
|minΩ′′ EH2(S

′′, Ω′′)− E′′exact|
|E′′exact|

= ε′ε′′.

Now, we discuss the influence of local unitary operation on the best relative error. We conclude
this conclusion as following.

Proposition 5. Suppose that H is an Hamiltonian, |ΨS,Ω〉 is an NNQS and U = U1 ⊗U2 ⊗ . . .⊗UN is a
local unitary operator onH. Eexact, E′exact are the smallest eigenvalue of H and UHU†, respectively. Then

EUHU†(S, Ω) = EH(U†SU, Ω),

and ε = ε′ where

ε = min
Ω

|EH(U†SU, Ω)− Eexact|
|Eexact|

, ε′ = min
Ω

|EUHU†(S, Ω)− E′exact|
|E′exact|

.
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Proof. We can obtain from Proposition 2 that U†|ΨS,Ω〉 = |ΨU†SU,Ω〉, which is also an NNQS. Therefore

EUHU†(S, Ω) =
〈ΨS,Ω|UHU†|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

=
〈ΨU†SU,Ω|H|ΨU†SU,Ω〉
〈ΨU†SU,Ω|ΨU†SU,Ω〉

= EH(U†SU, Ω).

Since U is a local unitary operator, Eexact = E′exact. We can easily obtain that ε = ε′.

Lastly, we give two examples in order to illustrate our method.

Example 1. Suppose that H = |00〉〈00|+ 2|01〉〈01|+ 3|10〉〈10|+ 4|11〉〈11|. Then H can be represented
under the basis {|00〉, |01〉, |10〉, |11〉} by H = diag(1, 2, 3, 4). It is easily to see that the minimum eigenvalue
of H is 1, the ground state is |00〉.

Next we use spin-z NNQSs

|ΨS,Ω〉 = ∑
Λk1k2

∈{1,−1}2

ΨS,Ω(λk1 , λk2)|ψk1〉 ⊗ |ψk2〉.

to approximate the ground state |00〉 of H, where

ΨS,Ω(λk1 , λk2) =
2

∏
j=1

e
ajλkj ·

M

∏
i=1

2 cosh

(
bi +

2

∑
j=1

Wijλkj

)
.

When N = M = 2, we have

|ΨS,Ω〉 = 4ea1ea2 cosh (b1 + W11 + W12) cosh (b2 + W21 + W22) |00〉
+ 4ea1e−a2 cosh (b1 + W11 −W12) cosh (b2 + W21 −W22) |01〉
+ 4e−a1ea2 cosh (b1 −W11 + W12) cosh (b2 −W21 + W22) |10〉
+ 4e−a1e−a2 cosh (b1 −W11 −W12) cosh (b2 −W21 −W22) |11〉.

We can easily calculate that

EH(S, Ω) =
(
|ea1ea2 cosh (b1 + W11 + W12) cosh (b2 + W21 + W22)|2

+ 2
∣∣ea1e−a2 cosh (b1 + W11 −W12) cosh (b2 + W21 −W22)

∣∣2
+ 3

∣∣e−a1ea2 cosh (b1 −W11 + W12) cosh (b2 −W21 + W22)
∣∣2

+ 4
∣∣e−a1e−a2 cosh (b1 −W11 −W12) cosh (b2 −W21 −W22)

∣∣2)
/
(
|ea1ea2 cosh (b1 + W11 + W12) cosh (b2 + W21 + W22)|2

+
∣∣ea1e−a2 cosh (b1 + W11 −W12) cosh (b2 + W21 −W22)

∣∣2
+

∣∣e−a1ea2 cosh (b1 −W11 + W12) cosh (b2 −W21 + W22)
∣∣2

+
∣∣e−a1e−a2 cosh (b1 −W11 −W12) cosh (b2 −W21 −W22)

∣∣2) .

Next we seek the minimum value of EH(S, Ω) over Ω. By letting

b1 = x1, b2 = x2, W11 = x3, W12 = x4, W21 = x5, W22 = x6, a1 = x7, a2 = x8,
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we define a function g by

g(x1, x2, . . . , x8)

= (
∣∣ex7+x8 · cosh(x1 + x3 + x4) · cosh(x2 + x5 + x6)

∣∣2
+2
∣∣ex7−x8 · cosh(x1 + x3 − x4) · cosh(x2 + x5 − x6)

∣∣2
+3
∣∣e−x7+x8 · cosh(x1 − x3 + x4) · cosh(x2 − x5 + x6)

∣∣2
+4
∣∣e−x7−x8 · cosh(x1 − x3 − x4) · cosh(x2 − x5 − x6)

∣∣2)
/(
∣∣ex7+x8 · cosh(x1 + x3 + x4) · cosh(x2 + x5 + x6)

∣∣2
+
∣∣ex7−x8 · cosh(x1 + x3 − x4) · cosh(x2 + x5 − x6)

∣∣2
+
∣∣e−x7+x8 · cosh(x1 − x3 + x4) · cosh(x2 − x5 + x6)

∣∣2
+
∣∣e−x7−x8 · cosh(x1 − x3 − x4) · cosh(x2 − x5 − x6)

∣∣2)
and then numerically minimize g over x1, x2, . . . , x8(see Figure 3).

Figure 3. Numerically minimize g over x1, x2, . . . , x8 by optimization.

By using Matlab, we find

min
xi

g(x1, x2, . . . , x8) = g(0.743, 5.788, 2.843, 4.274, 5.501, 5.148, 3.312, 1.916) = 1.

We obtain

ε = min
Ω

|EH(S, Ω)− Eexact|
|Eexact|

= 0

Meanwhile, the corresponding NNQS is

|ΨS,Ω〉 = 6.6458× 1012|00〉+ 4.6761× 103|01〉+ 505.6622|10〉+ 406.2882|11〉,

the normalized NNQS is

|Ψ′S,Ω〉 =
|ΨS,Ω〉√
〈ΨS,Ω|ΨS,Ω〉

≈ |00〉.

Besides, we can also calculate the distance between the actual ground state |00〉 and the approximate state |Ψ′S,Ω〉
to be

dist(|00〉, |Ψ′S,Ω〉) = ‖|00〉 − |Ψ′S,Ω〉‖ ≈ 0.

Example 2. Suppose that

Hcluster
N = −

N

∑
i=1

σz
i−1σx

i σz
i+1,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 December 2018                   doi:10.20944/preprints201812.0218.v1

Peer-reviewed version available at Entropy 2019, 21, 82; doi:10.3390/e21010082

http://dx.doi.org/10.20944/preprints201812.0218.v1
http://dx.doi.org/10.3390/e21010082


9 of 12

where σz
0 = I, σz

N+1 = I. It is easily to see that the minimum eigenvalue of Hcluster
N is −N, the ground state is

cluster state |CN〉. Hence, Eexact = −N.
Next we use spin-z NNQSs

|ΨS,Ω〉 = ∑
Λk1k2...kN

∈{1,−1}N

ΨS,Ω(λk1 , λk2 , . . . , λkN )|ψk1〉 ⊗ |ψk2〉 ⊗ . . .⊗ |ψkN 〉,

to approximate the ground state |CN〉 of Hcluster
N , where

ΨS,Ω(λk1 , λk2 , . . . , λkN ) =
N

∏
j=1

e
ajλkj ·

M

∏
i=1

2 cosh

(
bi +

N

∑
j=1

Wijλkj

)
.

(i)When N = M = 2. By letting

a1 = x1 + x2i, a2 = x3 + x4i, b1 = x5 + x6i, b2 = x7 + x8i,

W11 = x9 + x10i, W12 = x11 + x12i, W21 = x13 + x14i, W22 = x15 + x16i,

using Matlab(see Figure 4), we find
ε = 1.438× 10−6,

where

a =

(
0.065 + 0.194i
0.008 + 0.37i

)
, b =

(
0.022 + 0.693i
−0.431− 0.056i

)
, W =

(
0.437 + 0.909i 0.018 + 0.733i
−0.272 + 0.952i 0.2 + 0.771i

)
.

Figure 4. Numerically minimize ε by optimization.

Meanwhile, the corresponding NNQS is

|ΨS,Ω〉 = (3.5877+ 0.4407i)|00〉+(3.5755+ 0.5083i)|01〉+(3.5805+ 0.4372i)|10〉+(−3.5698− 0.5169i)|11〉,

then normalized NNQS is

|Ψ′S,Ω〉 =
|ΨS,Ω〉√
〈ΨS,Ω|ΨS,Ω〉

= (0.4969 + 0.0610i)|00〉+ (0.4952 + 0.0704i)|01〉

+(0.4959 + 0.0606i)|10〉+ (−0.4944− 0.0716i)|11〉.

Besides, we can also calculate the fidelity between the actual ground state

|C2〉 =
1
2
|00〉+ 1

2
|01〉+ 1

2
|10〉 − 1

2
|11〉
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and the approximate state |Ψ′S,Ω〉 to be

F(|C2〉, |Ψ′S,Ω〉) = |〈C2|Ψ′S,Ω〉| = 0.9999 ≈ 1.

Hence, |C2〉 ≈ |Ψ′S,Ω〉.
In addition, we find that when N = 2, ε gets smaller and smaller as M changes, see Table 1.

Table 1. The numerical simulation results of N, M.

N M ε

2 2 1.438× 10−6

2 4 1.0716× 10−6

2 6 6.7887× 10−7

2 8 4.987× 10−7

(ii)When N = 3, M = 3. By using Matlab(see Figure 5), we find

ε = 2.981× 10−4.

where

a =

 0.956 + 1.669i
1.309− 0.255i
−0.148− 0.152i

 , b =

 0.653 + 0.863i
0.569 + 0.706i
−0.613 + 0.894i

 ,

W =

 −0.066 + 0.969i −1.213 + 2.029i −0.354− 0.647i
−0.233 + 3.12i 0.986 + 0.198i 0.438 + 0.16i
0.74 + 1.206i 0.749− 0.985i −0.445 + 0.8i

 .

Figure 5. Numerically minimize ε by optimization.

Meanwhile, the corresponding NNQS is

|ΨS,Ω〉 = (−4.5329− 9.8797i)|000〉+ (−4.4661− 9.6734i)|001〉+ (−4.5709− 9.9717i)|010〉
+(4.3557 + 9.7498i)|011〉+ (−4.4258− 9.8957i)|100〉+ (−4.4603− 9.6152i)|101〉
+(4.6706 + 9.8781i)|110〉+ (−4.1489− 9.7979i)|111〉,
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then normalized NNQS is

|Ψ′S,Ω〉 =
|ΨS,Ω〉√
〈ΨS,Ω|ΨS,Ω〉

= (−0.1488− 0.3242i)|000〉+ (−0.1466− 0.3175i)|001〉

+(−0.1500− 0.3272i)|010〉+ (0.1429 + 0.32i)|011〉+ (−0.1452− 0.3248i)|100〉
+(−0.1464− 0.3156i)|101〉+ (0.1533 + 0.3242i)|110〉+ (−0.1362− 0.3215i)|111〉.

Besides, we can also calculate the fidelity between the actual ground state

|C3〉 =
1

2
√

2
(|000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉 − |110〉+ |111〉)

and the approximate state |Ψ′S,Ω〉 to be

F(|C3〉, |Ψ′S,Ω〉) = |〈C3|Ψ′S,Ω〉| = 0.9999 ≈ 1.

Hence, |C3〉 ≈ |Ψ′S,Ω〉.

4. Conclusions

In this paper, the question of approximating ground states by neural network quantum states
has been discussed in terms of the best relative error (BRE), some properties of the BREs have been
obtained, including the BREs of sums, tensor products, local unitary transformations of Hamiltonians.
Besides, our method have been illustrated with two examples.
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