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Abstract: Tree condition, pruning and orchard management practices within intensive horticultural 

tree crop systems can be determined via measurements of tree structure. Multi-spectral imagery 

acquired from an unmanned aerial system (UAS) has been demonstrated as an accurate and efficient 

platform for measuring various tree structural attributes, but research in complex horticultural 

environments has been limited. This research established a methodology for accurately estimating 

tree crown height, extent, plant projective cover (PPC) and condition of avocado tree crops, from a 

UAS platform. Individual tree crowns were delineated using object-based image analysis. In 

comparison to field measured canopy heights, an image-derived canopy height model provided a 

coefficient of determination (R2) of 0.65 and relative root mean squared error of 6%. Tree crown 

length perpendicular to the hedgerow was accurately mapped. PPC was measured using spectral 

and textural image information and produced an R2 value of 0.62 against field data. A random forest 

classifier was applied to assign tree condition into four categories in accordance with industry 

standards, producing out-of-bag accuracies >96%. Our results demonstrate the potential of UAS-

based mapping for the provision of information to support the horticulture industry and facilitate 

orchard-based assessment and management. 
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1. Introduction 

Genetic variation, phenological growth stage and abiotic and biotic constraints can all influence 

tree structural parameters such as height, canopy extent and foliage density [1-12]. For instance, 

vigorous trees usually result in tall and dense canopies that influence the productivity [9-11]. As such, 

measurements of these parameters can provide growers with a strong indication of plant health or 

vigour, photosynthetic capacity and yield potential [13,14]. In most Australian horticultural 

industries, such assessment is usually conducted by on-ground visual evaluation, which is time-

consuming, labour-intensive, subjective and often inconsistent [7,15-17]. Therefore, there is a demand 

for more efficient, accurate and quantitative alternatives for such assessments. 

Remote sensing has been used to estimate tree canopy structural attributes, such as tree height, 

canopy extent, and plant projective cover (PPC), for decades [18-22]. Conventionally, these types of 

data were acquired by either satellites or aircrafts, which are time and weather constrained. In the 

case of satellite data, it is difficult to acquire data with on-demand spatial, spectral, and temporal 

specifications that is tailored for specific sites, products, and delivery times for horticultural 

applications [23]. More recently, UAS have been considered as a useful platform to acquire suitable 
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remotely sensed data for measuring horticultural tree crop structure, as it provides both higher 

spatial and temporal resolution and the flexibility of operations [6-8,18]. Airborne image data, 

initially stereo-photography were analyzed using soft-copy photogrammetry to provide information 

for extracting ground and canopy heights [2-7,24], while more recently this has been done by 

collection and processing of LiDAR point clouds [1,25-28]. Similar products are now generated from 

UAS multi-band image data using multiple forms of softcopy photogrammetry, such as structure 

from motion (SfM). As SfM algorithms have become part of the standard procedure of UAS image 

processing workflows, UAS imagery has the potential to become a more accepted method for 

measuring tree structure, providing a similar degree of accuracy and better spectral fusion compared 

to LiDAR systems [6,29]. 

Canopy structural dimensions can be expressed by the tree height and the tree crown extent [4], 

while the canopy density can be expressed by the PPC [21]. PPC is defined as the vertically projected 

fraction of leaves and branches in relation to sky, which is often referred to as canopy cover or crown 

cover [20-22]. It has been proved to be a good indicator of biomass [20,21]. Previous studies have 

estimated PPC at the site scale [22,30]. However, for tree crop managers, the plant-scale condition of 

individual trees is more relevant when applying agricultural inputs at the tree level [16]. Plant-scale 

PPC estimation using near-infrared (NIR) brightness from multi-spectral UAS imagery has proved 

to be an accurate approach for lychee trees [7]. As the canopy structure of lychee trees is considered 

to be ‘rhythmic’ [31], little is known about whether such plant-scale PPC estimation techniques are 

feasible for other tree crops such as avocado trees, as the architecture of avocado trees is significantly 

different to lychee trees [32]. Although Salgadoe, et al. [33] suggested that photo-derived PPC is also 

a good indicator of avocado tree condition, the difference of canopy density is not significant to 

differentiate trees between moderate and poor condition [33]. Hence, combining the canopy 

structural dimension for tree vigour estimation may be beneficial [13]. The estimated tree height and 

canopy extent derived from UAS imagery are now considered highly accurate in comparison to 

ground measurements [4-8], yet limited research has integrated the dimension and PPC to express 

tree condition. 

Tree condition evaluation methods are generally conducted by classifying trees into condition 

categories based on visual assessment of tree canopy structure. This assessment is based on tree 

canopy structure, and hence should be quantifiable from the aforementioned structural attributes 

that derived from UAS imagery. Johansen, Duan, Tu, Searle, Wu, Phinn and Robson [15] used NIR 

brightness as the input feature of a random forest classifier to predict the condition of macadamia 

trees. Different growing stages and levels of stress for avocado trees produce changes in overall 

canopy form [33], and the amount of leaf, stem and trunk biomass, these resulted in different NIR 

reflectance levels [34-36] which were detected by the classifier in the study. The results indicated a 

moderate accuracy, hypothesised to be attributed to the very high spatial resolution of the UAS 

imagery, combined with the complex NIR scattering properties of the tree crop leaf and canopy 

structures. Based on this foundation, we explored methods that use all the available image-derived 

structural attributes and linked these with the field-derived structural measurements for condition 

assessment.  

This study explores a novel and innovative approach to assess horticultural tree crop condition 

directly related to canopy structural attributes estimated from UAS image data and used to rank 

avocado tree condition. The objectives of this work were to: 

1. use multi-spectral UAS imagery to map and assess the accuracy of tree height, canopy width 

and length, and PPC estimates for avocado trees, and  

2. use the image-derived structural attribute maps to produce a tree condition ranking matched to 

on-round observer techniques.  

The mapping results were compared with in-situ measurements for accuracy assessment to 

provide a feasibility analysis and optimise the canopy structural attribute analysis and tree condition 

ranking protocol for avocado trees. This condition ranking strategy could play a role to bridge the 

gap between the remote sensing expertise and farmers’ knowledge of their tree crops, delivering 

information able to be used immediately as part of on farm management practices. 
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2. Materials and Methods  

2.1. Study sites 

The study site is one of the main Hass avocado producing orchards in Australia, which is located 

to the south of Bundaberg, Queensland, Australia. The region experiences a subtropical climate with 

long hot summers and mild winters. The post-harvest pruning usually occurs in late Austral winter 

(August) or early spring (September), where major limbs are removed to maintain orchard access 

between rows and enhance light interception. Flowering occurs between early September and mid-

October, followed by two fruit drop events usually between late October and January for readjusting 

fruit load to fit the tree ecological resources [37]. Harvesting of avocado normally occurs in May. The 

UAV based focus areas encompassed a 1 ha patch of the avocado orchard, within which structural 

parameters of 45 avocado trees were selected and measured (Figure 1). The avocado trees were 

planted in 2005 with a 5 m spacing. The average elevation for the avocado orchard was around 60 m 

above sea level, and it had relatively flat terrain with an average downward slope of 4 degrees 

towards east. 

  

(a) (b) 

Figure 1. The (a) outline of the study area and (b) aerial view of the avocado orchard in Bundaberg, 

Australia. The green dots in (a) represent the selected in-situ measured trees. 

2.2. Field data 

Field measurements were collected between 2 and 6 February 2017, where the canopy becomes 

dense at the end of summer leave flush [38]. Tree height was measured using a TruPulse 360B laser 

rangefinder (Laser Technology Inc, Centennial, USA) from the ground to the tree apex at a distance 

greater than 10 m from the trunk to reduce the effect of tree inclination [39]. Canopy widths were 

measured, in the direction along the hedgerow, as the horizontal distance between the two staffs 

placed at the outermost edge of each side of the tree crown.  

PPC for individual trees was estimated via a digital cover photography (DCP) method [21] using 

a Nikon Coolpix AW120 digital camera (Nikon Corporation, Tokyo, Japan). Eight representative 

cover images were taken at various locations at approximately half way between the trunk and the 

outer edge of the tree crown of each tree during dusk. These images were imported into the Can-Eye 

software (French National Institute of Agronomical research, Paris, France) to estimate gap fraction 

to calculate PPC. 

Sixty-six trees were visually assessed by an avocado tree expert and classified into four condition 

categories: (1) Excellent, (2) Good, (3) Moderate, and (4) Fair (Figure 2), based on the modified Ciba-

Geigy scale method for the Australian avocado industry [33]. Twenty-two of the 66 assessed trees 

were part of the 45 trees, selected for in situ structural measurements. The number of trees for each 

condition category can be found in Table 1. 
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(1) (2) (3) (4) 

Figure 2. The condition ranking for avocado trees based on farmers’ knowledge. The standard 

ranking method classifies the trees into four categories: (1) Excellent, (2) Good, (3) Moderate, and (4) 

Fair. 

Table 1. Number of avocado trees classified in situ into respective condition rankings. 

Ranking 1- Excellent 2- Good 3- Moderate 4- Fair 

Count 8 21 32 5 

2.3. UAS data acquisition 

The multi-spectral UAS imagery was captured with a Parrot Sequoia® multi-spectral camera 

(Parrot Drone SAS, Paris, France) mounted on a 3DR Solo (3D Robotics, Berkeley, USA) quadcopter 

under clear sky conditions. The camera acquires imagery in the green (550 nm, 40 nm bandwidth), 

red (660 nm, 40 nm bandwidth), red edge (735 nm, 10 nm bandwidth), and NIR (790 nm, 40 nm 

bandwidth) part of the spectrum with its 4.8 × 3.6 mm (1280 × 960 pixels) CMOS sensor. The image 

acquisition parameters, i.e. flight height, sidelap, and flight speed, etc, were designed based on the 

suggestions from previous studies [7,40,41]. The flight was conducted in an along-tree-row pattern 

at 75 m AGL on 2 Feb 2017 between 2:11-2:17 PM (60° solar elevation). The sidelap of the images was 

80%, the image capture interval was set to 1 second (92% forward overlap), and the flight speed was 

5 m/s.  

Ten AeroPoints® (Propeller Aerobotics Pty Ltd, Surry Hills, Australia) and eight gradient panels 

in greyscales were deployed for geometric and radiometric correction purposes, respectively. The 

locations of the AeroPoints were recorded for five hours and subsequently post-processed using the 

Propeller® network correction based on the nearest base station, located within 26 km of the study 

site. The calibration panels were designed based on the suggestion of Wang and Myint [42]. The 

reflectance values of the calibration panels were measured with an ASD FieldSpec® 3 spectrometer 

(Malvern Panalytical Ltd, Malvern, UK) and ranged from 4% to 92% in all spectral bands, 

corresponding with the four bands of the Sequoia® camera (Figure 3). 
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Figure 3. Spectral reflectance of the eight greyscale radiometric calibration panels measured in-situ 

with a field spectrometer and resampled to match the four Parrot Sequoia® multi-spectral bands. 

2.4. Image pre-processing 

Agisoft PhotoScan Pro (Agisoft LLC, St. Petersburg, Russia) was used to process the multi-

spectral UAS data with the aid of an in-house Python script to optimise and automate the process. 

The key point and tie point limits were set as 40,000 and 10,000 respectively for photo alignment. The 

measured ground control points (GCPs) derived from the AeroPoints® were imported to 

geometrically calibrate and geo-reference the images. The geo-referencing root-mean-square error 

(RMSE) of the GCPs was 0.07 m. The overall projection error was 0.6 pixel based on the bundle-

adjustment error assessment report. The projection errors of tie points were taken into account to 

eliminate poor-quality points, and a noise filter was also applied to assure the quality of the final 

products. A mild noise filter was applied during the point cloud densification process to keep as 

many details on the tree structure as possible. The densified photogrammetric point clouds were then 

classified to identify ground points before generating both a digital surface model (DSM) and digital 

terrain model (DTM). Before ortho-rectifying images, colour correction was enabled to calibrate 

vignetting effect and reduce brightness variation caused by variations in photographic parameters 

(e.g. ISO value, shutter speed, etc.), which cannot be set to a constant value for the Parrot Sequoia 

camera. Orthomosaics were also produced with the colour balance option disabled to preserve the 

pixel values as close to the original images as possible [41,43] (Figure 4).  

  
(a) (b) 

Figure 4. The orthomosaics of the red edge band (a) without colour-balancing and (b) with colour-

balancing. The south part of the mosaic in (a) is darker than the north part, while such brightness 

variation is less pronounced in (b). This phenomenon was caused by dynamic photographic 

parameters and only occurred in the green and red edge bands in this case. 
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2.5. Producing analysis ready data  

In order to estimate the tree height, we derived a canopy height model (CHM) by subtracting 

the DTM from the DSM. For PPC, we used a range of vegetation indices based on the at-surface 

reflectance imagery from the orthomosaic. At-surface reflectance imagery was created using a 

simplified empirical correction based on the radiometric calibration panels, which was suggested by 

previous studies [7,41,42], with the aid of an in-house Python script. However, the initial corrected 

at-surface reflectance imagery appeared with some negative reflectance values due to shaded leaves 

and perhaps inaccurate reflectance estimations from the panel [41]. Therefore, we manually 

delineated the tree rows and calculated the zonal statistics within these regions to get the minimum 

value for each band of each mosaic. These negative values were applied for dark feature subtraction 

[35] to offset the pixel values in the reflectance images to make sure that most of the at-surface 

reflectance values within the tree rows were positive and the spectral signature fitted the spectral 

characteristic of vegetation. Subsequently, the two at-surface reflectance orthomosaics were used to 

generate the following vegetation indices: (1) Normalised Difference Vegetation Index (NDVI), (2) 

Normalised Difference Red Edge Index (NDRE), (3) green NDVI (g-NDVI), (3) Red Edge Normalised 

Difference Vegetation Index (RENDVI), and (5) Green Chlorophyll Index (ClGE) (Table 2). These 

indices are commonly used in precision agricultural applications and have proven useful for 

estimating the biomass and productivity with a specific degree of accuracy [12,18,36,44,45].  

Table 2. Formulae of vegetation indices which were used in this study 

Vegetation Index Formula 

Normalised Difference Vegetation Index (NDVI) 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑

 

Green Normalised Difference Vegetation Index (gNDVI) 𝑅𝑁𝐼𝑅 − 𝑅𝐺𝑟𝑒𝑒𝑛

𝑅𝑁𝐼𝑅 + 𝑅𝐺𝑟𝑒𝑒𝑛

 

Red Edge Normalised Difference Vegetation Index (RENDVI) 𝑅𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 − 𝑅𝑅𝑒𝑑

𝑅𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 + 𝑅𝑅𝑒𝑑

 

Normalised Difference Red Edge Index (NDRE) 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑 𝑒𝑑𝑔𝑒

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑 𝑒𝑑𝑔𝑒

 

Green Chlorophyll Index (ClGE) 𝑅𝑁𝐼𝑅

𝑅𝐺𝑟𝑒𝑒𝑛

− 1 

𝑅𝑏𝑎𝑛𝑑 represents the reflectance of specific bands 

2.6. Individual tree crown delineation and structural attribute estimation 

To delineate individual trees, tree rows were first delineated with geographic object-based image 

analysis (GEOBIA) using the eCognition Developer software (Trimble, Munich, Germany). The initial 

segmentation was conducted using the multiresolution segmentation algorithm [46] based on the 

CHM, NDVI, NIR and red bands (Figure 5). The NDVI and NIR bands are commonly used to 

delineate vegetation [7,47,48]. The reason we also selected the red band as one of the inputs was that 

the ground material is mostly red dirt, creating contrast between trees and the ground. Initially, parts 

of the tree crowns were distinguished with segments that had CHM values greater than 3 m. Those 

segments were then grown progressively outwards until CHM ≤ 0.3 m and NDVI ≤ 0.1. The 

unclassified segments which were enclosed by tree crown segments were included as tree crown for 

gap fraction analysis. All the tree segments were eventually merged to create the extent shapefile of 

tree rows (Figure 5).  
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Figure 5. The workflow of individual tree delineation and attribute extraction. 

Once the tree rows had been delineated, the next step was to identify individual tree crowns for 

the 45 selected trees, which had been measured in the field, as well as the 66 trees that had their 

condition ranked. Because the trees had been pruned mechanically and many of the tree crowns 

overlapped with the adjacent tree crowns, it was not possible to separate them automatically based 

on height and spectral information. Therefore, we visually delineated the 45 individual tree crowns 

based on visual interpretation of the orthomosaics and knowledge of tree location and planting 

distance. Some of the overlapping crown areas were split into half when the real extents were not 

visually distinguishable. Nevertheless, this method kept the majority of the extent of individual tree 

crowns, hence reducing bias in the comparison with field-derived PPC information. 

The semi-automatically delineated individual tree crown extents were used as the final objects 

to extract individual tree crown parameters. Tree height was estimated by the maximum CHM value 

within each object to correspond to field measurements. Crown width and length, which represented 

the horizontal diameter of the tree crown in the direction along and perpendicular to the hedgerows, 

respectively, was calculated using the width and length of the minimum rectangle that covered each 

crown extent (Figure 6.a). Crown length for each tree was also manually measured from the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2018                   doi:10.20944/preprints201812.0261.v1

Peer-reviewed version available at Remote Sens. 2019, 11, 269; doi:10.3390/rs11030269

http://dx.doi.org/10.20944/preprints201812.0261.v1
http://dx.doi.org/10.3390/rs11030269


 

 

orthomosaic for comparison with the calculated length using the GEOBIA method. The mean, 

standard deviation, and Haralick texture grey level co-occurrence matrix (GLCM) [7,46,49-52], 

including homogeneity, dissimilarity, contrast, and standard deviation, were extracted for the red 

edge brightness, NIR brightness, and five vegetation indices (Table 2) and exported for further 

analysis. These image-derived parameters were then compared to field measurements, and their 

coefficient of determination (R2) of linear regressions and RMSE were calculated to assess their 

correlation and accuracy at the tree crown object level. 

  

(a) (b) 

Figure 6. The delineated tree extent for the 45 selected trees that had in-situ structural measurements 

and the 66 trees that had on-ground condition evaluation. The rectangles which are highlighted in 

green in (a) represent the minimum rectangle to measure crown width and length, representing the 

horizontal distance in the direction along and perpendicular to the hedgerow, respectively. The 

yellow highlighted trees in (b) include the 22 trees for which tree crown were condition ranked and 

measured structure in field. 

2.7. Canopy condition ranking 

 After finishing the accuracy assessment of the extracted structural attributes, the variables such 

as the maximum CHM value, average pixel value and texture from spectral bands and vegetation 

indices, which were highly correlated with the field measurements, were selected for the condition 

ranking classification of the 66 field assessed trees (Figure 6.b), using a parallel random forest 

classifier [53] with the aid of an in-house Python script. For the random forest classification, 80% of 

the 66 avocado trees were selected randomly to train the classifier with the aforementioned selected 

variables as training features and the condition ranking as training labels. Every time the classifier 

was trained, it randomly picked a number of training features that equaled the square root of total 

number of features to grow the tree. The accuracy of the trained classifier was estimated using out-

of-bag error that was calculated by the bootstrap aggregating (bagging) predictor, which is the 

method for generating random subsets that have a uniform probability of each label and with 

replacement for prediction [53,54]. The classifier was trained repeatedly 300 times with different 

random subsets to allow nodes to grow until the out-of-bag error was stable [55]. The trained random 

forest classifier was then used to predict the condition ranking for all 66 trees based on the extracted 

variable sets. The prediction was compared with the in-field condition ranking to generate a 

confusion matrix to assess the model accuracy. The relative importance of the features used as 

decision nodes was calculated by averaging the probabilistic predictions, which were estimated by 

the mean decrease impurity method, to decrease the variance as well as bias [56,57]. 

3. Results 

3.1. Accuracy of CHM-derived tree height 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2018                   doi:10.20944/preprints201812.0261.v1

Peer-reviewed version available at Remote Sens. 2019, 11, 269; doi:10.3390/rs11030269

http://dx.doi.org/10.20944/preprints201812.0261.v1
http://dx.doi.org/10.3390/rs11030269


 

 

The maximum value of the UAV-derived CHM was extracted for the individual trees and 

compared against the field-based tree height measurements. The result shows that the CHM had a 

positive correlation with the field-derived tree height and produced a coefficient of determination 

(R2) of 0.65 using a linear model (Figure 7). Of the 45 trees measured, the average field-derived tree 

height was 8.7 m (n=45), while the average CHM-derived tree height was 8.4 m. The RMSE of the 

estimated tree height was 0.5 m. The average tree height was slightly underestimated using the CHM-

derived method possibly due to the inaccuracies of 3D reconstruction on some branches. 

 

Figure 7. Scatter plot and the linear regression of tree height. Blue dots appearing above and below 

the 1:1 line represent a UAV-based under- and overestimation of the tree height, respectively. 

3.2. Accuracy of image-derived crown width and length 

The correlation between the image-derived and field measured canopy width was low, because 

of the overlapping canopies and lack of height variation between them, preventing accurate 

delineation of the edges between neighboring tree crowns from the CHM and spectral imagery. From 

Figure 8.a, we can tell that there is no correlation between the measured canopy width and image-

derived canopy width. Because of this limitation to estimate the canopy width accurately, it is not 

feasible to use the estimated canopy width as an indicator of tree condition.  

The estimation of crown length using a linear model had a R2 value of 0.88 compared to the 

manually measured length using the orthomosaic (Figure 6.a and Figure 8.b). From Figure 8.b, we 

can tell that there was an outlier in the scatter plot, which was caused by a branch of sparse leaves 

that failed reconstructed with SfM. Therefore, it was excluded from the statistical analysis. The 

average of the manually measured canopy length was 8.45 m (n = 45), while the average of the 

calculated canopy length based on the semi-automatic delineation results was 8.32 m. The calculated 

canopy length was underestimated for most of the trees with an RMSE at 0.2 m, because the leaves 

at the edge of canopy were usually sparse and hence not well-reconstructed with SfM. The tree 

canopies were pruned mechanically so that the edge of canopies in the direction along the hedgerow 

aligned very well. Hence, the canopy length is dictated by the pruning rather than the real condition 

of individual tree crowns. While the pruning effects prevent measured length from being used as an 

indicator of tree condition, tree crown length and gap length between hedgerows can still provide 

useful information for future pruning operations and management purposes. 
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(a) 

 

(b) 

Figure 8. Scatter plot and linear regression of (a) canopy width in the direction along the hedgerow, 

and (b) canopy length in the direction perpendicular to the hedgerow. The outlier in (b) caused by a 

branch of sparse leaves at the lower part of a tree was not taken into account in the linear regression. 

3.3. PPC Correlation 

Figure 9 shows the different R2 values for the PPC regression between and field derived PPC 

values and different spectral indicators, including the brightness of the red edge and NIR bands and 

five vegetation indices and texture bands, with and without colour correction. Colour correction 

improved the observed relationship of image derived structure values to ground measurements. 

Comparing the results derived with and without colour correction, the R2 value using the vegetation 

indices showed higher variation between the two radiometric corrections than the red edge and NIR 

band brightness. The PPC correlation among all the indicators was highest when integrating mean, 

standard deviation (Stdev), and the four Haralick texture GLCMs for multi-variate linear regression. 

The input of Haralick texture GLCM improved the R2 value more than the standard deviation, except 

for the use of the NIR brightness. The R2 value using the mean of NIR brightness was 0.38 without 

colour correction but increased to 0.42 with colour correction. With the extra input of standard 
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deviation and four Haralick texture GLCMs, the R2 value increased to 0.59 and 0.61 for the NIR 

brightness using multi-variate linear regression without and with colour correction, respectively. 

When used to explain the variation in PPC, NDVI had the second highest R2 value without colour 

correction and the highest R2 of 0.62 with colour correction. The R2 value using the mean NDVI value 

without colour correction was 0.31 and improved to 0.54 when both standard deviation and texture 

information were added. On the other hand, an R2 of 0.56 was achieved using only the mean NDVI 

value with colour correction per tree crown, whereas this value was increased to 0.62 when including 

both standard deviation and texture information. 

 

Figure 9. The R2 value of the linear correlation between field measured PPC and different spectral 

images, including the brightness of the red edge and NIR bands and five vegetation indices. Each 

colour represents the different combination of input including mean, standard deviation (Stdev), and 

four texture GLCMs (Texture). The bars on the left and right sides of the graph were produced for the 

orthomosaics without and with colour correction, respectively.  

3.4. Tree condition prediction 

The mean, standard deviation, and four Haralick texture GLCMs of the NIR brightness and 

NDVI, derived from the colour-corrected orthomosaic, were extracted for the 66 trees. CHM-derived 

tree height was also selected as one of the features for predicting tree condition. The prediction results 

from both NIR and NDVI classifiers were identical (Figure 10 and Figure 11). The seven-feature 

classifier had a higher tree condition prediction accuracy than the two-feature classifier for both the 

NIR brightness and NDVI. Both classifiers which used seven features had the accuracy of 98.48%, 

while the result based on two features produced an accuracy of 96.97%. In one and two cases for the 

seven and two-feature classifiers, respectively, the trees were mapped as moderate condition, while 

ranked in the field as fair condition. 

The feature importance order was different between the NIR and NDVI classifiers (Table 3 and 

Table 4). The variables enabling the greatest discrimination for both classifiers were the mean value, 

texture GLCM standard deviation, and the CHM-derived tree height, with their combination 

providing more than 50% probability of prediction. While the mean value was the top one feature for 

both the NIR and NDVI classifiers, the NDVI classifier relied on the mean value slightly more than 

the NIR classifier for predicting tree condition, which was 22.30% compared to 19.76%. The second 

and third most important features for the NIR classifier were the CHM-derived tree height (18.39%) 

and GLCM standard deviation (14.62%), respectively, while the order for the NDVI classifier was 

opposite, with the GLCM standard deviation and CHM-derived tree height explaining 17.31% and 

15.71% probability, respectively. In other word, the NIR classifier relied less on the spectral and 

textural information compared to the NDVI classifier, which may be because the NIR brightness 

contains shadow-induced noise, which means that its derivatives may not properly reflect the actual 

canopy condition. 
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(a) 

 
(b) 

Figure 10. The confusion matrix and out-of-bag accuracy of the random forest classification for the 

tree condition prediction based on the CHM-derived tree height and (a) NIR-related features, 

including the mean, standard deviation, and four Haralick texture GLCMs; and (b) predicted PPC. 

Table 3. The feature importance of each classifier using CHM-derived tree height and NIR-brightness-

related features. 

Classifier Feature Feature importance 

7-features classifier 

(Figure 10.a) 

Mean NIR 19.76% 

CHM-derived tree height 18.39% 

GLCM Standard deviation 14.62% 

GLCM contrast 12.77% 

GLCM dissimilarity 12.06% 

Standard deviation 11.59% 

GLCM homogeneity 10.81% 

2-features classifier 

(Figure 10.b) 

CHM-derived tree height 51.16% 

NIR-derived PPC 48.84% 
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(a) 

 
(b) 

Figure 11. The confusion matrix and out-of-bag accuracy of the random forest classification for the 

tree condition prediction based on the CHM-derived tree height and (a) NDVI-related features, 

including the mean, standard deviation, and four Haralick texture GLCMs; and (b) predicted PPC. 

Table 4. The feature importance of each classifier using CHM-derived tree height and NDVI-related 

features. 

Classifier Feature Feature importance 

7-features classifier 

(Figure 11.a) 

Mean NDVI 22.30% 

GLCM standard deviation 17.31% 

CHM-derived tree height 15.71% 

Standard deviation 12.96% 

GLCM homogeneity 10.81% 

GLCM contrast 10.75% 

GLCM dissimilarity 10.16% 

2-features classifier 

(Figure 11.b) 

CHM-derived tree height 51.44% 

NDVI-derived PPC 48.56% 
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4. Discussion 

The average tree height was underestimated with the CHM-derived method. A similar 

phenomenon was also observed in previous studies of lychee and olive trees [7,8], and may be 

attributed to inaccuracies in the 3D reconstruction of some branches that full of leaves in the SfM-

generated point cloud [29]. The R2 value was 0.65, which was very similar to previous studies 

conducted at similar flying altitude for lychee trees [7] and similar ground sample distance (GSD) on 

hedgerow olive trees [4]. Although the R2 value showed a moderate correlation between the CHM-

derived tree height and ground-measured tree height, it was significantly lower compared to the 

correlation between the estimated and measured tree height for olive trees in previous studies [6,8]. 

One reason could be differences in the configuration of UAS flight settings. In the study of Zarco-

Tejada, Diaz-Varela, Angileri and Loudjani [6] on olive trees, the images were acquired using a grid 

flying pattern, which increased the parallax variation and the accuracy of the SfM 3D reconstruction. 

The second reason is the difference of canopy structure complexity. The canopy of a single avocado 

tree is usually formed by about 5 small branches that derivate from the main stem and alternatively 

become the major stem [10]. The more complex canopy structure of avocado trees compared to olive 

trees may have reduced the accuracy of the generated CHM. Nevertheless, the RMSE was 0.5 m and 

the relative RMSE in this study was around 6%, which was almost identical or even better than the 

relative error observed in other studies of olive trees. Previous studies suggested that higher image 

spatial resolution could lead to higher R2 of tree height estimation [6-8]. Besides, studies also argued 

that lower flight altitude may improve the R2 even if the spatial resolutions were almost identical 

[4,8]. This phenomenon may because higher parallax variation increased the visibility of tie points 

when acquiring images at a lower altitude [7,34]. However, other studies have also suggested to 

acquire UAS data at approximate 80 m AGL to prevent serious bidirectional reflectance distribution 

function (BRDF) effect and achieve a balance between data acquisition efficiency and quality for 

measuring trees [40,41].  

The highest R2 value of the PPC regression occurred when combining the mean, standard 

deviation and Haralick texture GLCMs, including homogeneity, standard deviation, dissimilarity, 

and contrast. It is known that the reflectance of visible light is influenced significantly by the 

concentration of photosynthetic pigments, while the reflectance of NIR is sensitive to the leaf and 

canopy structure of vegetation [34-36]. Unlike a previous study of lychee trees, where the use of mean 

NIR brightness explained 80% of the variability of PPC [7], the achieved R2 based on mean NIR 

brightness was only 0.38 and 0.42 without and with colour correction, respectively. We suspected 

that the more complex canopy structure of avocado tree crops contributed to the lower R2 value. 

Based on the ‘rhythmic’ canopy expansion pattern of lychee trees compared to the higher trunk-

branch differentiation of avocado trees [31,32], it is likely that the different types of canopy geometric 

characteristic had different influences on the spectral reflectance that observed by the sensor.. Studies 

on the radiometric correction for multi-spectral UAS imagery show that complex canopy structure 

produce more diffuse radiant flux within the canopy [41,58]. Therefore, we suspect that the observed 

reflectance of avocado trees was less representative of the actual reflected radiant energy due to the 

aforementioned reason, causing the lower correlation between the observed reflectance and PPC. 

Figure 9 shows that a smaller improvement in correlation was achieved for NIR brightness than that 

of NDVI by just adding texture GLCMs. The shadow-induced noise in NIR brightness may be due to 

less accurate PPC prediction using only NIR mean and texture information (Figure 9). Comparing 

NIR and NDVI to the other indicators, the remaining indicators had fewer issues with saturation due 

to high canopy density and were more sensitive to pigment concentration variation [36,44,45,59]. 

Surprisingly, the saturation drawback of NIR and NDVI turned out to be the advantage for better 

PPC estimation for avocado trees.  

The radiometric correction of the multi-spectral UAS imagery played an important role in the 

PPC estimation. As mentioned in Figure 4, brightness variation in the green and red edge bands was 

observed because of the dynamic photographic parameter settings of the camera. Therefore, the 

estimated reflectance would have been less accurate if such variation had not been addressed, which 

would have affected the calculated vegetation indices. The R2 values of the PPC regression with 
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vegetation indices were all higher after reducing the brightness variation with colour balancing 

(Figure 9). However, to radiometrically correct the image brightness to accurate reflectance, previous 

result showed that effective BRDF correction, accurate sensor-information-based calibration, and 

simultaneous irradiance measurement are all potential procedures that can be considered [41,58]. 

Based on our study, we suggest that if the image is radiometrically corrected, the multi-variate linear 

regression of mean, standard deviation, and four Haralick texture GLCMs of NDVI could be a strong 

indicator of PPC over NIR brightness, as it provided the highest correlation with field-derived PPC. 

Nevertheless, radiometric correction of UAS imagery has proven to be a sophisticated process and 

sometimes difficult for delivering accurate results [41,58,60].  

The proposed GEOBIA workflow showed its limitation to accurately delineate individual tree 

crown extents for avocado hedgerows. Although a previous study suggested that there was a strong 

correlation between measured and image-derived canopy diameter for hedgerow olive trees [4] and 

mango trees [13], the semi-automatically delineated canopy width in the direction along the 

hedgerow did not match the ground measurement in our study area, because of adjacent overlapping 

tree crowns with limited height variation between the tree apex and crown perimeter caused by 

mechanical pruning. Such delineation limitation occurs very often when applying remote sensing 

data in an hedgerow avocado orchard [61]. Therefore, it is necessary to make some assumptions such 

as a fixed distance between two adjacent trees to delineate individual tree crowns from a UAS 

orthomosaic. The semi-automatically delineated canopy length in the direction perpendicular to the 

hedgerow proved to be accurate. However, the canopy length is mainly controlled by pruning 

practices, and therefore, not suitable for tree condition assessment. Nevertheless, our study also 

showed that as long as the delineated tree crown extent contains the majority of the realistic tree 

crown extent, tree height can still be predicted and attributes, which include mean value, standard 

deviation, and texture GLCMs that are highly correlated to PPC, can be extracted for predicting tree 

condition. Alternatively, having an accurate GPS layer of individual tree centroids can assist with the 

delineation of individual trees. Most tree planting undertaken in recent times occur with GPS 

guidance and as such, these layers are readily available [12,13]. 

Our results showed that the estimated tree height and canopy spectral and textural attributes 

could be used as explanatory variables to predict the condition of avocado trees. Both the NIR and 

NDVI classifiers with seven feature inputs yielded accurate results for predicting avocado tree 

condition The accuracy of both the NIR and NDVI classifiers were identical, though the NIR classifier 

had less variability using spectral and texture information for predicting tree condition. Considered 

the difficulty of applying accurate radiometric correction on multi-spectral UAS imagery, this 

characteristic may turn out to become a benefit as the variation of correlation between the NIR 

brightness derivatives and PPC is less influenced by the radiometric correction (see Figure 9). The 

seven-feature NIR classifier is recommended at this stage. It is noted that our data was acquired in 

the pre-pruning period, when tree structure was less influenced by previous limb removal. The tree 

height is usually controlled for management purposes. Therefore, the importance of tree height for 

condition ranking in different growing stages may be different. The ranking result in fair-conditioned 

trees had two trees ranked as fair, where were incorrectly classified as moderate. In the study of 

Salgadoe, Robson, Lamb, Dann and Searle [33] on root rot disease severity ranking for avocado trees, 

the results showed that the lower ranked trees had less differences in PPC and VI values. Hence, 

smaller PPC and spectral variation between different condition categories may cause mis-

classification for lower ranked trees. Such mis-classification may cause farmers to miss the 

opportunity to apply appropriate treatments on a tree with fair condition, which might result in 

further tree condition degradation. It is therefore imperative that farmers are well informed about 

how UAV-based tree condition mapping approaches work and what their limitations might be to 

ensure appropriate interpretation and evaluation of results. 

5. Conclusions 

The study identified the accuracy of UAS-based mapping of avocado tree height and GEOBIA-

derived canopy dimensions, as well as the correlation between PPC and both spectral and textural 
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attributes. The CHM-derived tree height and the spectral and textural attributes were used to rank 

the tree condition using a seven-feature NIR random forest classifier and achieved a 98.48% accuracy. 

Such techniques could potentially provide essential information for the horticulture industry to 

achieve plant-scale precision agricultural orchard management. Radiometric correction of UAS 

imagery is essential as a prerequisite for accurate PPC estimation using NDVI or any other spectral 

information. Future research should focus on testing condition ranking methods over larger areas to 

scale up to the orchard level. It would also be important to include more sampled trees with all four 

condition categories to train the classifier to more accurately meet the avocado industry’s tree 

condition ranking standards in Australia. Furthermore, such condition ranking technique needs to 

be tested in different phenological stages to assess the robust features for condition ranking and its 

all-season performance. Eventually, the condition ranking method might be tested and adapted to 

different horticultural tree crops. By understanding the plant-scale tree condition, the farmers could 

potentially estimate the general tree crop productivity to develop better management strategies by 

applying appropriate agricultural treatments accordingly. Such condition ranking strategy could 

play a role to bridge the gap between the remote sensing expertise and farmers’ knowledge of their 

tree crops. 
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