Preprint
Article

The Impact of Climate Change on Hydroecological Response in Chalk Streams

Altmetrics

Downloads

329

Views

223

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 December 2018

Posted:

24 December 2018

You are already at the latest version

Alerts
Abstract
Climate change represents a major threat to lotic freshwater ecosystems and their ability to support the provision of ecosystem services. England’s chalk streams are in a poor state of health, with significant concerns regarding their resilience, the ability to adapt, under a changing climate. This paper aims to quantify the effect of climate change on hydroecological response, the health of the river, for the River Nar, a SSSI in the south-east of England. To this end, we apply a coupled hydrological and hydroecological modelling framework, with the UKCP09 probabilistic climate projections serving as input (A1B high emissions scenario). Results show that, from 2021 to the end of the century, hydroecological response becomes more heterogeneous. Despite the limited range of the functional feeding groups on the baseline, the River Nar has been able to adapt to extreme events due to inter-annual variation. In the future, this variation is greatly reduced, raising real concerns over the resilience of the river ecosystem under climate change. These new insights into the health of the River Nar, and chalk streams more generally, highlights the necessity of further study and the real need to for changed river management practices.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated