Preprint
Article

Determining the AMSR-E SST Footprint from Co-located MODIS SSTs

Altmetrics

Downloads

320

Views

273

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 December 2018

Posted:

24 December 2018

You are already at the latest version

Alerts
Abstract
This study was undertaken to derive and analyze the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) sea surface temperature (SST) footprint associated with the Remote Sensing Systems (RSS) Level-2 (L2) product. The footprint, in this case, is characterized by the weight attributed to each 4  4 km square contributing to the SST value of a given AMSR-E pixel. High-resolution L2 SST fields obtained from the MODerate-resolution Imaging Spectroradiometer (MODIS), carried on the same spacecraft as AMSR-E, are used as the sub-resolution “ground truth“ from which the AMSR-E footprint is determined. Mathematically, the approach is equivalent to a linear inversion problem, and its solution is pursued by means of a constrained least square approximation based on the bootstrap sampling procedure. The method yielded an elliptic-like Gaussian kernel with an aspect ratio  1.58, very close to the AMSR-E 6.93GHz channel aspect ratio,  1.7. (The 6.93GHz channel is the primary spectral frequency used to determine SST.) The semi-major axis of the estimated footprint is found to be alignedwith the instantaneous field-of-view of the sensor as expected fromthe geometric characteristics of AMSR-E. Footprintswere also analyzed year-by-year and as a function of latitude and found to be stable – no dependence on latitude or on time. Precise knowledge of the footprint is central for any satellite-derived product characterization and, in particular, for efforts to deconvolve the heavily oversampled AMSR-E SST fields and for studies devoted to product validation and comparison. A preliminarly analysis suggests that use of the derived footprint will reduce the variance between AMSR-E and MODIS fields compared to the results obtained.
Keywords: 
Subject: Environmental and Earth Sciences  -   Oceanography
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated