Preprint
Article

Increase in Critical Current Density for Increasing Applied Magnetic Field in a High-Temperature Superconducting Superlattice

Altmetrics

Downloads

299

Views

369

Comments

0

This version is not peer-reviewed

Submitted:

27 December 2018

Posted:

28 December 2018

You are already at the latest version

Alerts
Abstract
In the present work, a superlattice structure comprising superconducting and insulator layers is studied. Here, if a magnetic field is applied parallel to the layers, the lack of a pinning center leads to a novel transition; in particular, as the applied magnetic field is reduced, the stationary wave surrounding the magnetic flux quantum in the superconducting layer eventually collides with the superconducting–insulating interfaces on both sides because its radius becomes larger than the width of the superconducting layer. At this instant, the stationary wave will collapse, and a transition will occur: the magnetic quanta are collapsed and thus the uniform magnetic field distribution is achieved, which corresponds to the transition from the superconducting state to the normal state over critical current. Considering a one-dimensional model of the structure, a critical current density equation is derived that indicates an increase in the critical current density for increased applied magnetic field. Subsequently, the same calculation was conducted after changing the direction of the magnetic field component, and the combination of these two calculations expresses the anisotropic property of the structure. The phenomenon is also predicted for anisotropic critical current density. This phenomenon is an important discovery that helps manufacture high-temperature superconducting tape as well as large high-temperature superconducting coils.
Keywords: 
Subject: Physical Sciences  -   Condensed Matter Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated