A peer-reviewed article of this preprint also exists.
Abstract
Abstract: The Inconel 625 is a nickel-based alloy has been widely used in the high-temperature application. The Inconel 625 exhibits unstable plastic flow at elevated temperature characterized by serrated yielding, known as Portevin-Le Chatelier effect. The aim of this work is to evaluate the mechanical properties at high temperatures of the Inconel 625. The tensile tests were performed in the temperature range of room temperature until 1000 °C and strain rate of 2x10^-4 to 2x10^-3 s^-1. The creep tests were performed in the temperature range of 600-700 °C, in the stress range of 500-600 MPa in a constant load mode. The surface fracture was observed by optical and scanning electron microscopy. Serrated stress-strain behavior was observed in the curves obtained at 200 to 700 °C, which was associated with the dynamic strain aging effect. The yield strength and the elongation values show an anomalous behavior as a function of the test temperature. An intergranular cracking was observed specimen tensile tested at 500 °C that can be attributed to the decohesion of the carbides along the grain boundaries. The fracture surface of the specimen tensile tested at 700 °C showed the predominance of transgranular cracking with tear dimples with a parabolic shape.
Keywords:
Subject:
Chemistry and Materials Science - Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.