Preprint
Article

Chemostratigraphy of the Upper Jurassic (Oxfordian) Smackover Formation for Little Cedar Creek and Brooklyn Fields, Alabama

Altmetrics

Downloads

619

Views

352

Comments

0

This version is not peer-reviewed

Submitted:

31 December 2018

Posted:

03 January 2019

You are already at the latest version

Alerts
Abstract
The Upper Jurassic (Oxfordian Age) Smackover Formation is a significant source for hydrocarbon production in southwest Alabama. Brooklyn Field is in southeast Conecuh County, Alabama and has been a major producer of oil and natural gas for the state. The Smackover is a carbonate formation that is divided into seven distinct lithofacies. In southwest Alabama, the Smackover Formation is heavily influenced by paleotopography from the underlying Paleozoic rocks of the Appalachian system. The goal of this study is to determine elemental ratios in rock core within the Smackover Formation using a X-ray fluorescence (XRF) handheld scanner, to correlate between lithofacies in the Smackover Formation and elementally characterize the upper oolitic grainstone reservoir and the lower thrombolite boundstone. Eight wells were used for the study within Brooklyn Field and Little Cedar Creek fields. Cores from the eight wells were scanned on six-inch intervals. Chemical logs were produced to show elemental weights in relation to depth and lithofacies. Well data collected for chemical signatures within producing zones were correlated to reservoir lithofacies and porosity. Aluminum, silicon, calcium, titanium, and iron were the most significant (>95% confidence level) predictors of porosity and is related to the depositional environment and subsequent diageneses of the strata. XRF data suggests relative enrichments in iron, titanium, and potassium may be related to deposition in relatively restricted marine waters.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geochemistry and Petrology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated