The expansion of concrete subjected to extreme elevated temperature is linked with intricate micro-structural variations, such as the transformation of the constituent phases. This study proposes a model to predict the thermal expansion of cement paste and concrete considering micro-structural changes under elevated temperatures ranging from 20°C to 800°C. The model presented can consider characteristics of various aggregates in the calculation of thermal expansion for concrete. The model is a combination of a multi-scale stoichiometric model and a multi-scale composite model. At the cement paste level, the model satisfactorily predicted a test result. At concrete level, upper bounds from the model were matched relatively well with test results by previous researcher. If the mechanical properties, such as elastic modulus (E), Poisson’s ratio (ν), and thermal deformation, of the aggregates used in concrete are given, it is likely that the model will reasonably predict experimental results.
Keywords:
Subject: Chemistry and Materials Science - Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.