Preprint
Article

Prediction Models to Control Aging Time in Red Wine

Altmetrics

Downloads

339

Views

277

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 January 2019

Posted:

11 January 2019

You are already at the latest version

Alerts
Abstract
A combination of physical-chemical analysis has been used to monitor the aging of red wines from D.O. Toro (Spain). The changes in the chemical composition of wines that occur along aging time can be permitted to discriminate wine samples collected after one, four, seven and ten months of aging. Different computational models were used to develop a good authenticity tool to certificate wines. In this research different models have developed: Artificial Neural Network models (ANNs), Support Vector Machine (SVM) and Random Forest (RF) models. The results obtained for the ANN model developed with sigmoidal function in the output neuron and the RF model permit to determine the aging time, with an average absolute percentage deviation below 1% and it can conclude that these two models have demonstrated its capacity as a valid tool to predict the wine age.
Keywords: 
Subject: Chemistry and Materials Science  -   Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated