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Abstract

A combination of physical-chemical analysis has been used to monitor the aging of red wines
from D.O. Toro (Spain). The changes in the chemical composition of wines that occur along aging
time can be permitted to discriminate wine samples collected after one, four, seven and ten months
of aging. Different computational models were used to develop a good authenticity tool to
certificate wines. In this research different models have developed: Artificial Neural Network
models (ANNSs), Support Vector Machine (SVM) and Random Forest (RF) models. The results
obtained for the ANN model developed with sigmoidal function in the output neuron and the RF
model permit to determine the aging time, with an average absolute percentage deviation below 1%
and it can conclude that these two models have demonstrated its capacity as a valid tool to predict

the wine age.
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1. Introduction

In the last decade consumers are interested in foods identified with a place of origin (Luykx and
van Ruth, 2008), and in their characteristics and quality (Saurina, 2010, Luykx and van Ruth, 2008).
One of these products is wine that it a beverage obtained from the alcoholic fermentation of grapes
(da Costa, Llobodanin, de Lima, Castro and Barbosa, 2018), and it is one of the most popular
(Chen, Tawiah, Palmer and Erol, 2018), complex (Rapeanu, Vicol and Bichescu, 2009) and
consumed alcoholic beverages around the world (Hu, Yin, Ma and Liu, 2018). In the European
Union (EU) wines produced in specified regions are clearly identified and controlled (Riovanto,
Cynkar, Berzaghi and Cozzolino, 2011).

In this sense, there are different quality schemes under a geographical indication according to
specific characteristics: 1) protected designation of origin (PDO), ii) protected geographical
indication (PGI) and iii) geographical indication of spirit drinks and aromatized wines (GI)
(European Commission, 2018). As is understandable, the use of these schemes impacts on market
recognition and, even, in a higher sale price, due to this, improper use of these geographical
indications can be injurious to producers and consumers (Luykx and van Ruth, 2008). South
European countries (Spain among others) are involved in food authentication studies, for example
in wines and foodstuffs registered as, among others, PDO (Danezis, Tsagkaris, Camin, Brusic and
Georgiou, 2016).

Wine adulterations such as water dilution or mixed with cheaper wine, are a common practice
even since ancient Greece and Rome (Moldes, Mejuto, Rial-Otero and Simal-Gandara, 2017).
Nowadays, the quality and the commercial value are linked to elaboration procedures and
geographical places (Moldes, Mejuto, Rial-Otero and Simal-Gandara, 2017), as for example,
Tempranillo red wine from D.O (Denominacién de Origen) Toro (Spain), where the wine
authenticity is a key factor in terms of differentiation, which has a significant influence on the final
sale price (Moldes, Mejuto, Rial-Otero and Simal-Gandara, 2017).

The wine’s quality and organoleptic properties can be influenced by oenological parameters
such as: grape variety, winemaking process, and aging system, among others (Serrano-Lourido,
Saurina, Hernandez-Cassou and Checa, 2012). As these parameters are related to the wine’s
quality/price, the possible to find a relationship between physicochemical parameters and a specific
aging practice developed in an appellation of origin (D.O. Toro) can be interesting, especially if the
wine’s characterization and its combination with chemometric treatment can be provided good
results that also reduce the operative costs compared to other methods like expert panellists

(Saurina, 2010). Due to this, different computational models can be used. In this research four
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different models are presented; i) two Artificial Neural Networks models (ANNS), ii) one Support
Vector Machine (SVM) model and iii) one Random Forest (RF) model.

ANNs are a computational technique developed in the same way that biological neural system
(Akintunde, Ajala and Betiku, 2015, Haykin, 1999, Bishop, 1995, Gonzalez-Fernandez, lglesias-
Otero, Esteki, Moldes, Mejuto and Simal-Gandara, 2018). McCulloch and Pitts in their research
(McCulloch and Pitts, 1943) introduced the concept of the artificial neuron (Dawson and Wilby,
2001). These interconnected units (artificial neurons or nodes) are able to model complex nonlinear
relationships between independent variables (also called inputs) and dependent variables (outputs)
(Bishop, 1995, Beck et al., 2013). ANNs model based on a multi-layer perceptron (MLP), one of
the most popular ANN topology (Dawson and Wilby, 2001), were used. An MLP is a feed-forward
ANN model that maps input data onto output data (RapidMiner GmbH, 2018). This kind of models
has multiple layers of neurons (input, hidden and output) with each layer all connected to the next
network layer (RapidMiner GmbH, 2018).

One of the most important advantages for ANN is that it can extract information from complex
data matrix due its capability to learn the relationship between independent and dependent variables
(Chiang and Chang, 2009). According to this advantage, ANNs are applied in many different
research fields, such as:

i) Hydrology to model the water quality using different water quality variables (Gazzaz,

Yusoff, Aris, Juahir and Ramli, 2012),

ii) in Biotechnology to optimize 1,3-propanediol production using microorganisms like
Lactobacillus brevis N1E9.3.3 (Narisetty, Astray, Gullon, Castro, Parameswaran and
Pandey, 2017) or to optimize oil extraction from Bauhinia monandra seed that it is a
potential biofuel candidate (Akintunde, Ajala and Betiku, 2015),

iii) in Food technology to develop an authentication model to predict the cultivar, the

production type and the harvest date for tomatoes (Hernandez Suarez M., Astray Dopazo
G., Larios Lopez D. and Espinosa F., 2015) to authenticate extra virgin oil varieties
(Bucci, Magri, Magri, Marini and Marini, 2002),

iv) in Chemistry to predict percolation temperature (Montoya, Moldes, Cid, Astray, Galvez and
Mejuto, 2015), to predict the solvent accessibility of proteins (Ahmad and Gromiha,
2003), or in other fields where the ANN has proved its capacity for medical, economic or
agro-food science purposes (Gonzalez-Fernandez, Iglesias-Otero, Esteki, Moldes, Mejuto
and Simal-Gandara, 2018).

d0i:10.20944/preprints201901.0110.v1
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SVM was first introduced by Boser et al. in 1992 (Capron, Massart and Smeyers-Verbeke,
2007, Boser, Guyon and Vapnik, 1992). Support vector machine is a powerful non-linear method to
develop classification and regression models (RapidMiner GmbH, 2018, Rios-Reina,
Elcoroaristizabal, Ocafia-Gonzalez, Garcia-Gonzalez, Amigo and Callején, 2017). An SVM model
used input data to constructs a hyperplane, or a group of hyperplanes, in a high-dimensional space
(RapidMiner GmbH, 2018). These hyperplanes allow that the SVM model can be used for different
purposes (RapidMiner GmbH, 2018). It’s main advantage, in comparison with other classification
techniques, for example PLS-DA, is that SVM is flexible to model complex classification non-
linear problems (Rios-Reina, Elcoroaristizabal, Ocafia-Gonzélez, Garcia-Gonzalez, Amigo and
Callejon, 2017) due to this in many studies and applications, Support Vector Machine models can
be applied, such as:

i) to determine air specific heat ratios at elevated pressures (Kamari, Mohammadi, Bahadori

and Zendehboudi, 2014),
i) to classify glaucoma, a progressive optic neuropathy disease (Chan, Lee, Sample,
Goldbaum, Weinreb and Sejnowski, 2002),

iii) can be used to forecast electricity load based due to its importance in the regional power

system strategy management (Pai and Hong, 2005) or,

iv) even, to real-time crash risk evaluation in the active traffic management (ATM) (Yu, R. and

Abdel-Aty, 2013), among other fields.

Random forest is a learning method for classification, or regression (Alhaj and Maghari, 2017,
Tian et al., 2017) that was proposed by Breiman in 2001 (Tian et al., 2017, Breiman, Leo, 2001).
RF model consists in a classifier with different decision trees, where the final prediction is obtained
by all the single classification trees (Tian et al., 2017,Breiman, L., Friedman, Olshen and Stone,
1984), that is, for a quantitative response, the prediction is the average of each individual tree
predicted values (Vigneau, Courcoux, Symoneaux, Guérin and Villiere, 2018). This method is the
key that converts to Random Forest in a powerful prediction method (Vigneau, Courcoux,
Symoneaux, Guerin and Villiere, 2018). Random forests correct the problem of overfitting that
presents the decision trees (Alhaj and Maghari, 2017) and have been used in multiple research
fields, such as:

i) Medicine to estimate the survivability of cancer patients within four years or not (Alhaj and

Maghari, 2017),
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i) in Food technology to develop a model focused on the volatile organic compounds
responsible of the olfactory perception (Vigneau, Courcoux, Symoneaux, Guérin and
Villiere, 2018),

iii) in Ecology where RF is one of the most used statistical method used for example to classify
invasive plants (Cutler et al., 2007), or to estimate high-density biomass for wetland
vegetation (Mutanga, Adam and Cho, 2012), inter alia.

The objective of this paper is to develop different prediction models as a tool of wine

authenticity that could predict the aging time (1-4-7-10 months) of red wines from D.O. Toro
(Spain).
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2. Materials and methods

A red wine, variety Tempranillo or Tinta Toro, was studied. A total of 15 batches were settled
down including different aging systems, three chips system (1, 2 and 3) with three toast levels were
studied. The traditional aging system was studied in 6 barrels of mild, medium and strong toast in a
duplicated way. Both the barrels and the chips were made with oak French (allier, Q. sessilis). All
the ageing 225-Liter tanks were used with small doses of oxygen with an equipment (OenoAZ3)
simulating the micro-oxygenation produced through wood pores in the barrel. In addition, a control
(without contact with wood) wine in stainless steel tank in an inert way was studied during the
experiment. In this research, 58 samples reported by Apetrei et al. (2012) in their original research
were used (Apetrei, Rodriguez-Méndez, Apetrei, Nevares, del Alamo and de Saja, 2012).

Independent variables were obtained by Apetrei et al. (2012) using conventional chemical
analyses of the wines following international regulations of International Organisation of Vine and
Wine (International Organisation of Vine and Wine, OIV, 1990). These parameters were; tartaric
acid (T), glycerol (G), potassium (K), total polyphenol index (TPI), alcoholic grade (AD), dry
extract (DE), total acidity (TA), volatile acidity (VA), total-SO, (T-SOy), free-SO; (F-SO>),
reducing sugars (S), relative density (DEN) and pH.

Data from the original paper were split randomly in three groups, one group used to develop the
model (called training group, 35 cases), another group formed by 11 cases (validation group) used
to validate the model and a third group to query the selected model (querying group, 12 cases). In
this paper, the predictive power of different models was determined as a function of the coefficient
of determination (R?), the root mean squared error (RMSE) and the average absolute percentage
deviation (AAPD).

According to the main purpose of this research, it is possible to locate in bibliography artificial
neural networks, support vector machines and random forest models focused on different fields on
the wine’s world. It is possible to find research papers about neural models to verify the wine origin
(Alires-De-Sousa, 1996), to classify Slovak white wines from different producers, varieties and
production year (Kruzlicova, Mocak, Balla, Petka, Farkova and Havel, 2009) or to geographical
classification (Selih, Sala and Drgan, 2014,da Costa, Llobodanin, de Lima, Castro and Barbosa,
2018), among others. On the other hand, SVM has been used to classify Syrah wines according to
their origin (Mendoza —Argentina- and Central Valley -Chile-) and them compared with neural
networks (da Costa, Llobodanin, de Lima, Castro and Barbosa, 2018), to authenticate wines from
South Africa, Hungary, Romania and Czech Republic with efficiency (Capron, Massart and

Smeyers-Verbeke, 2007), to characterize and authenticate different Spanish PDO wine vinegars
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(vinagre de Jerez, vinagre de Montilla-Moriles and vinagre del Condado de Huelva) (Rios-Reina,
Elcoroaristizabal, Ocafia-Gonzalez, Garcia-Gonzélez, Amigo and Callejon, 2017), to predict
enological parameters and discrimination of rice wine age (Yu, H., Lin, Xu, Ying, Li and Pan,
2008) or to predict wine’s grade (Chen, Tawiah, Palmer and Erol, 2018),inter alia. Finally, random
forest have been used to classify wines according to their production regions using trace elements
(Tian et al., 2017), to model the impact of climate change on the wine regions from Hungary (Gaal,
Moriondo and Bindi, 2012) or in different European wine regions (Moriondo et al., 2013) and to
classify the cultivars on the basis of different chemical present in wine (Ahammed and Abedin,
2018), among others

The first developed model was an ANN model. To obtain the best ANN model is necessary to
develop different ANN topologies with many configuration options selected by a trial and error
procedure (Dawson and Wilby, 2001, Iglesias-Otero, Fernandez-Gonzélez, Rodriguez-Caride,
Astray, Mejuto and Rodriguez-Rajo, 2015). The ANN model’s topology is composed by different
kind of layers: i) a first layer (called input layer) destined to introduce the experimental data in the
network, ii) after this first layer there is/are another kind of layers (called hidden or intermediate

layers) and finally, iii) a last layer (output layer) where the predicted value is generated (Figure 1)/

During the ANN training phase, the value connection between neurons (called weights) is
adjusted to achieve the minimum error between the experimental and the predicted output (Dai, Shi,
Li, Ouyang and Huo, 2009). This process occurs in the hidden layers and output layer, and allows
the neural network to learn based on training experimental cases. Trial and error approach was used
to find the best neural model. Different topologies and training cycles were used to provide the best
results according to statistics in the validation phase.

In this research, two types of ANN have been analysed. The first network,ANNz, with
backpropagation algorithm, sigmoidal function in its intermediate neurons and a linear function in
the output neuron, and a second type, ANN>, also with backpropagation algorithm and sigmoidal
function in all intermediate and output neurons.

A disadvantage of neural models based on back-propagation algorithm, is that consume a huge
computational time to optimize the different parameters which constitute the neural model (da
Costa, Llobodanin, de Lima, Castro and Barbosa, 2018,Huang, Zhu and Siew, 2006). Due to this,
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other techniques, SVM and RF have been studied due to these techniques require less
computational cost and time of execution.

SVM is a powerful technique for classification and regression (RapidMiner GmbH, 2018), in
our case, it was used to regression tasks using C-SVC and nu-SVC SVM types (RapidMiner GmbH,
2018). The SVM model finds an optimum separating hyperplane to maximize the borderline of the
decision surface (da Costa, Llobodanin, de Lima, Castro and Barbosa, 2018). In this study, the
LIBSVM learner by Chang and Lin (RapidMiner GmbH, 2018, Chang and Lin, 2018) was used.
SVM model used the RBF kernel and the configuration of parameters, gamma and C, were studied
according to the range proposed by the updated guide provide by Hsu et al. (2003).

In random forest regression model, three parameters were optimized: i) the number of trees (1
to 100 in twenty linear steps), ii) the least square criterion, iii) maximal depth (-1 to 10 in eleven
linear steps), and iv) apply pre-pruning (true or false).

Neural models have been implemented in an AMD Ryzen 7 1800X Eight-Core Processor 3.60
GHz with 16 GB of RAM memory. ANNz, SVM and RF models were developed using RapidMiner
Studio Educational License and RapidMiner Studio Trial License from RapidMiner Inc. Neural
models ANN2 were developed using the EasyNN plus v14.0d software from Neural Planner
Software Ltd. Data were fitted using Microsoft Excel from Microsoft Office Professional Plus
2013. Figures were drawn with Microsoft PowerPoint from Microsoft Office Professional Plus

2013 and Sigmaplot 13 from Systat Software Inc.
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3. Results and discussion

Numerous ANN models (ANN: and ANN2) were developed using trial and error method to
find the best neural model topology. Over seven thousand neural network models with different
topologies and training cycles were developed (varying the number of intermediate neurons
between one and 2n+1, where n is the number of input variables used). The best neural model was
chosen based on its validation performance, and then, the best models were rechecked with the
querying data group.

"Table 1 shows the adjustments for the best ANN: model selected. It can be observed that neural
model implemented with linear function in the output layer presents a good determination
coefficient in all phases (between 0.998 for the training phase and 0.989 for querying phase). For
the training phase, the error is below 10% (an acceptable error for this type of variable -aging time-
). Similar behaviour is observed in the validation phase. In both phases, the root mean squared error
in under 0.29 months. In querying phase, the ANN1 model presents a good R? (0.989), nevertheless,
a slight worsening is observed in the prediction in terms of RMSE (0.40 months) and AAPD
(13.51%).

TABLE 1

Figure 2 shows the real value of aging time (orange) and the values predicted by the best ANN1
model (dark blue) developed in this research. It can be observed in the validation cases that the
ANN;: model overestimates the real value (cases 1 and 2) while for cases 4, 6 and 8 the
overestimation is very slight (between 1.28% and 4.46%). Cases 1 and 2 present a high error, in
fact, the real value is 1 and the values predicted were 1.31 and 1.41, respectively. For the rest of the
validation cases, the estimates are slightly lower than the real value (between -0.81% and -2.84%).
For query cases, it can be seen how the linear ANN model presents overestimation of the aging time
value in nine of the twelve cases reserved (especially in cases 1, 3 and 4). Once again the cases with
real aging time of 1 month were the cases with bigger errors. Cases 1 and 3 present an individual
percentage deviation of 68.70% and 37.25%. This is the reason for the increase of RMSE and the
AAPD values in the querying phase. This behaviour is also observed in the training phase, where
cases with one year of aging show greater errors (between -0.91% and 69.43%) than the rest of the
cases. In view of these results, it can be concluded that the ANN: model presents a good general

performance in all its phases, nevertheless, for low aging times, the model does not work at all well.
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The next model implemented is the ANN model (ANN2) with logistic function in its output
neuron. As can be seen in Table 1, the adjustment parameters improve the fits of the ANN1 model.
It can be seen that for the training and the validation phase, the model presents coefficients of
determination of one, improving the R? of the ANN; model. It is also clear that the ANN, model
improves the adjustments in terms of RMSE and AAPD, going from an RMSE of 0.20 months to
0.04 months, for the validation phase of the ANN1 and ANN: model, respectively. This good
behaviour is also observed in the querying phase where the ANN2 model presents a good
determination coefficient, which corresponds with a low value of root mean squared error (0.03
months) and an average absolute percentage deviation below 0.85%.

In Figure 2, it can be seen the real value of aging time (orange) and the values predicted by
ANN:2 model (brown). In validation cases, the ANN2 model predicts with accuracy the real value of
aging time. This behaviour is also observed for the query cases, it can be seen how the logistic
ANN model presents a good prediction of the aging time value for all cases which makes the
adjustments of this phase are good (0.03 months of RMSE and a 0.84% of APPD. Contrary to the
previous ANN model, in this model no high errors are observed in any of the aging periods studied,
in fact, errors remain between -1.63% (case 5 in querying phase) and 3.99% (case 2 in validation
phase). With these results, it can be said that ANN: can predict with accuracy the aging time of red
wines from D.O. Toro (Spain).

FIGURE 2

A new model based on support vector machine model was developed using library LIBSVM by
Chang and Lin (RapidMiner GmbH, 2018, Chang and Lin, 2018). Gamma and C values were
studied using trial and error method to find the best combination according to the range proposed by
the updated guide provided by Hsu et al. (2003) (Hsu, Chang and Lin, 2003).

In Table 1, it can be seen the adjustments for the selected SVM model. It can be observed that
the model presents a good determination coefficient in the training phase (0.995) with a low APPD,
around 6.72% and with only an RMSE of 0.24 months. For the validation phase, it can be seen how
the value of the determination coefficient falls slightly to 0.973 and the average absolute percentage
deviation grows until to 12.86% that corresponds with a root mean squared error of 0.56 months.
This high AAPD in the validation phase is due to the case number 2 in which the model predicts an
aging value of 1.85 when the real value is 1 month, that is, the model predicts this case with 85.12%

of individual percentage deviation (see Figure 2 top). This high error affects, significantly, the
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model’s AAPD value (12.86%, see Table 1). Other two cases, 9 and 11, present an error close to the
one considered as acceptable (10%), -9.64 % and -10.73%, respectively.

The same behaviour can be seen in the querying phase. In this case, the R? increases to 0.988
and the RMSE decreases to 0.37 months. Nevertheless, the APPD increases up to 16.35%, this huge
value is due, once again, the prediction for cases with one month aging time (see Figure 2 bottom).
For cases 1 and 3, the individual percentage deviations are around 46.07% and an 80.85%,
respectively, the individual percentage deviation for case 2 is -36.03%. These high values distort the
value of the APPD in the querying phase. In view of these results, it can be concluded that the SVM
model presents bad results for low aging times.

Finally, the last model implemented in this research is a model of random forest. According to
the parameters exposed above, the best random forest model is an RF model with only one tree that
provides the results shown in [Table 1. It can be observed that the RF model presents an optimum
determination coefficient which causes that the other of analysed parameters, RMSE and APPD, are
zero (Table 1). The random forest model could find that the variables that dominate the
determination of aging time are: the total-SO> (T-SO>), the alcoholic grade (AD) and the free-SO»
(F-SO2). A random forest with only one tree, and with these three parameters, is enough to predict
with total accuracy all cases of the training, validation and querying phase (Figure 2). These results
show that the implemented RF model can predict with accuracy the aging time.

It seems clear that the adjustments obtained for the ANNz and SVM models are not good when
the wines with one month of aging come into play. For the rest of aging times, both models work
reasonably well. The results obtained for ANN> (developed with thirteen input variables) and RF
model (that used three input variables) make these two models usable to guarantee red wine aging
authenticity from D.O. Toro. These two models are able to predict, with accuracy, the aging time
with, in worst case scenario (ANN?>), an average absolute percentage deviation below 1% which
corresponds to a maximum error of 0.04 months (in terms of RMSE). This results improve the
principal component analysis (PCA) model developed by Apetrei et al. (2012) using the oenological
parameters where the analysis can describe a 61% (28% for the first principal component, of the
information; 21% for the second and a 12% for the third) (Apetrei, Rodriguez-Méndez, Apetrei,
Nevares, del Alamo and de Saja, 2012). The partial least squares-discriminant analysis (PLS-DA)
using the physicochemical analyses only can explain a 5°9% of the variance in calibration and 77%
in prediction presenting an RMSE up to 0.347 (Apetrei, Rodriguez-Méndez, Apetrei, Nevares, del
Alamo and de Saja, 2012).
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Regarding the RF model and to our understanding, a single tree in the random forest model
seems to indicate that the wines of the Toro designation of origin, studied in this research, show
particular characteristics that can be a key factor to predict aging time. In addition to this, it is
expected that the inclusion of new experimental data from different wines could lead to the

development of an RF model with more trees.

4. Conclusions

In this study, different models were developed to monitor red wines from D.O. Toro (Spain).
The results obtained for ANN model developed with sigmoidal function in the output neuron and
the random forest model, which used physical-chemical parameters, permit to determine the aging
time, with an average absolute percentage deviation below 1%. In view of the results obtained by
the models, ANN;: and SVM, it would be advisable to continue with the analysis of the wines of the

D.O. Toro and, even, to incorporate wines from the close appellations of origin.
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Figure captions

Figure 1. Example of neural network topology 13-5-1 with 13 neurons in the input layer, five

neurons in the intermediate layer and one in the output layer.

Figure 2. Bar graph for validation (top) and querying (bottom) cases according to the real value of
aging time (orange) and the values predicted by the artificial neural network with linear function in
output neuron (ANN{, dark blue), artificial neural network with sigmoidal function in output neuron

(ANN_2, brown), support vector machine (SVM, olive) and random forest (RF, light blue).
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Table titles

Table 1. Coefficient of determination (R?), root mean squared error (RMSE) and average absolute
percentage deviation (AAPD) for training (T), validation (V) and querying (Q) phase, for each
model present in this research, artificial neural network with linear function in output neuron
(ANN?3), artificial neural network with sigmoidal function in output neuron (ANN>), support vector
machine (SVM) and random forest (RF).

21


http://dx.doi.org/10.20944/preprints201901.0110.v1
http://dx.doi.org/10.3390/molecules24050826

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 January 2019 d0i:10.20944/preprints201901.0110.v1

Table 1

Table 1. Coefficient of determination (R?), root mean squared error (RMSE) and average absolute
percentage deviation (AAPD) for training (T), validation (V) and querying (Q) phase, for each
model present in this research, artificial neural network with linear function in output neuron
(ANN?3), artificial neural network with sigmoidal function in output neuron (ANN2), support vector
machine (SVM) and random forest (RF).

Training Validation Querying
Model R? RMSE AAPD (%) R? RMSE AAPD (%) R? RMSE AAPD (%)
ANN1 0.994 0.28 8.07 0.998 0.20 8.20 0.989 0.40 13.51
ANN. 1.000 0.02 0.42 1.000 0.04 0.87 1.000 0.03 0.84
SVM 0.99 0.24 6.72 0973 0.56 12.86 0.988 0.37 16.35
RF 1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00
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