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Abstract 

A combination of physical-chemical analysis has been used to monitor the aging of red wines 

from D.O. Toro (Spain). The changes in the chemical composition of wines that occur along aging 

time can be permitted to discriminate wine samples collected after one, four, seven and ten months 

of aging. Different computational models were used to develop a good authenticity tool to 

certificate wines. In this research different models have developed: Artificial Neural Network 

models (ANNs), Support Vector Machine (SVM) and Random Forest (RF) models. The results 

obtained for the ANN model developed with sigmoidal function in the output neuron and the RF 

model permit to determine the aging time, with an average absolute percentage deviation below 1% 

and it can conclude that these two models have demonstrated its capacity as a valid tool to predict 

the wine age. 

 

Keywords: Food authenticity; Toro appellation of origin; Prediction Models; Wine; Aging. 
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1. Introduction 

In the last decade consumers are interested in foods identified with a place of origin (Luykx and 

van Ruth, 2008), and in their characteristics and quality (Saurina, 2010, Luykx and van Ruth, 2008). 

One of these products is wine that it a beverage obtained from the alcoholic fermentation of grapes 

(da Costa, Llobodanin, de Lima, Castro and Barbosa, 2018), and it is one of the most popular 

(Chen, Tawiah, Palmer and Erol, 2018), complex (Rapeanu, Vicol and Bichescu, 2009) and 

consumed alcoholic beverages around the world (Hu, Yin, Ma and Liu, 2018). In the European 

Union (EU) wines produced in specified regions are clearly identified and controlled (Riovanto, 

Cynkar, Berzaghi and Cozzolino, 2011). 

In this sense, there are different quality schemes under a geographical indication according to 

specific characteristics: i) protected designation of origin (PDO), ii) protected geographical 

indication (PGI) and iii) geographical indication of spirit drinks and aromatized wines (GI) 

(European Commission, 2018). As is understandable, the use of these schemes impacts on market 

recognition and, even, in a higher sale price, due to this, improper use of these geographical 

indications can be injurious to producers and consumers (Luykx and van Ruth, 2008). South 

European countries (Spain among others) are involved in food authentication studies, for example 

in wines and foodstuffs registered as, among others, PDO (Danezis, Tsagkaris, Camin, Brusic and 

Georgiou, 2016). 

Wine adulterations such as water dilution or mixed with cheaper wine, are a common practice 

even since ancient Greece and Rome (Moldes, Mejuto, Rial-Otero and Simal-Gandara, 2017). 

Nowadays, the quality and the commercial value are linked to elaboration procedures and 

geographical places (Moldes, Mejuto, Rial-Otero and Simal-Gandara, 2017), as for example, 

Tempranillo red wine from D.O (Denominación de Origen) Toro (Spain), where the wine 

authenticity is a key factor in terms of differentiation, which has a significant influence on the final 

sale price (Moldes, Mejuto, Rial-Otero and Simal-Gandara, 2017).  

The wine´s quality and organoleptic properties can be influenced by oenological parameters 

such as: grape variety, winemaking process, and aging system, among others (Serrano-Lourido, 

Saurina, Hernández-Cassou and Checa, 2012). As these parameters are related to the wine´s 

quality/price, the possible to find a relationship between physicochemical parameters and a specific 

aging practice developed in an appellation of origin (D.O. Toro) can be interesting, especially if the 

wine´s characterization and its combination with chemometric treatment can be provided good 

results that also reduce the operative costs compared to other methods like expert panellists 

(Saurina, 2010).  Due to this, different computational models can be used. In this research four 
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different models are presented; i) two Artificial Neural Networks models (ANNs), ii) one Support 

Vector Machine (SVM) model and iii) one Random Forest (RF) model. 

ANNs are a computational technique developed in the same way that biological neural system 

(Akintunde, Ajala and Betiku, 2015, Haykin, 1999, Bishop, 1995, Gonzalez-Fernandez, Iglesias-

Otero, Esteki, Moldes, Mejuto and Simal-Gandara, 2018). McCulloch and Pitts in their research 

(McCulloch and Pitts, 1943) introduced the concept of the artificial neuron (Dawson and Wilby, 

2001). These interconnected units (artificial neurons or nodes) are able to model complex nonlinear 

relationships between independent variables (also called inputs) and dependent variables (outputs) 

(Bishop, 1995, Beck et al., 2013). ANNs model based on a multi-layer perceptron (MLP), one of 

the most popular ANN topology (Dawson and Wilby, 2001), were used. An MLP is a feed-forward 

ANN model that maps input data onto output data (RapidMiner GmbH, 2018). This kind of models 

has multiple layers of neurons (input, hidden and output) with each layer all connected to the next 

network layer (RapidMiner GmbH, 2018). 

One of the most important advantages for ANN is that it can extract information from complex 

data matrix due its capability to learn the relationship between independent and dependent variables 

(Chiang and Chang, 2009). According to this advantage, ANNs are applied in many different 

research fields, such as:  

i) Hydrology to model the water quality using different water quality variables (Gazzaz, 

Yusoff, Aris, Juahir and Ramli, 2012),  

ii) in Biotechnology to optimize 1,3-propanediol production using microorganisms like 

Lactobacillus brevis N1E9.3.3 (Narisetty, Astray, Gullón, Castro, Parameswaran and 

Pandey, 2017) or to optimize oil extraction from Bauhinia monandra seed that it is a 

potential biofuel candidate (Akintunde, Ajala and Betiku, 2015),   

iii) in Food technology to develop an authentication model to predict the cultivar, the 

production type and the harvest date for tomatoes (Hernández Suárez M., Astray Dopazo 

G., Larios López D. and Espinosa F., 2015) to authenticate extra virgin oil varieties 

(Bucci, Magrí, Magrí, Marini and Marini, 2002), 

iv) in Chemistry to predict percolation temperature (Montoya, Moldes, Cid, Astray, Gálvez and 

Mejuto, 2015), to predict the solvent accessibility of proteins (Ahmad and Gromiha, 

2003), or in other fields where the ANN has proved its capacity for medical, economic or 

agro-food science purposes (Gonzalez-Fernandez, Iglesias-Otero, Esteki, Moldes, Mejuto 

and Simal-Gandara, 2018). 
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SVM was first introduced by Boser et al. in 1992 (Capron, Massart and Smeyers-Verbeke, 

2007, Boser, Guyon and Vapnik, 1992). Support vector machine is a powerful non-linear method to 

develop classification and regression models (RapidMiner GmbH, 2018, Ríos-Reina, 

Elcoroaristizabal, Ocaña-González, García-González, Amigo and Callejón, 2017). An SVM model 

used input data to constructs a hyperplane, or a group of hyperplanes, in a high-dimensional space 

(RapidMiner GmbH, 2018). These hyperplanes allow that the SVM model can be used for different 

purposes (RapidMiner GmbH, 2018). It´s main advantage, in comparison with other classification 

techniques, for example PLS-DA, is that SVM is flexible to model complex classification non-

linear problems (Ríos-Reina, Elcoroaristizabal, Ocaña-González, García-González, Amigo and 

Callejón, 2017) due to this in many studies and applications, Support Vector Machine models can 

be applied, such as: 

i) to determine air specific heat ratios at elevated pressures (Kamari, Mohammadi, Bahadori 

and Zendehboudi, 2014), 

ii) to classify glaucoma, a progressive optic neuropathy disease (Chan, Lee, Sample, 

Goldbaum, Weinreb and Sejnowski, 2002), 

iii) can be used to forecast electricity load based due to its importance in the regional power 

system strategy management (Pai and Hong, 2005) or, 

iv) even, to real-time crash risk evaluation in the active traffic management (ATM) (Yu, R. and 

Abdel-Aty, 2013), among other fields. 

Random forest is a learning method for classification, or regression (Alhaj and Maghari, 2017, 

Tian et al., 2017) that was proposed by Breiman in 2001 (Tian et al., 2017, Breiman, Leo, 2001). 

RF model consists in a classifier with different decision trees, where the final prediction is obtained 

by all the single classification trees (Tian et al., 2017,Breiman, L., Friedman, Olshen and Stone, 

1984), that is, for a quantitative response, the prediction is the average of each individual tree 

predicted values (Vigneau, Courcoux, Symoneaux, Guérin and Villière, 2018). This method is the 

key that converts to Random Forest in a powerful prediction method (Vigneau, Courcoux, 

Symoneaux, Guérin and Villière, 2018). Random forests correct the problem of overfitting that 

presents the decision trees (Alhaj and Maghari, 2017) and have been used in multiple research 

fields, such as:  

i) Medicine to estimate the survivability of cancer patients within four years or not (Alhaj and 

Maghari, 2017), 
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ii) in Food technology to develop a model focused on the volatile organic compounds 

responsible of the olfactory perception (Vigneau, Courcoux, Symoneaux, Guérin and 

Villière, 2018), 

iii) in Ecology where RF is one of the most used statistical method used for example to classify 

invasive plants (Cutler et al., 2007), or to estimate high-density biomass for wetland 

vegetation (Mutanga, Adam and Cho, 2012), inter alia. 

The objective of this paper is to develop different prediction models as a tool of wine 

authenticity that could predict the aging time (1-4-7-10 months) of red wines from D.O. Toro 

(Spain). 
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2. Materials and methods 

A red wine, variety Tempranillo or Tinta Toro, was studied. A total of 15 batches were settled 

down including different aging systems, three chips system (1, 2 and 3) with three toast levels were 

studied. The traditional aging system was studied in 6 barrels of mild, medium and strong toast in a 

duplicated way. Both the barrels and the chips were made with oak French (allier, Q. sessilis). All 

the ageing 225-Liter tanks were used with small doses of oxygen with an equipment (OenoAZ3) 

simulating the micro-oxygenation produced through wood pores in the barrel. In addition, a control 

(without contact with wood) wine in stainless steel tank in an inert way was studied during the 

experiment. In this research, 58 samples reported by Apetrei et al. (2012) in their original research 

were used (Apetrei, Rodríguez-Méndez, Apetrei, Nevares, del Alamo and de Saja, 2012). 

Independent variables were obtained by Apetrei et al. (2012) using conventional chemical 

analyses of the wines following international regulations of International Organisation of Vine and 

Wine (International Organisation of Vine and Wine, OIV, 1990). These parameters were; tartaric 

acid (T), glycerol (G), potassium (K), total polyphenol index (TPI), alcoholic grade (AD), dry 

extract (DE), total acidity (TA), volatile acidity (VA), total-SO2 (T-SO2), free-SO2 (F-SO2), 

reducing sugars (S), relative density (DEN) and pH. 

Data from the original paper were split randomly in three groups, one group used to develop the 

model (called training group, 35 cases), another group formed by 11 cases (validation group) used 

to validate the model and a third group to query the selected model (querying group, 12 cases). In 

this paper, the predictive power of different models was determined as a function of the coefficient 

of determination (R2), the root mean squared error (RMSE) and the average absolute percentage 

deviation (AAPD). 

According to the main purpose of this research, it is possible to locate in bibliography artificial 

neural networks, support vector machines and random forest models focused on different fields on 

the wine`s world. It is possible to find research papers about neural models to verify the wine origin 

(Aires-De-Sousa, 1996), to classify Slovak white wines from different producers, varieties and 

production year (Kruzlicova, Mocak, Balla, Petka, Farkova and Havel, 2009) or to geographical 

classification (Šelih, Šala and Drgan, 2014,da Costa, Llobodanin, de Lima, Castro and Barbosa, 

2018), among others. On the other hand, SVM has been used to classify Syrah wines according to 

their origin (Mendoza –Argentina- and Central Valley -Chile-) and them compared with neural 

networks (da Costa, Llobodanin, de Lima, Castro and Barbosa, 2018), to authenticate wines from 

South Africa, Hungary, Romania and Czech Republic with efficiency (Capron, Massart and 

Smeyers-Verbeke, 2007), to characterize and authenticate different Spanish PDO wine vinegars 
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(vinagre de Jerez, vinagre de Montilla-Moriles and vinagre del Condado de Huelva) (Ríos-Reina, 

Elcoroaristizabal, Ocaña-González, García-González, Amigo and Callejón, 2017), to predict 

enological parameters and discrimination of rice wine age (Yu, H., Lin, Xu, Ying, Li and Pan, 

2008) or to predict wine’s grade (Chen, Tawiah, Palmer and Erol, 2018),inter alia. Finally, random 

forest have been used to classify wines according to their production regions using trace elements 

(Tian et al., 2017), to model the impact of climate change on the wine regions from Hungary (Gaál, 

Moriondo and Bindi, 2012) or in different European wine regions (Moriondo et al., 2013) and to 

classify the cultivars on the basis of different chemical present in wine (Ahammed and Abedin, 

2018), among others 

The first developed model was an ANN model. To obtain the best ANN model is necessary to 

develop different ANN topologies with many configuration options selected by a trial and error 

procedure (Dawson and Wilby, 2001, Iglesias-Otero, Fernández-González, Rodríguez-Caride, 

Astray, Mejuto and Rodríguez-Rajo, 2015). The ANN model’s topology is composed by different 

kind of layers: i) a first layer (called input layer) destined to introduce the experimental data in the 

network, ii) after this first layer there is/are another kind of layers (called hidden or intermediate 

layers) and finally, iii) a last layer (output layer) where the predicted value is generated (Figure 1).  

 

FIGURE 1 

 

During the ANN training phase, the value connection between neurons (called weights) is 

adjusted to achieve the minimum error between the experimental and the predicted output (Dai, Shi, 

Li, Ouyang and Huo, 2009). This process occurs in the hidden layers and output layer, and allows 

the neural network to learn based on training experimental cases. Trial and error approach was used 

to find the best neural model. Different topologies and training cycles were used to provide the best 

results according to statistics in the validation phase. 

In this research, two types of ANN have been analysed. The first network,ANN1, with 

backpropagation algorithm, sigmoidal function in its intermediate neurons and a linear function in 

the output neuron, and a second type, ANN2, also with backpropagation algorithm and sigmoidal 

function in all intermediate and output neurons. 

A disadvantage of neural models based on back-propagation algorithm, is that consume a huge 

computational time to optimize the different parameters which constitute the neural model (da 

Costa, Llobodanin, de Lima, Castro and Barbosa, 2018,Huang, Zhu and Siew, 2006). Due to this, 
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other techniques, SVM and RF have been studied due to these techniques require less 

computational cost and time of execution. 

SVM is a powerful technique for classification and regression (RapidMiner GmbH, 2018), in 

our case, it was used to regression tasks using C-SVC and nu-SVC SVM types (RapidMiner GmbH, 

2018). The SVM model finds an optimum separating hyperplane to maximize the borderline of the 

decision surface (da Costa, Llobodanin, de Lima, Castro and Barbosa, 2018). In this study, the 

LIBSVM learner by Chang and Lin (RapidMiner GmbH, 2018, Chang and Lin, 2018) was used. 

SVM model used the RBF kernel and the configuration of parameters, gamma and C, were studied 

according to the range proposed by the updated guide provide by Hsu et al. (2003). 

In random forest regression model, three parameters were optimized:  i) the number of trees (1 

to 100 in twenty linear steps), ii) the least square criterion, iii) maximal depth (-1 to 10 in eleven 

linear steps), and iv) apply pre-pruning (true or false). 

Neural models have been implemented in an AMD Ryzen 7 1800X Eight-Core Processor 3.60 

GHz with 16 GB of RAM memory. ANN1, SVM and RF models were developed using RapidMiner 

Studio Educational License and RapidMiner Studio Trial License from RapidMiner Inc. Neural 

models ANN2 were developed using the EasyNN plus v14.0d software from Neural Planner 

Software Ltd. Data were fitted using Microsoft Excel from Microsoft Office Professional Plus 

2013. Figures were drawn with Microsoft PowerPoint from Microsoft Office Professional Plus 

2013 and Sigmaplot 13 from Systat Software Inc. 
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3. Results and discussion 

Numerous ANN models (ANN1 and ANN2) were developed using trial and error method to 

find the best neural model topology. Over seven thousand neural network models with different 

topologies and training cycles were developed (varying the number of intermediate neurons 

between one and 2n+1, where n is the number of input variables used). The best neural model was 

chosen based on its validation performance, and then, the best models were rechecked with the 

querying data group. 

Table 1 shows the adjustments for the best ANN1 model selected. It can be observed that neural 

model implemented with linear function in the output layer presents a good determination 

coefficient in all phases (between 0.998 for the training phase and 0.989 for querying phase). For 

the training phase, the error is below 10% (an acceptable error for this type of variable -aging time-

). Similar behaviour is observed in the validation phase. In both phases, the root mean squared error 

in under 0.29 months. In querying phase, the ANN1 model presents a good R2 (0.989), nevertheless, 

a slight worsening is observed in the prediction in terms of RMSE (0.40 months) and AAPD 

(13.51%). 

 

TABLE 1 

 

Figure 2 shows the real value of aging time (orange) and the values predicted by the best ANN1 

model (dark blue) developed in this research. It can be observed in the validation cases that the 

ANN1 model overestimates the real value (cases 1 and 2) while for cases 4, 6 and 8 the 

overestimation is very slight (between 1.28% and 4.46%). Cases 1 and 2 present a high error, in 

fact, the real value is 1 and the values predicted were 1.31 and 1.41, respectively. For the rest of the 

validation cases, the estimates are slightly lower than the real value (between -0.81% and -2.84%). 

For query cases, it can be seen how the linear ANN model presents overestimation of the aging time 

value in nine of the twelve cases reserved (especially in cases 1, 3 and 4). Once again the cases with 

real aging time of 1 month were the cases with bigger errors. Cases 1 and 3 present an individual 

percentage deviation of 68.70% and 37.25%. This is the reason for the increase of RMSE and the 

AAPD values in the querying phase. This behaviour is also observed in the training phase, where 

cases with one year of aging show greater errors (between -0.91% and 69.43%) than the rest of the 

cases. In view of these results, it can be concluded that the ANN1 model presents a good general 

performance in all its phases, nevertheless, for low aging times, the model does not work at all well. 
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The next model implemented is the ANN model (ANN2) with logistic function in its output 

neuron. As can be seen in Table 1, the adjustment parameters improve the fits of the ANN1 model. 

It can be seen that for the training and the validation phase, the model presents coefficients of 

determination of one, improving the R2 of the ANN1 model. It is also clear that the ANN2 model 

improves the adjustments in terms of RMSE and AAPD, going from an RMSE of 0.20 months to 

0.04 months, for the validation phase of the ANN1 and ANN2 model, respectively. This good 

behaviour is also observed in the querying phase where the ANN2 model presents a good 

determination coefficient, which corresponds with a low value of root mean squared error (0.03 

months) and an average absolute percentage deviation below 0.85%. 

In Figure 2, it can be seen the real value of aging time (orange) and the values predicted by 

ANN2 model (brown). In validation cases, the ANN2 model predicts with accuracy the real value of 

aging time. This behaviour is also observed for the query cases, it can be seen how the logistic 

ANN model presents a good prediction of the aging time value for all cases which makes the 

adjustments of this phase are good (0.03 months of RMSE and a 0.84% of APPD. Contrary to the 

previous ANN model, in this model no high errors are observed in any of the aging periods studied, 

in fact, errors remain between -1.63% (case 5 in querying phase) and 3.99% (case 2 in validation 

phase). With these results, it can be said that ANN1 can predict with accuracy the aging time of red 

wines from D.O. Toro (Spain). 

 

FIGURE 2 

 

A new model based on support vector machine model was developed using library LIBSVM by 

Chang and Lin (RapidMiner GmbH, 2018, Chang and Lin, 2018). Gamma and C values were 

studied using trial and error method to find the best combination according to the range proposed by 

the updated guide provided by Hsu et al. (2003) (Hsu, Chang and Lin, 2003). 

In Table 1, it can be seen the adjustments for the selected SVM model. It can be observed that 

the model presents a good determination coefficient in the training phase (0.995) with a low APPD, 

around 6.72% and with only an RMSE of 0.24 months. For the validation phase, it can be seen how 

the value of the determination coefficient falls slightly to 0.973 and the average absolute percentage 

deviation grows until to 12.86% that corresponds with a root mean squared error of 0.56 months. 

This high AAPD in the validation phase is due to the case number 2 in which the model predicts an 

aging value of 1.85 when the real value is 1 month, that is, the model predicts this case with 85.12% 

of individual percentage deviation (see Figure 2 top). This high error affects, significantly, the 
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model´s AAPD value (12.86%, see Table 1). Other two cases, 9 and 11, present an error close to the 

one considered as acceptable (10%), -9.64 % and -10.73%, respectively.  

The same behaviour can be seen in the querying phase. In this case, the R2 increases to 0.988 

and the RMSE decreases to 0.37 months. Nevertheless, the APPD increases up to 16.35%, this huge 

value is due, once again, the prediction for cases with one month aging time (see Figure 2 bottom). 

For cases 1 and 3, the individual percentage deviations are around 46.07% and an 80.85%, 

respectively, the individual percentage deviation for case 2 is -36.03%. These high values distort the 

value of the APPD in the querying phase. In view of these results, it can be concluded that the SVM 

model presents bad results for low aging times. 

Finally, the last model implemented in this research is a model of random forest. According to 

the parameters exposed above, the best random forest model is an RF model with only one tree that 

provides the results shown in Table 1. It can be observed that the RF model presents an optimum 

determination coefficient which causes that the other of analysed parameters, RMSE and APPD, are 

zero (Table 1). The random forest model could find that the variables that dominate the 

determination of aging time are: the total-SO2 (T-SO2), the alcoholic grade (AD) and the free-SO2 

(F-SO2). A random forest with only one tree, and with these three parameters, is enough to predict 

with total accuracy all cases of the training, validation and querying phase (Figure 2). These results 

show that the implemented RF model can predict with accuracy the aging time. 

 

It seems clear that the adjustments obtained for the ANN1 and SVM models are not good when 

the wines with one month of aging come into play. For the rest of aging times, both models work 

reasonably well. The results obtained for ANN2 (developed with thirteen input variables) and RF 

model (that used three input variables) make these two models usable to guarantee red wine aging 

authenticity from D.O. Toro. These two models are able to predict, with accuracy, the aging time 

with, in worst case scenario (ANN2), an average absolute percentage deviation below 1% which 

corresponds to a maximum error of 0.04 months (in terms of RMSE). This results improve the 

principal component analysis (PCA) model developed by Apetrei et al. (2012) using the oenological 

parameters where the analysis can describe a 61% (28% for the first principal component, of the 

information; 21% for the second and a 12% for the third) (Apetrei, Rodríguez-Méndez, Apetrei, 

Nevares, del Alamo and de Saja, 2012). The partial least squares-discriminant analysis (PLS-DA) 

using the physicochemical analyses only can explain a 5º9% of the variance in calibration and 77% 

in prediction presenting an RMSE up to 0.347 (Apetrei, Rodríguez-Méndez, Apetrei, Nevares, del 

Alamo and de Saja, 2012). 
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Regarding the RF model and to our understanding, a single tree in the random forest model 

seems to indicate that the wines of the Toro designation of origin, studied in this research, show 

particular characteristics that can be a key factor to predict aging time. In addition to this, it is 

expected that the inclusion of new experimental data from different wines could lead to the 

development of an RF model with more trees. 

 

4. Conclusions 

In this study, different models were developed to monitor red wines from D.O. Toro (Spain). 

The results obtained for ANN model developed with sigmoidal function in the output neuron and 

the random forest model, which used physical-chemical parameters, permit to determine the aging 

time, with an average absolute percentage deviation below 1%. In view of the results obtained by 

the models, ANN1 and SVM, it would be advisable to continue with the analysis of the wines of the 

D.O. Toro and, even, to incorporate wines from the close appellations of origin. 
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Figure captions 

 

Figure 1. Example of neural network topology 13-5-1 with 13 neurons in the input layer, five 

neurons in the intermediate layer and one in the output layer. 

 

Figure 2. Bar graph for validation (top) and querying (bottom) cases according to the real value of 

aging time (orange) and the values predicted by the artificial neural network with linear function in 

output neuron (ANN1, dark blue), artificial neural network with sigmoidal function in output neuron 

(ANN2, brown), support vector machine (SVM, olive) and random forest (RF, light blue). 
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Table titles 

 

Table 1.  Coefficient of determination (R2), root mean squared error (RMSE) and average absolute 

percentage deviation (AAPD) for training (T), validation (V) and querying (Q) phase, for each 

model present in this research, artificial neural network with linear function in output neuron 

(ANN1), artificial neural network with sigmoidal function in output neuron (ANN2), support vector 

machine (SVM) and random forest (RF). 
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Table 1 

 

Table 1.  Coefficient of determination (R2), root mean squared error (RMSE) and average absolute 

percentage deviation (AAPD) for training (T), validation (V) and querying (Q) phase, for each 

model present in this research, artificial neural network with linear function in output neuron 

(ANN1), artificial neural network with sigmoidal function in output neuron (ANN2), support vector 

machine (SVM) and random forest (RF). 

    

 Training Validation Querying 

Model R2 RMSE AAPD (%) R2 RMSE AAPD (%) R2 RMSE AAPD (%) 

ANN1 0.994 0.28 8.07 0.998 0.20 8.20 0.989 0.40 13.51 

ANN2 1.000 0.02 0.42 1.000 0.04 0.87 1.000 0.03 0.84 

SVM 0.995 0.24 6.72 0.973 0.56 12.86 0.988 0.37 16.35 

RF 1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00 
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