Preprint
Article

Colloidal Metal Oxide Nanoparticles Prepared by Laser Ablation Technique and Their Antibacterial Test

Altmetrics

Downloads

274

Views

307

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 January 2019

Posted:

14 January 2019

You are already at the latest version

Alerts
Abstract
We report the production of metal oxide (TiFe2O4, ZnFe2O4) nanoparticles by pulsed laser ablation technique in liquid environment. We used nano second Nd: YAG laser systems working at 532 nm and 1064 nm of wavelength, the energy of the laser beam was kept constant at 80 mJ. Absorbance spectra, surface plasmon resonance, optical band-gap and nanoparticle morphology were investigated using ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Changing the wavelength of the laser for growth, nanoparticles shown shift between the absorbance and surface plasmon resonance peaks in their UV-Vis spectra, this implies that the optical properties of the colloid nanoparticles depends on laser parameters, this was confirmed with the variation of the band gap energy. Furthermore, red shift for the absorbance peak was observed for samples as-growth at 532 nm around the 150 nm as function of time preparation. Whereas, for the samples as-growth at 1064 nm there is no shift in the absorbance spectra, this can be due to agglomeration and formation of larger particles. The characterization results shown appropriate plasmonic photo-catalysts properties of the particles, hence the photo activation of the nanoparticles was examined on antibacterial effect using colonies of Staphylococcus Aureus and Escherichia coli.
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated