

1

2

Hypothesis

3

4

5

6

Cetacean morbillivirus, a journey from land to sea and *viceversa*

7

8

9

10
Giovanni Di Guardo^{1*} and Sandro Mazzariol²

11

12

13
¹University of Teramo, Faculty of Veterinary Medicine, Località Piano d'Accio, 64100 - Teramo, Italy;14
²University of Padua, Department of Comparative Biomedicine and Food Science, Agripolis, 35020 -
15 Legnaro (Padova), Italy;16
***Correspondence:** Giovanni Di Guardo, gdiuardo@unite.it

17

18

19

20

21

22

23

24

25

26

27
Keywords: *Cetacean Morbillivirus; Canine Distemper Virus; Rinderpest Virus; Viral phylogeny; Viral*
28
evolution; Host-pathogen interactions; Cetaceans; Aquatic Mammals.

29

30

31 **Abstract**

32 *Cetacean Morbillivirus*, the most relevant pathogen impacting the health and conservation of
33 cetaceans worldwide, has shown in recent years an increased tendency to cross “interspecies
34 barriers”, thereby giving rise to disease and mortality outbreaks in free-ranging dolphins and whales.
35 The present article deals with the evolutionary “trajectories” of this viral pathogen, likely originating
36 from *Rinderpest Virus*, along with its "journey" from land to sea (and *viceversa*), mimicking that of
37 cetaceans' terrestrial ancestors.

38

39

40 *Cetacean Morbillivirus* (CeMV), the most relevant pathogen impacting the health and conservation
41 of several already threatened cetacean populations worldwide [1], has shown in recent years an
42 increased tendency to cross “interspecies barriers” [2], thereby giving rise to disease and mortality
43 outbreaks in free-ranging dolphins and whales [3-5]. Additional cases of infection have been also
44 reported in aquatic mammals with a mixed aquatic-terrestrial ecology like common seals (*Phoca*
45 *vitulina*) [6] and Eurasian otters (*Lutra lutra*) [7], with such findings increasing the overall concern
46 and attention towards this *Morbillivirus* genus member. In this respect, the demonstrated ability of
47 all the 5 hitherto characterized CeMV strains to utilize indifferently dolphin, dog and seal
48 SLAM/CD150 as host cell receptors [3] provides relevant biological plausibility and support to the
49 aforementioned cross-species viral transmission events. Regarding its progressively expanding host
50 spectrum range, CeMV shares similarities with *Canine Distemper Virus* (CDV), another global and
51 multi-host morbilliviral pathogen responsible for numerous disease outbreaks in various terrestrial
52 and aquatic wild mammal populations, including Lake Bajkal (*Pusa sibirica*) and Caspian seals (*P.*
53 *caspica*) [2, 8], which are known to be susceptible also to *Phocine Distemper Virus* (PDV) [9].

54 Based upon Bayesian phylogeographic analysis, CeMV has been estimated to be characterized by a
55 mutational rate of 2.34×10^{-4} nucleotide substitutions/site/year, with viral evolutionary dynamics
56 turning out to be neither host- nor location-restricted [3].

57 In this respect, it should be additionally highlighted that *Rinderpest Virus* (RPV), or a closely related
58 ancestor of cattle origin, is believed to have crossed the “bovine-human transmission barrier” 1,000-
59 5,000 thousands years ago, thereby giving rise to *Measles Virus*, the pathogen most closely related to
60 RPV within the *Morbillivirus* genus [10]. The origins of rinderpest date back to over 10,000 years
61 ago, coincident with cattle domestication in Asia [10], while the impact of RPV on cattle and on the
62 human populations depending upon bovine productions has been so devastating throughout the
63 centuries that rinderpest was the main motivation for establishing the first Veterinary School in Lyon,
64 France, in 1761 [11]. In 2011, exactly 250 years later, the disease was declared to be globally
65 eradicated, thanks to the use of an efficient anti-RPV vaccine [10, 11].

66 Due to the common terrestrial ancestor shared between cetaceans and ruminants [12], it could be
67 speculated that the “land to sea transition” characterizing cetaceans’ evolutionary phylogeny was
68 probably followed also by CeMV, a marine virus most likely derived from RPV, a terrestrial pathogen
69 [13, 14].

70 In this respect, while a CeMV isolate from the Southern Hemisphere that was identified almost
71 simultaneously in Guyana dolphins (*Sotalia guianensis*) along the Atlantic coast of Brazil as well as
72 in Indo-Pacific bottlenose dolphins (*Tursiops aduncus*) from Western Australia [15-17] appears to
73 be the one most closely related to RPV among the 5 hitherto defined CeMV strains [3], it should be
74 once again recalled that fatal cases of infection caused by *Dolphin Morbillivirus* (DMV, a CeMV
75 strain) have been recently reported in Italy among Eurasian otters, an endangered wild mammal
76 species with a mixed water-terrestrial ecology [7]. Furthermore, starting from 2011, DMV has shown
77 a considerable expansion of its host range in the Western Mediterranean Sea, with lethal episodes of
78 infection having been reported in fin whales as well as among mass-stranded sperm whales [4, 5, 18],

79 while deadly cases of DMV infection have also been described in a Cuvier's beaked whale (*Ziphius*
80 *cavirostris*) individual [19] and, surprisingly, even in a captive harbour seal [6].

81 Should this journey back from sea to land, putatively made by CeMV, worry us? And what
82 implications, if any, could it exert on the feared RPV resurgence in cattle? In this respect, is there a
83 concrete risk that rinderpest, the second infectious disease to be eradicated on Earth after smallpox
84 [11], could re-emerge in cattle and should we pay attention, in such an undesirable *scenario*, to CeMV
85 and its evolutionary dynamics?

86 Our answers to the above questions, based upon the so-called "principle of precaution", are
87 affirmative.

88 As a matter of fact, a zoonotic potential has been recently documented for *Peste des Petits*
89 *Ruminants Virus* (PPRV), another morbilliviral agent closely related to RPV, following a single
90 amino acid change within its hemagglutinin (H) antigen [20]. Still notably, also CDV has been shown
91 to successfully infect primate species phylogenetically close to humans, with reports of viral
92 transmission to non-human primates under both natural and experimental conditions, together with a
93 proven CDV adaptation to SLAM/CD150-expressing human cells following a single amino acid
94 substitution in the viral H protein [21-23].

95 Finally and not less remarkably, it is our strong belief that adequate consideration should be also
96 given to environmental radiocontamination as an additional factor potentially driving CeMV and,
97 more in general, *Morbillivirus* and viral genetic make-up mutation(s). To the best of our knowledge,
98 in fact, environmental radiocontamination has not received any attention within such complex and
99 intriguing context. Nevertheless, it should be additionally underscored that, following the dramatic
100 nuclear accident of April 1986 in Chernobyl, Ukraine, three major and entirely unprecedented
101 morbilliviral disease epidemics took place in different aquatic mammal populations from European
102 and neighbouring waters, namely among Lake Bajkal and North Sea common seals [9] as well as
103 among Mediterranean striped dolphins (*Stenella coeruleoalba*) [1]. The three aforementioned

104 outbreaks were respectively caused by CDV and by two newly discovered morbilliviruses, PDV and
105 DMV [1, 9].

106 As a concluding remark, we believe that further work is absolutely needed in order to better
107 characterize the transmission barrier(s) between CeMV and different cetacean, aquatic mammal and
108 terrestrial hosts, along with the virus- and the host-related factors underlying cross-species jumping
109 within aquatic and terrestrial environments as well as at the level of the various water-land ecological
110 interfaces.

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127 **References**

128 1. **Van Bressem MF, Duignan PJ, Banyard A, Barbieri M, Colegrave KM et al.** Cetacean
129 morbillivirus: Current knowledge and future directions. *Viruses* 2014;6:5145-5181.

130 2. **Jo WK, Osterhaus AD, Ludlow M.** Transmission of morbilliviruses within and among marine
131 mammal species. *Curr Opin Virol* 2018;28:133-141.

132 3. **Jo KW, Kruppa J, Habierski A, van de Bildt M, Mazzariol S et al.** Evolutionary evidence for multi-
133 host transmission of Cetacean morbillivirus. *Emerg Microbes Infect* 2018;7:201.

134 4. **Mazzariol S, Centellegher C, Beffagna G, Povinelli M, Terracciano G et al.** Mediterranean fin
135 whales (*Balaenoptera physalus*) threatened by Dolphin morbillivirus. *Emerg Infect Dis* 2016;22:302-
136 305.

137 5. **Mazzariol S, Centellegher C, Di Provvido A, Di Renzo L, Cardeti G, et al.** Dolphin morbillivirus
138 associated with a mass stranding of sperm whales, Italy. *Emerg Infect Dis* 2017;23:144-146.

139 6. **Mazzariol S, Peletto S, Mondin A, Centellegher C, Di Guardo G et al.** Dolphin morbillivirus
140 infection in a captive harbor seal (*Phoca vitulina*). *J Clin Microbiol* 2013;51:708-711.

141 7. **Padalino I, Di Guardo G, Carbone A, Troiano P, Parisi A, et al.** Dolphin morbillivirus in Eurasian
142 otters, Italy. *Emerg Infect Dis* 2019;25:372-374.

143 8. **Loots AK, Mitchell E, Dalton DL, Kotzé A, Venter EH.** Advances in canine distemper virus
144 pathogenesis research: A wildlife perspective. *J Gen Virol* 2017;98:311-321.

145 9. **Duignan PJ Van Bressem MF, Baker JD, Barbieri M, Colegrave KM et al.** Phocine distemper
146 virus: Current knowledge and future directions. *Viruses* 2014;6:5093-5134.

147 10. **de Vries RD, Duprex WP, de Swart RL.** Morbillivirus infections: An introduction. *Viruses* 2015;7:
148 699-706.

149 11. **Tounkara K, Nwankpa N.** Rinderpest experience. *Rev Sci Tech* 2017;36:569-578.

150 12. **Thewissen JGM, Cooper LN, George JC, Bajpai S.** From land to water: The origin of
151 whales, dolphins, and porpoises. *Evo Edu Outreach* 2009;2:272-288.

152 13. **Shen T, Xu S, Wang X, Yu W, Zhou K et al.** Adaptive evolution and functional constraint at
153 TLR4 during the secondary aquatic adaptation and diversification of cetaceans. *BMC Evol Biol*
154 2012;12:39.

155 14. **Ishengoma E, Agaba M.** Evolution of toll-like receptors in the context of terrestrial ungulates
156 and cetaceans diversification. *BMC Evol Biol* 2017;17:54.

157 15. **Groch KR, Colosio AC, Marcondes MC, Zucca D, Díaz-Delgado J et al.** Novel cetacean
158 morbillivirus in Guiana dolphin, Brazil. *Emerg Infect Dis* 2014;20:511-513.

159 16. **Groch KR, Santos-Neto EB, Díaz-Delgado J, Ikeda JMP, Carvalho RR et al.** Guiana dolphin
160 unusual mortality event and link to Cetacean morbillivirus, Brazil. *Emerg Infect Dis* 2018;24:1349-
161 1354.

162 17. **Stephens N, Duignan PJ, Wang J, Bingham J, Finn H, et al.** Cetacean morbillivirus in coastal Indo-
163 Pacific bottlenose dolphins, Western Australia. *Emerg Infect Dis* 2014;20:666-670.

164 18. **Mazzariol S, Centellegher C, Cozzi B, Povinelli M, Marcer F et al.** Multidisciplinary studies on a
165 sick-leader syndrome-associated mass stranding of sperm whales (*Physeter macrocephalus*) along the
166 Adriatic coast of Italy. *Sci Rep* 2018;8:11577.

167 19. **Centellegher C, Beffagna G, Palmisano G, Franzo G, Casalone C, et al.** Dolphin morbillivirus in a
168 Cuvier's beaked whale (*Ziphius cavirostris*), Italy. *Front Microbiol* 2017;8:111.

169 20. **Abdullah N, Kelly JT, Graham SC, Birch J, Gonçalves-Carneiro D et al.** Structure-guided
170 identification of a nonhuman morbillivirus with zoonotic potential. *J Virol* 2018;92 pii:e01248-18.

171 21. **Sakai K, Nagata N, Ami Y, Seki F, Suzuki Y et al.** Lethal canine distemper virus outbreak in
172 cynomolgus monkeys in Japan in 2008. *J Virol* 2013;87:1105-1114.

173 22. **Qiu W, Zheng Y, Zhang S, Fan Q, Liu H, Zhang F et al.** Canine distemper outbreak in rhesus
174 monkeys, China. *Emerg Infect Dis* 2011;17:1541-1543.

175 23. **Sakai K, Yoshikawa T, Seki F, Fukushi S, Tahara M et al.** Canine distemper virus associated with
176 a lethal outbreak in monkeys can readily adapt to use human receptors. *J Virol* 2013;87:7170-7175.

□