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ABSTRACT

We derive a concentration inequality for the uncertainty in the mean computed by
stratified random sampling, and provide an online sampling method based on this
inequality. Our concentration inequality is versatile and considers a range of factors
including: the data ranges, weights, sizes of the strata, the number of samples taken,
the estimated sample variances, and whether strata are sampled with or without
replacement. Sequentially choosing samples to minimize this inequality leads to a
online method for choosing samples from a stratified population. We evaluate and
compare the effectiveness of our method against others for synthetic data sets, and
also in approximating the Shapley value of cooperative games. Results show that
our method is competitive with the performance of Neyman sampling with perfect
variance information, even without having prior information on strata variances.
We also provide a multidimensional extension of our inequality and discuss future
applications.
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1. Introduction

Stratified sampling is a statistical method for estimating the mean of a population by
partitioning it into mutually exclusive subgroups, or strata, and applying a sampling
estimator to each stratum, before weighting and combining these estimates to form an
estimate of the population mean. For example, to poll the population of a country’s
support for a particular government policy, we can selectively poll the different demo-
graphic regions within the country. For instance, if we know that regions A,B and C
contain 10%, 40% and 50% of the population, and sampling shows support levels for
a policy of 2%, 70% and 30%, respectively, then we can estimate that 43.2% of the
total population supports the policy.

Stratified sampling can lead to improved reliability in estimation under certain
conditions, such as: when the population is easily divided into strata, in which there
is less variance in each stratum than across them all; when the size of the strata are
known, and; when sampling selectively from each strata is possible [I}2]. If it is possible
to sample selectively between the strata, then there is a further question of how to
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conduct that sampling most efficiently.

In this paper we propose a process of sampling in order to maximally reduce the
uncertainty in the population mean estimate, and to do this we develop a expression
associated with that uncertainty. The expression takes the form of a concentration
inequality, specifically, a stratified empirical Berstein bound (SEBB), developed under
the assumption that the data values have bounded support. This inequality considers
factors such as: the sizes of all the strata and the proportion of each that are sampled;
the sample variances of the samples from each of the strata; the differences in the
range of data of each strata; any additional importance weightings on the strata, and;
whether any (or all) of the strata are sampled with or without replacement.

Using this inequality, we then propose an online method for sequentially sampling in
order to maximally reduce this bound at each iteration, called the stratified empirical
Berstein method (SEBM). By numerically evaluating the SEBM, we demonstrate its
value in sampling and estimation applications. Moreover, we show that it can assist in
computational tasks — particularly those that involve the calculation of expectation
values, as sampling is a straightforward way of approximating them. Specifically, in
this work, we consider the calculation of the Shapley value, a solution concept from
cooperative game theory, as a computational task to which we can apply our sampling
method and demonstration of its utility. Taken together, these results show that SEBM
is competitive with the widely-used Neyman sampling method, that assumes perfect
variance information, even when SEBM does not have prior information on strata
variances.

The remainder of the paper is as follows. The next section reviews background
material and sets the context of the paper. Section [3] provides several lemmas that
are components of our derivation. Building on this, in Section [d] we provide the full
derivation of our concentration inequality, SEBB, and online sampling method, SEBM,
which are the main technical contributions of the paper. For evaluation, Section || ex-
amines the effectiveness of SEBM in the context of synthetic data sets, while Section [6]
evaluates its performance on the task of approximating the Shapley value via sampling
estimation. Section [7] discusses the results of these two sets of numerical evaluations,
and analyze the reasons for the effectiveness of our sampling method. Finally, Section|[g]
gives an extension of SEBB and SEBM to multidimensional data. Section [J] concludes.

2. Background

Stratified sampling is a well known sampling technique in statistics and research,
with many applications, including polling [3], auditing [45] and medical trials [6-8].
Stratified sampling is often conducted as a two-stage process, particularly when it is
unclear how to stratify the population, or how large the resulting strata would be.
Under this process, the first stage consists of sampling the population uniformly at
random, and collecting the values of readily observable auxiliary variables, in order
to estimate the sizes of potential strata by those variables. In the second stage, the
strata are chosen and sampled with respect to the information gathered in the first
stage, and the total population estimate is computed [9].

One well-known method of estimating efficient strata sizes is via inverse probabil-
ity weighting methods such as the Horvitz-Thompson estimator [10]. However, these
estimators are sometimes seen to perform quite badly in practice [I1J12]. Moreover,
these estimator do not directly address the prior problem of how to optimally break
the population into strata based on the values of the auxiliary variables [3JI3]14].
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In other situations, the strata and their sizes are naturally given, or the first stage
of the two-stage process above may be assumed to have been conducted ideally. In
these situation, there exists a further problem of how to allocate the finite number
of second-stage samples between the strata. For instance, one could choose to sample
equally between strata, proportional to the sizes of the strata, or proportional to the
variance of the strata. The last option is often considered in theory and practice, and is
called Neyman allocation (sometimes called ‘optimum’ allocation) [IJ2]. This approach
assumes knowledge of the variances of the strata; however, in practice it is often the
case that strata variance can only be estimated, either as part of the first stage or as
the sampling proceeds [I5/16].

Finally, even once the samples are taken from the various strata, there is still the
question of how to compute appropriate confidence bounds on the final estimate. In
the voting verification context, there exist some specialized bounds [B/I7], but in the
more general case there is some degree of discussion of what bounds should be used
[4]. The confidence bounds that are derived critically depend on what assumptions are
made about the underlying populations.

In particular, Hoeffding’s inequality [18] is used as a bound under the assump-
tion that the underlying population has bounded data support, or are drawn from a
finite interval [4J17]. Hoeffding’s inequality can be used to produce a very conserva-
tive confidence interval that is sensitive only to the width of the data value bounds
and the number of samples taken, and it is also most directly suitable for sampling
with replacement. In contrast, other concentration inequalities, such as Chebychev’s
inequality, are sensitive to the sample variance but not the width of the data.

Recently, Maurer and Pontil [I9] developed a bound, which they named as an em-
pirical Bernstein bound (EBB), as a concentration of measure for the sample mean
of a single (unstratified) population (some similar bounds being published about that
time, [20/21]). EBBs are is sensitive to the data width and sample variance. They have
replaced Hoeffding’s inequality in a number of computational applications [22H25].
The derivation of Maurer and Pontil’s EBB has been extended to entropic [26] and
Chernoff concentration inequalities, which are combined using union bounds.

Beyond this, sampling without replacement offers the opportunity to further tighten
the bounds over the sampling-with-replacement case. For example, the refinement
that is possible was first demonstrated by Serfling [27] with a martingale argument.
More recently, Bardenet and Maillard [28] improved on Serfling’s result with a reverse
martingale argument, and created an EBB suitable to the case of sampling without
replacement.

Our key observation is that the components of these analyses can be combined to-
gether to create a closed form analytical concentration inequality tailored for stratified
random sampling, which is a primary subject of this paper.

3. Preliminaries

We now state nine lemmas across the next three sections, which we use later to derive
our stratified empirical Bernstein bound (SEBB) and method (SEBM). Specifically, in
Section [3.1] we provide three lemmas, which show how probability bounds are related
to the moment generating function, how probability bounds can be combined, and a
useful algebraic relationship regarding the sample variance. Then, in Section [3.2] we
provide three bounds on the moment generating functions of random variables. Last,
in Section [3.3] we derive three lemmas that relate the moment generating function to
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the sample means of random variables with and without replacement.

3.1. Fundamental results

The first lemma is an often-used and rather weak result used to fuse simple statements
of probability:

Lemma 3.1 (Probability Union). For any random variables a,b, c:
Pla>c¢) < P(a>b)+P(b>c)

This relationship is a well known and useful tool for settings where the probability
relationship between a and c is unknown but the relationship between a and some b,
and also between that b and c¢ is known.

The next lemma is a straightforward result of algebra that relates the sample squares
about the mean to the sample variance.

Lemma 3.2 (Variance Relation). Let X be a random variable with mean p. For n
samples of X, {xp}r=1,. n, the sample mean, fi = %Zk T, biased sample variance,
6% = %Zk(l‘k — )2, and average of sample squares about the mean, 63 = %Ek(l'k -
©)?, are related such that:

~ ~ 2
68— 6% = (i —p)°.

This result is used later to create bounds for the sample variance from bounds on
the sample squares about the mean. In order to create such probability bounds, we
make repeated use of the next, which extends directly from Markov’s inequality and
encompasses a range of inequalities called Chernoff bounds:

Lemma 3.3 (Chernoff Bound). For a random variable X, and for any s > 0 and t:
P(X >t) < Elexp(sX)]exp(—st)

Many well-known inequalities follow from upper bounds for E [exp(sX)], also known
as the moment generating function.

3.2. Bounds on the Moment Generating Function

The next three lemmas give three of these upper bounds for moment generating func-
tions, from which we create our probability inequalities of interest. The first is well
known and sometimes called Hoeffding’s Lemma [18] and is stated here without proof:

Lemma 3.4 (Hoeffding’s Lemma). For a random variable X that is of finite support
on the interval a < X < b, with width D = b — a, and for any s > 0:

fexp(s(X — E[z]))] < exp <;D) .

The second lemma is very much like Hoeffding’s Lemma, except it involves information
about the variance of the random variable. The proof of this result is included because
it is useful in explaining our own approach.
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Lemma 3.5. For a random variable X that is bounded on an interval a < X < b with
D = b — a and variance 0%, and any s > 0:

fexp(s(X — Efa]))] < exp ((fj n ";) 2)

Proof. We assume without loss of generality that X is centered to have a mean of
zero. Then we construct an upper bound for E [exp(sX)] in terms of D by a parabola
over exp(sX) for the permitted values of X.
There exists an «a, 3,7 (see Appendi such that as?X? + BsX + v > exp(sX),
and for all a < X < b:
FElexp(sX)] < E[as’X? + 85X + 4] = as? E[X?] + v = as’c? + v

Where it follows that:

Bl < (oo (s (5+2) ) 1Yo (~22) (Z 1)

The expression in is monotonically increasing with b, and D > b, therefore:

log(E [exp(sX)]) < log <;22 exp <s (D + ”;)) + 1) - 322 —log (; + 1> (1)

Given that for any «,z > 0, that:

1 K
=+ &
et e s+ el

Thus letting k = g—z and x = s(D + 02 /D) if follows that:

g

2 2
og(Bfexps X)) < (17 + 5 ) ®

We note that this process of fitting a parabola over the exponential function bears a
strong conceptual relationship with a famous bound developed by Hoeffding [18] and
Bennett [29].

The third bound that we present, on the moment generating function, is similar
again, however this time we consider the random variable X? instead of X.

Lemma 3.6. Let X be a random variable of finite support on an interval a < X < b,
with D = b — a and variance 0 = E[(X — E[z])?] = E[X?] — E[X]?. Then for any
q>0:

Efexp(q(0? — (X — E[X])?)] < exp (;02@2)

Proof. We assume without loss of generality (and for ease of presentation) that X is
centered to have a mean of zero. We construct an upper bound for £ [exp(—qX 2)] in
terms of D by a parabola over exp(—¢X?) for the permitted values of X.
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For an «, such that aX? + v > exp(—¢X?) then:
E[exp(—¢X?)] < ac? + 7.
If d = max(b, —a) we can choose v = 1 and o = (exp(—qd?) — 1)d~2 (see figure ,
Thus:
2 2

0'2 02 g o
Elexp(—¢X?)] < 7 exp(—qd?) — 7 +1< D2 exp(—qD?) — 2 +1

o? 9 o?
<exp | log ﬁexp(—qD ) — o2 +1
Given that for any 0 < k < 0.5 and = < 0 that:

1
log (kexp(z) —k+ 1) < kx + 5,%(1 — k)’

Letting k = ]‘3—22 and x = —¢D?, which is valid by Popoviciu’s inequality [30] o2 < D?/4,
then:

1 1
Elexp(—¢X?)] < exp (202q2(D2 -o?) - 02q> < exp <202q2D2 — 02q>

and the result follows by multiplying by exp(qo?). O

The three inequalities above, Lemmas and are used in the derivation of
our stratified sampling concentration inequality in Section [

3.3. The Moment Generating Function of Sample Means

In order to use the previous bonds on the moment generating function we need an
inequality relating the moment generating function of a random variable, with the
moment generating function of the average of samples of that random variable. To
do this we state three further inequalities, where the first one (Lemma is most
appropriate for sampling with replacement, and the second and third (Lemma and
Lemma can optionally be used in the context of sampling without replacement.

Lemma 3.7 (Replacement Bound). Let X be a random variable that is bounded a <
X < b with a mean of zero, with D = b — a and variance o°. Let Ym = % S X,
be the average of m independently drawn (with replacement) samples of this random
variable. If there exists an o, > 0 such that for any s > 0 that E[exp(sX)] <
exp((aD? + Bo?)s?) then:

Elexp(sxm)] < exp(a32D2% + 58202%) = exp((aD?Q", + Bo?¥n )s?)

n _gyn — 1
where (27, = W, = =

Proof. By the independence of samples, we have:

- (m ix)] 1Tz ()

6

Elexp(sxm)] = E
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Thus:
Elexp(sxm)] < exp (;22 Z (aD? + ﬁUQ)) O
i=1

These inequalities are sufficient for all the further derivations that we conduct.
However, for the case of sampling without replacement, there is an alternative result
that can be directly substituted, given in Lemma [3.9] below, which can be tighter in
certain cases. We give its form and derivation, which is included for completeness but
is not part of the main results presented in the paper. Before this, particular note must
be made that the inequality above, Lemma can be used in the context of either
sampling with or without replacement. In contrast, Lemma can only be used when
sampling without replacement. This distinction was shown to be true by Hoeffding
[18], and is stated here without proof:

Lemma 3.8 (Hoeffding’s reduction). let X = (x1,...,2,) be a finite population of
n real points, let X1,..., X, denote a random sample without replacement from X
and Y1,...,Y, denote a random sample with replacement from X. If f : R — R is
continuous and convex, then:

E[f Q22 Xl <E[f (L, i)

we now state an inequality regarding the moment generating function of the average
of samples taken specifically without replacement.

When the sampling takes place without replacement the inequality of Lemma
can potentially be improved to take advantage of the finite size of the population. This
inequality extends an important martingale inequality from [2§]:

Lemma 3.9 (Martingale Bound). For finite data x1,x2, ...z, that is bounded a <
x; < b, and has a mean of zero and variance o? = %2?21 x;, denote X1, Xo,..., X,
the random wvariables corresponding to the data sequentially drawn randomly without
replacement, and X, the average of the first m of them. If for any random variable Z
with a mean of zero such that a < Z < b and D = b — a, with variance 0’% that there
exists an o, 3 > 0 such that for any s > 0 that E[exp(sZ)] < exp((aD? + Bo%)s?)
then:

n—1
Elexp(sxm)] < exp <a82D2 Z w2 + Bs%o? Z k:Qk—i—l))

k=m

< exp((aD*Qpy, + B0*V})s?)

AN — (m+1)(1—m/n) Tn _ xn—1 ~ ntl—m
where Q7 Zk kaNT and W, ="~ mk2(k+1)““ .

d0i:10.20944/preprints201901.0202.v2
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Proof. Observe that:

1 & 1
Xm = a ZX Xm+1+ — (Xm—i—l Xm+1)

= (Xm - Xm+1) + (Xm+1 - Xm+2) R (anl - Xn)

1 1 1
= %(Xm+1 — Xmt1) + ?(me Xmt2) +--+ E(Xn — Xn).

Then because:
exp(sxm) H eXP( (X1 — Xk+1)> ;
we also have that:

Elexp(sxm)] = E

ﬁ E [GXP (%(Xk—&-l - Xk+1)) X bt - - Xn}]

k=m

by repeated application of the Law of total expectation. Since:

E[Xk11Xet1 -+ Xn] = Xkt1s

then xg4+1 — Xg+1 is a random variable with a mean of zero bounded within width D,
and it also has a variance given by:

2 no® —3ien Xj 5 _ no?
Oht1 = — Xk = (4)
n—(n-—k—1) kE+1

by application of Lemma Therefore:

n—1

2 82
Elexp(sxm)] < exp (Z (aD2 + ﬁk - 1) H) O

k=m

This martingale result relates the moment generating function bound of the average
of finite variables relative to their mean, to the moment generating function bounds
of the differences of the incremental averages relative to their mean. We note that this
result could be made much stronger by working around the use of Equation , but
this comes at a cost of increased mathematical complexity.

Since Lemmas and share a common form, and because of Hoeffding’s reduc-
tion (Lemma [3.8)), all the derivations that follow that invoke Lemma have direct
analogues using Lemma for the context of sampling without replacement. Note,
however, that the bound without replacement (Lemma may or may not be tighter
than the bound with replacement (Lemma [3.7)). However, the process of substituting
one for the other can be done judiciously on a case-by-case basis to create the tightest
possible bound. All the numerical results in this paper (relevant to sampling without
replacement) have been produced with this judicious choice conducted.
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4. The Stratified Finite Empirical Bernstein Bound and Sampling Method

This section contains our main results: we derive a novel probability bound for the
error of the stratified random sampling estimate, and use it to define a sequential
stratified sampling algorithm. Before this, we begin by precisely defining the context
of our derivations, to which our bound applies.

Definition 4.1 (Problem context). Let a population consist of n number of strata of
finite data points, where n; is the number of data points in the ith stratum. All values in
a stratum are bound within a finite support of width D;. Denote the mean and variance
of the ith stratum pu; and 01-2, respectively. In this context, denote values randomly and
sequentially drawn (with or without) replacement by X;1,X;2,...,X;n,. Then, for
the first m; of these sample: (i) Xjm, = % > iy X is their average; (ii) their biased

sample variance is 67 = - > (X Xi.m; )2, and; (iii) their unbiased sample variance
is 02 = m;62/(m; — 1). We are interested in the average of the means of the strata

as weighted by constant positive factors {7;};c(1, .. n}. Throughout our derivation, we
temporarily use arbitrary positive variables {0; }ic(1,....n}-

Given this context, the following two sections contain the derivation of the strati-
fied empirical Berstein bound (SEBB) and the sequential sampling method (SEBM),
respectively.

4.1. Bound derivation
The bound is now developed in four theorems, which build on each other in sequence:

(1) Theorem develops a concentration inequality for the error in the stratified
population mean estimate 2?21 TiXim, in the context of variance information.

(2) Theorem is a concentration inequality of the difference between the stratum
variances and sample variances in the context the sum of squared stratum mean
errors.

(3) Theorem is an inequality directly about the sum of sample squared stratum
mean errors.

(4) Theorem combines the three previous theorems together using union bounds
to create a concentration inequality for the error in the stratified population
mean estimate given the sample variances.

We begin with an expression for a probability bound on the absolute error of the
weighted stratified sample means about the weighted strata means, which we call a
variance-assisted SEBB (stratified empirical Bernstein bound).

Theorem 4.2 (Variance-assisted SEBB). Assuming the context given in Defini-
tion[£.1, and let Q. and U} be given as in Lemma[3.7, then:

n

> 7i(Xim, — i)

i=1

n
1 1
P > 110w/ 3 (20 + ot ) 2 | <0 6)

=1
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Proof. Applying Lemma

n n
P (Z TiXigm, — Y Tilli > t>
i=1 i=1

€Xp (Z TiS Xz m; ))] exp( St)

H [exp (i (Xim, — 113))] exp(—st)

by independence of the sampling between the strata. This form is sufficient for
Lemma [3.7] with Lemma [3.5] to apply, resulting in a double-sided tail bound:

P ( > t) < 2exp (Z <17D2an + 0'2\1an > T 32 _ St)

n
Z Ti(Xi,mi - IU’Z)
=1 =1

Minimizing with respect to s and rearranging gives result. O

In most cases, the weights 7; can be considered as the probability weights 7; =
n;/ (Z’;’:l nj), and in this context this probability bound can be used as-is for a mea-
sure of uncertainty in stratified random sampling if the true variances (or alternatively,
upper bounds on the true variances) of the strata are known. However, in other con-
texts, the weighted sum of variances must be estimated from the data collected, and
to include this factor we develop and incorporate a probability bound for the estimate
of the sum of variances (as weighted by arbitrary 6;), as follows.

Theorem 4.3. Assuming the context given in Definition . Then with Wi per

Lemma [377:

> 0i(07 =67 — (i — xim,)?) > | 210g(1/y) ZO’QQQDQ\P <y (6)
i =1

Proof. To create a probability bound for the sum of variances (weighted by arbi-
trary positive 6;), we consider the average square of samples about the strata means.
Applying Lemma gives:

n 1 my;
HZ‘ 2_ - Xi P — U 2y >
;1 (0] ™ ]21( g H )7) >y

n m;
1 k2

<E |exp g s0; | o2 — o g (Xij — ,uz‘)2 exp(—sy)
i=1 tj=1

" SGZ' 2
= exp(—sy) HE exp | = Z(a2 — (Xij — )%
% =1

i=1

by independence of the sampling between the strata. This is sufficient for Lemma [3.7]

10
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with Lemma, [3.6] to apply, giving:

n m; n
1 & 1 .
P> 6i(o] - p— > (Xij—m)?) >y | <exp (2 > 07607s* DIV — 5y>
i=1 v=1 i=1

Minimizing with respect to s, rearranging, and applying Lemmaf3.2| gives result. [

This inequality gives the probability bound between the weighted variances of the
strata, the weighted (biased) sample variances and the weighted square error of the
sample means. Although the weighted square error of the sample means may go to zero
quickly as additional samples are taken, we nonetheless develop another probability
bound to incorporate specific consideration of it.

Theorem 4.4. Assuming the context given in Definition . Then with Qp: as in
Lemma [3.7:

P (Z 0: (ki — Xigm:)® > 0g(2n/7“) Z&D?Q"m> <r (7)
i=1 =1

Proof. We consider the weighted square error of the sample means:

P (Z 0:(1i — Xiqm:)® > 7‘) <1- H]P’ (0i (ks — Xigm:)* < 14)
=1 i=1

- (75 T3
i—1 [ 7

(2

such that Y r; = r, by independence of the sampling and probability complementari-
ties. This is sufficient for us to apply Lemma [3.3] together with Lemmas and

giving:
B[S 00— vim 2> <1-TT(1-2 2ri
P A (G )
Next, choosing r; to minimize this expression gives:

_r0; D}
20,0200,

Ti

Thus:

n n —9r
P> 0 = Xim)? > 7“) <1-]] (1 — 2exp (2”))
<¢:1 i=1 2 0505,

Using log(1 — (1 — exp(x))") < x + log(n) for negative z, and rearranging, gives
result. O

11
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This theorem bounds the weighted square error of the sample means. In the next,
and final, step we combine the inequalities of Equations , @ and @) together, to
complete our derivation of the SEBB.

Theorem 4.5 (Stratified Empirical Bernstein Bound (SEBB)). Assuming the context
given in Definition[{.1 Then with Qi , Wi per Lemma [3.7:

P ('Z?MXW ol > Jar (VB+ w)2> <p 5)

log(6/p

where:

n
0 =3 7Dt
i=1
B =log(3/p) <m?X T2 Df)
n
v =2 Z 71'2\117771‘21' (m; — 1)312/7”1 + log(6n/p) Z T12D39%7\IJ:{1
' i
+ log(3/p) (m?XTiQ\D%,-QDi2> .

Proof. By widening the bound of Equation @ we get:

P Z:‘Lzl 91012 - 2?21 9@(612 + (:U'i - Xi,mi)Q) > <y
V2log(1/y)(max; ;D7 Vi) 7 007 ) — 7

Completing the square gives for \/Y .., 0,07 gives:

221 0i(67 + (1i = Xim,)?)
> 1°g(1/y maxZG-DQ\I/%) <y

—}-\/log 1/y) (max 0; DQ\IJn )

ZG?

Combining with Equation @) with a union bound (Lemma gives:

Z log 2n/r Z HDQQT“
20 02 > log(l/y max 0 D2\I/n ) <y+r,
—I—\/log 1/y) (max 0; DQIII%)

which is a bound for the weighted sum variances in terms of the sample variances.
Letting 6; = %71-2\11% and combining with with a union bound (Lemma , and
then assigning r = ¢t = y = p/3 and rewriting in terms of unbiased sample variance,
gives the result. O

This completes the derivation. In Equation of Theorem we have a concen-
tration inequality for the sum of weighted strata sample mean errors relative to the
sample variances. In this context, the weights 7; are flexible but would naturally be
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probability weights proportional to strata size, 7, = n;/ (Z?Zl nj), in which case the
inequality provides a concentration of measure in stratified random sampling. Based on
this bound, we proceed to propose an online process of sequentially choosing samples
from the strata in order maximally minimize it.

4.2. Sequential Sampling Using the Stratified Empirical Berstein Method

We introduce a method of sampling, the stratified empirical Bernstein method (SEBM)
which sequentially minimizes the bound in Theorem (SEBB). Pseudocode for the
calculation of the bound and the process of sampling to minimize it, is given in Algo-
rithm [I1

Specifically, Algorithm [I]is a repetitive process involving a scan through the possible
strata and then the selection of one stratum to sample from to minimize the SEBB
under mild assumptions. The process of scanning involves calculating the confidence
bound width (SEBB) that would result if an additional sample were to be taken from
that stratum without changing its sample variance (line numbers 5-17 in Algorithm 1)).
The stratum that yields the smallest confidence bound width in the context of an ad-
ditional sample is then selected (line 18-21) and sampled (line 24), the sample variance
of that stratum is updated (line 26); this process repeats until the maximum sample
budget is reached (per the outer loop, line 1). In this way the process attempts to
iteratively minimize the SEBB in expectation with each additional sample taken; and
hence lead to potentially greater accuracy in stratified sampling as a result.

We note that computing the SEBB requires the sample variances of all the strata
having been calculated. Accordingly, Algorithm [I| must be initialized with at least
two samples from each stratum so that sample variance can be calculated. This is a
standard requirement of the many reinforcement learning algorithms that use variance
in their sampling policies.

Algorithm (I describes a process specific to sampling without replacement and in-
volves the calculation of the SEBB with the tightest possible uses of Lemmas [3.9
and In particular, for any stratum ¢ that is sampled without replacement, any
specific bound with an associated §2; and Wi may be substituted for Q% and
\Tf’,% to potentially tighten the bound, and this corresponds to choice of Lemma or
Lemma in the bound’s derivation. Since the SEBB is a composition of such bounds
with such choices throughout, there is a structure of valid pairs of substitutions 2, ¥
for Q, ¥ in the optimal calculation of the SEBB, which is shown in the steps 8-15 of
Algorithm [I}] The equivalent algorithm for sampling with replacement simply is the
same algorithm altered by replacing all use of 2, ¥ with Q, .

In the next Section [5| we evaluate the performance of SEBM with other methods in
the context of synthetic data.

13
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Algorithm 1 Stratified Empirical Bernstein Method (SEBM) with replacement

Require: probability p, strata number N, stratum sizes n;, initial sample numbers
m;, initial stratum sample variances &,;2 , weights 7;, widths D;, maximum sample
budget B

1: while ), m; < B do

2:  beststrata < —1

3:  lowestbound < oo

4: for k=0to N do

5: my <— mg + 1

6: a < [0,0], b < [0,0], ¢ + [0,0], d < [0, 0]

7: for i =0to N do

8: ag < ao + log(6N/p) DA W min(Qr , Q)72

9: a1 < a1 + log(6N/p) D3 W min(Q , Q)12
10: by < max(bo, log(3/p) DZ U7 min(P7 Wi )72)
11: by < max(by, log(3/p) DU min(P7 , Wi )72)
12: co < co + 20 ((m; — 1)67 /m;)>
13: cl1 <1+ qunmlz((mz — 1)52»2/m¢)72

14: do < do + 15 D2 72

15: dy < dy + 1= D2 72

16: end for

17: boundwidth + \/log(ﬁ/p) min;(d; + (1/¢; + a; + bj +1/b;)?)
18: if boundwidth < lowestbound then

19: beststrata < k
20: lowestbound + boundwidth
21: end if
22: myg < mg — 1
23:  end for
24:  take an extra sample from strata: beststrata
25: Mpeststrata <_A Mpeststrata + 1

) 29
26:  recalculate oj_ g 0ra
27: end while

14
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5. Numerical Evaluation

In this section assess the value of SEBM as an online method of sampling from strat-
ified data. First we outline the benchmark algorithms used to evaluate our method’s
performance. Then in Section [5.2] we describe two synthetic data sets and report the
distribution of errors under our method and the benchmarks. Following this, in Sec-
tion [6] we evaluate our method in an example application — that of calculating the
Shapley value of a cooperative game. Discussion and analysis of all the numerical
results is left to Section [7.

5.1. Benchmarks algorithms
In the numerical evaluations, we compare the following sampling methods:

e SEBM (Stratified empirical Bernstein method, without replacement): our SEBM
method (per Algorithm of iteratively choosing samples from strata to minimize
the SEBB, given in Equation . An initial sample of two data points from each
strata is used to initialize the sample variances of each, with additional samples
made to maximally minimize the inequality at each step. All samples are drawn
without replacement.

e SEBM-W (Stratified empirical Bernstein method with replacement): as above,
with the exception that all samples are drawn with replacement, and con-
sequently the inequality does not utilize the martingale inequality given in
Lemma

e SiM (Simple random sampling, without replacement): simple random sampling
from the population irrespective of strata without replacement.

e SIM-W (Simple random sampling with replacement): simple random sampling
from the population irrespective of strata with replacement.

e NEY (Neyman sampling, without replacement): the method of maximally choos-
ing samples without replacement from strata proportional to the strata variance.

e NEY-W (Neyman sampling with replacement): the method of choosing samples
with replacement proportional to the strata variance.

e SEBM* (Stratified empirical Bernstein method with variance assistance): the
method of iteratively choosing samples without replacement from strata to min-
imize Equation (j5)), utilizing martingale Lemma

Note that the last three methods (NEY,NEY-W and SEBM*) assume and utilize prior
perfect knowledge of the variance of each of the strata, and that for methods SEBM,
SEBM-W and SEBM* (which use Equations and () we selected for minimising
a 50% confidence interval (i.e. constant p = 0.5 and ¢ = 0.5).

Also note that these methods provide comparisons of different algorithm factors,
such as the dynamics of sampling: with and without replacement; with stratification
and without; between our method and Neyman sampling, and; with and without per-
fect knowledge of stratum variances. For these methods, we consider the effectiveness
against beta distributed data and for a case of uniform-and-Bernoulli data.

5.2. Synthetic Data

The first way we demonstrate the efficacy of our method is to generate sets of synthetic
data, and then numerically examine the distribution of errors generated by different
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methods of choosing finite sequences of samples. In this section, we described the
two types of synthetic data sets used in this evaluation, namely: (i) beta distributed
stratum data, which are intended reflect real-world data, and (ii) a particular form
of uniform and Bernoulli distributed stratum data, in which our sampling method
(SEBM) performs poorly.

5.2.1. Beta-Distributed Data

The first pool of synthetic data have between 5 and 21 strata, with the number of strata
drawn with uniform probability, and each strata sub-population has sizes ranging from
10 to 201, also drawn uniformly. The data values in each strata are drawn from beta
distributions, with classic probability density function:

I'a+p)

{a,8} = F(a)F(ﬁ) xail(]‘ - ‘T)Bil

¢(x)

with a and 8 parameters drawn uniformly between 0 and 4 for each stratum, and I’
is gamma function.

Figure[I]compares the distribution of absolute error achieved by each of the sampling
methods over 5000 rounds of these data sets. Each panel presents the results that the
methods achieve for a given budget of samples, expressed as a multiple of the number
of strata (noting that data sets where the sampling budget exceeded the volume of data
were excluded). From the plots in Figure (I} we can see that our sampling technique
(SEBM and SEBM-W) performs comparably to Neyman sampling (NEY and NEY-W)
despite not having access to knowledge of stratum variances. Also, there is a notable
similarity between SEBM* and SEBM. As expected, sampling without replacement
always performs better than sampling with replacement for the same method, and
this difference is magnified as the number of samples grows large in comparison to
the population size. Finally, simple random sampling almost always performs worst,
because it fails to take advantage of any variance information. These results and their
interpretation are discussed and detailed in Section [7]along with results from the other
test cases discussed below.

5.2.2. A Uniform and Bernoulli Distribution

The aim of this section is to examine cases of distributions in which our sampling
method (SEBM) performs poorly, particularly compared to Neyman sampling (NEY).
For this purpose, a data set with two strata is generated, with each stratum containing
1000 points. The data in the first stratum is uniform continuous data in range [0, 1],
while the data in the second is Bernoulli distributed, with all zeros except for a specified
small number, a, of successes with value 1. For this problem, we conduct stratified
random sampling with a budget of 300 samples, comparing the SEBM*, SEBM and
NEY methods. The average error returned by the methods across 20,000 realizations
of this problem, plotted against the number of successes a, are shown as a graph in
Figure [2|

This figure demonstrates that SEBM and SEBM* perform poorly when the strata
contain only very small numbers of successes. This under-performance is not simply
a result of the SEBM method oversampling in a process of learning the stratum vari-
ances, as the under-performance is present in SEBM* as well. The reasons for this
under-performance are discussed in conjunction with other results in more detail in
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Figure 1.: Distribution of numerical absolute errors across 5000 rounds of beta-
distributed data, for different methods of stratified sampling. Each plot shows absolute
errors for different numbers of samples multiplied by the number of strata, N, e.g. 10N
samples means that the test problem has a sample budget of ten times the number of

strata. The whiskers show the 9th and 91st percentiles, data points outside this range
are not shown.
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Section[7] Before this, we considered the calculation of the Shapley value as an example
computational application of our stratified sampling method.

10-2 Performance for rare-events

1 T T T

Error

0.5

0 5 10 15 20

Figure 2.: Average error of three stratified random sampling methods for the uniform-
Bernoulli data sets of Section plotted against success parameter a, across 20,000
rounds.

6. Shapley Value Approximation

The Shapley value is a cornerstone measure in cooperative game theory. It is an ax-
iomatic approach to allocating a divisible reward or cost between participants where
there is a clearly defined notion of how much surplus or profit a group or “coalition”
of participants could achieve by themselves [3I]. It has many applications, including
analyzing the power of voting blocks in weighted voting games [32], in cost and surplus
division problems [3334], and as a measure of network centrality [35].

Formally, a cooperative game, (N,v) € Gy, comprises a set of n players, N =
{1,2,...,n}, and a characteristic function, v : S C N — R, which is a function
specifying the reward which can be achieved if a subset of the players S C N coop-
erate, where v({)) = 0. In this context the Shapley value ¢ is a unique mapping from
cooperative games to the player rewards Gy — R” which satisfies axioms:

e Efficiency: That the total reward is divided up: ), ;i ((N,v)) = v(N)

e Symmetry: If two players ¢ and j are totally equivalent ‘substitutes’ then the
receive the same reward: ie. if v(SU i) = v(SUj) VS C N\ {i,5}, then
901(<N7 U)) = 801(<N7 U))

e Null Player: If the addition of a player ¢ to any coalition brings nothing, and
is a ‘null player’, then it receives reward of zero: i.e if v(SU7) =v(S) VS C N
then ;((N,v)) =0

e Additivity: That for any two games the reward afforded each player is each is
the sum of the games considered together: i.e. for any vy and ve, that: p({(N, vy +

v)) = p((N,01)) + ¢((N, v2))

18


https://doi.org/10.20944/preprints201901.0202.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2019

Specifically, the Shapley value is expressed as:

(n =[S = D!S]!

n!

pi((N,v)) = Z

SCN,i¢S

(v(SU{i}) = v(9)) (9)

That is, under the Shapley value each player is afforded their average marginal contri-
bution across every possible sequence of player join orderings. Or, if v; ;, is the average
marginal contribution which player ¢ can make across coalitions of size k:

kz(l S wSU{ih) - u(s) (10)

k ) SCN\{i},|S|=k
then the Shapley value can be expressed as an average:

n—1

PN, 0) = 3 i ()

k=0

Though the Shapley value is conceptually simple, its use is hampered by the fact
that its total expression involves exponentially many evaluations of the characteristic
function (there are n x 2"~! possible marginal contributions between n players).

However, since the Shapley value is expressible as an average over averages by
Equation , it is possible to approximate these averages via sampling techniques,
and these averages are naturally stratified by coalition size. In previously published
literature, other techniques have been used to allocate samples in this context, par-
ticularly simple sampling [36], Neyman allocation [16/37], and allocation to minimize
Hoeffding’s inequality [38].

We assess the benefits of using our bound by comparing its performance to the
approaches above in the context of some example cooperative games, with results
analyzed in Section [7} The example games are described below:

Example Game 1 (Airport Game). An n = 15 player game with characteristic
function:

S) = ;
v(S) max w;

where w = {wi,...,wi5} = {1,1,2,2,2,3,4,5,5,5,7,8,8,8,10}. The maximum
marginal contribution is 10, so we assign D; = 10 for all 4.

Example Game 2 (Voting Game). An n = 15 player game with characteristic func-
tion:

o(S) = {1, i Y ieswi > Y ey wi/2

0, otherwise

where w = {w, ..., w5} = {1,3,3,6,12,16,17,19,19, 19, 21, 22, 23,24, 29}. The max-

imum marginal contribution is 1, so we assign D; = 1 for all 4.

Example Game 3 (Simple Reward Division). An n = 15 player game with charac-
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teristic function:

2
1 Wy
S (Z 100)
€S
where w = {wy, ..., w5} = {45,41,27,26,25,21,13,13,12,12,11,11, 10, 10, 10}
The maximum marginal contribution is 1.19025, so we assign D; = 1.19025 for all i.

Example Game 4 (Complex Reward Division). An n = 15 player game with char-
acteristic function:

o-(z5) - |55

€S 1€S

where w = {wy,..., w15} = {45,41,27,26,25,21,13,13,12,12,11, 11, 10, 10, 10}
In this game, we assign D; = 2 for all i.

For each game, we compute the exact Shapley value, and then the average ab-
solute errors in the approximated Shapley value for a given budget m of marginal-
contribution samples across multiple computational runs. The results are shown in
Table [1} where the average absolute error in the Shapley value is computed by sam-
pling with Maleki’s method [38] is denoted eM® e™ is Castro’s stratified simple
sampling method [36], e“® is Castro’s Neyman sampling method [37], and eSFBM
is the error associated with our method, SEBM. The results in Table [I| show that
our method performs well across the benchmarks. A discussion of all of the results is
considered in the next section.

7. Discussion

In this section we give considerations to the numerical results of the paper. In gen-
eral, from the results across Figures [ and [2] and Table [I} the main observation is
that our sampling technique, SEBM or SEBM-W, performs competitively to Neyman
sampling (NEY or NEY-W). This is despite SEBM not having access to knowledge
of strata variances, which the Neyman methods do. If instead we compare SEBM* to
NEY, which both have access to strata variances, then both methods use the same
information and the results are even stronger for our method. The reasons for this
performance are interesting, and we now discuss them in more detail.

From Figure[T]we observe that sampling without replacement always performs better
than sampling with replacement for the same method. This improvement is magnified
as the number of samples grows large relative to the size of the population. At the
same time, simple random sampling almost always performs worst, because it fails to
take advantage of any variance information. These results are as expected.

Next, note that the results of Figure (1| show that there is a mid-range of sample
sizes where choosing a different method can even have a greater impact on sampling
efficiency and rate of average error reduction than the difference between sampling
with or without replacement. This is an important insight, as sampling real-world
data (e.g. surveys, polling, destructive testing, etc) can be an expensive and slow
process. Accordingly an appropriate method of choosing numbers of samples can lead
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(a) Airport Game Average Errors
m/p2 10 50 100 500 1000
eMa 298.4 133.1 99.64 41.96 29.26

esim 357.8 146.1 106.2 44.55 36.33
eCa 325.7 1158 75.85 31.01 22.12
eSEBM 95992 738 5476 7.71  1.30

(b) Voting Game Average Errors
m/n2 10 50 100 500 1000
Ma 131.0 57.78 41.52 18.66 13.18

esim 145.7 59.72 40.31 17.56 12.84
eCa 142.1 47.35 31.05 14.08 9.800
eSEBM 1998 4744 3318 855  1.995

(c) Simple Reward Division Game average errors
m/n2 10 50 100 500 1000

Ma 25.68 11.62 7.792 3.481 2.290
esim 2210 9.045 6.218 2.642 1.938
et 2237 8.925 6.692 2.727 1.940
eSEBM 1925 7.044 5.158 1.183 0.2817

(d) Complex Reward Division Game average errors
m/p? 10 20 100 500 1000

eMa 276.1 1189 87.00 40.15 27.44
esim 251.4 108.0 78.63 34.64 26.82
et 290.5 116.5 81.82 35.70 26.50
eSEBM 2142 7847 54.10 1245 2.711

Table 1.: Average absolute errors in the Shapley value calculation across all players
in the four cooperative games (units in 10~%), for the different sampling schemes with
different sampling budgets m per number of strata (with n? = 152 for all).

to a material difference in cost for the same accuracy. There is also a slight decrease
in the performance of SEBM* in comparison with NEY in the case of high number of
samples and sampling without replacement, as illustrated in Figure |1} This indicates
that the use of sub-optimal equation [d]in the derivation of Lemma 3.9 might have some
negative effect, by distorting the shape of the functions that the sampling processes
then minimizes.

Furthermore, if the data features very rare events, then SEBM and SEBM* seem
to perform in a manner less than ideal. These condition are illustrated in Figure
where the more rare the Bernoulli variable successes, the worse our methods perform in
comparison with Neyman sampling (NEY). This shortcoming can be partly explained
by noting that SEBM unnecessarily wastes samples on the Bernoulli stratum of rare
events in the process of learning that the variance is almost zero, whereas NEY can
avoid this because it has prior knowledge of the variances to begin with. As such,
this factor explains the difference between the performance of SEBM and SEBM*
in the context of Figure [I] and also in Figure 2l What is surprising is how small
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Chernoff(t, o%)

>P(X>t) .
Figure 3.: Chernoff upper bounds de-

rived directly from the moment gen-
erating functions of equations Equa-
tion and (in black and blue,

t=05 " resp.) with D = 1; Plotted for var-
ious t against the variance o2. Note
that Equation generally captures
the shape and magnitude of the more

t=10.9 accurate equation, except in the region
of small 02 where the bound is overly
weakened.

1.0

the difference in performance between SEBM and SEBM* is. This indicates that as
additional samples are taken, the original uncertainty about the strata variances have
less and less effect upon the total numbers of samples that are eventually drawn from
each of the strata.

However, the performance difference between SEBM* and NEY in Figure [2| is not
explained by this argument, as they use the same information. Instead, the reason for
this difference in performance is found by considering the simplifying approximation
of Equation in the derivation of Lemma Specifically, introduces a partic-
ular distortion into the shape of Equation (8) which our sampling seeks to minimize.
Figure [3] illustrates how the approximation (2|) loosens the bound with respect to the
variance. Observe that when the variances are very small that Equation overly
loosens the bounds, causing oversampling of strata with very small variances. It ap-
pears that this factor is at play in the under-performance shown in Figure [2] and also
the slight under-performance of our method in the Voting Game in Table [Tb] We note
that there may be other corner-cases where our method also under-performs.

In comparison to existing approaches to approximating the Shapley value, our sam-
pling method shows improved performance on almost all accounts, as shown in Table[]
This was particularly the case in the context of large sample budgets, as our method
(SEBM, with error eSEBM ) sampled without replacement, while the other methods
sampled with replacement. However it would be remiss not to mention the computa-
tional overhead of iteratively minimizing (one sample at a time) our inequality in the
context of our simple example games. This overhead can be a significant drawback,
however on more complicated games such as where the characteristic function is slower
to calculate, any overhead associated with the sampling choice is expected to be much
less relevant. We also note that our method’s performance could potentially be further
improved by selecting more refined D; values for our example games.

One primary limitation of our method is that it rests on assumption of known data
widths D; (and in the case of sampling-without-replacement, also on strata sizes N;),
which may not be exactly known in practice. One way to overcome this may be to
use our method with a reliable overestimate these parameters (by expert opinion or
otherwise). This approximation or estimation may itself open consideration of other
probability bounds and/or sampling methods, however we have not investigated this
line of inquiry.
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In practice, it might also be advisable to run our method with an underestimate of
the data widths, as the sampling process is fundamentally sensitive the the shape of
the inequality and not necessarily its magnitude or accuracy as a bound.

8. Multidimensional Extension

Our method of choosing samples can be extended to multidimensional data by a simple
modification. Specifically, instead of considering data that is single-valued, we consider
data points that are vectors.

Formally, for n strata of finite data points which are all vectors of size M, let n; be
the number of data points in the ith stratum. Let the data in the ¢th stratum have
a mean vector values p; (with p;; for the jth component of the vector), Which are
value bounded within a finite width D; ;, and have vector value variances O‘ Wi Given
this, let X1, Xi2,..., Xin, (Where Xj 1 ; is the jth component, of the kth vector from
stratum 7) be vector random variables corresponding to those data values randomly
and sequentially drawn (with or without) replacement. Denote the average of the first
m; of these random variables from the ith stratum by xim, = mi oy Xig (with
Xi,m.,j being the jth component of that vector average). Let 5%- = ﬁ Yo ( Xk —
Xi,mi,j)2 be the unbiased sample variance of the first m; of these random variables in
the jth component. As before, we assume weights 7; for each stratum.

In this context we have the following theorem:

Theorem 8.1 (Vector SEBM bound). In the context above, then with 2y, Wii per

Lemma [377:

S Ty i(Xiame g — 1) >
log(6/p) 3271, <a;;;m ( \/ S+ \/%w) ) < Mp (12)

where:

n
a; :Z 79?511)2,3 ;
i=1
B; =log(3/p) (m?X T,L-Q\I/Z{fDﬁj)
n
V; :2271-2\11%1_(77% —1)o Z]/Tm + log(6n/p) ZTQD%Q% v

+ log(3/p) (mlax 712\11%12Di2’j>

Proof. Squaring (8) and applying it specifically to the jth component of all the vectors
gives:

n v o ))2
¢ (ELtbn ol s o (50 )
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Taking a series of union bounds (Lemma over j gives result. O

The left hand side of the inequality in is the square Euclidean distance be-
tween our weighted stratified sample vector estimate > | 7;Xi,m, and the true mean
stratified vector » ;" | 7ip1;. In this context, an example sampling process might con-
sist of sampling to maximally minimize the right hand side of the inequality (similar
to our SEBM process, described in Section . This formulation can be applied to
more involved computational tasks that involve sampling data with multiple features
or auxiliary variables.

9. Conclusions and Future Work

The derivation of our inequality extends from consideration of Chernoff bounds and
probability unions in a similar vein to other EBB derivations [19/28]. However, the
bounds on the moment generating functions that we developed in Section [3| use loos-
ening approximations, and hence stronger and/or more representative bounds could
be developed at the cost of greater mathematical complexity. Alternatively, an ap-
proach utilizing entropic [39] or Efron-Stein inequalities [40] could result in different
and potentially tighter results.

We now consider prospective applications of our method. First, the approach de-
rived in this paper was motivated by the problem of approximating the Shapley value
of cooperative games defined over complicated optimization problems (i.e. with char-
acteristic functions given by the solution to non-trivial optimization problems). Two
examples of this are the problems of pricing (i) logistics, involving solutions to the
travelling salesman problem [33], and (ii) electricity networks, which requires solving
optimzation problems that incorporate the power flow equations [16/34/41/42]. Focus-
ing on electricity networks in particular: these are complicated technical system used
to transport electrical power from generators to loads, subject to the non-linear phys-
ical and operational constraints of the system’s components. With the emergence of
new technologies, electricity is now generated, monitored and used on neighborhood
distribution networks by devices that are increasingly responsive and interconnected
to the network. Because of this, there are various emerging schemes of how a future
distribution-network energy market platform might be designed. Within this context,
the Shapley value has been proposed as a fair mechanism for the allocation of re-
sources and costs on such networks. The Shapley value has been considered in different
ways as a mechanism for pricing demand response [16], demand or load [34], supply
or generation [4I], and potentially all simultaneously [42]. Although computing the
Shapley value exactly is impractical in these contexts sample-based approximations
are a promising avenue for implementing Shapely value pricing schemes in real-world
electricity systems.

Second, a potential use of our stratified sampling method is in improving the perfor-
mance of stochastic gradient decent (SGD) methods for training neural networks [43].
Neural networks are trained by iteratively refining their parameters — the weights
and biases of the network — against a cost function of the network’s performance
against training data. One common method of training neural networks is gradient
decent (GD). In each iteration of GD, the derivative of how much a change in any
parameter would influence the average performance of the network across the training
data is calculated as a gradient vector. Once this vector is calculated, each network
parameter takes a small step in the direction of this gradient, to incrementally increase
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the performance of the network, and through many of these steps the network becomes
trained.

However in many cases, the entire corpus of training data is not used in each iteration
but only a fraction of the corpus is sampled (as a ‘batch’ or ‘minibatch’), and the
average gradient vector of improved performance across the samples of the batch is
calculated as an approximation of the true gradient vector. This iterative process
has been called SGD, where one of the hyperparameters is the size of the batches,
see [44/45]. In the context of supervised learning, each element of the training data is
labelled with the desired output of the neural network for it, and these labels can serve
to naturally stratify the training data; or the data can be stratified by other means
too [46H48]. In this setting, Equation may be used to choose between samples of
labelled training data, in order to sample batches that more-efficiently estimate of
the performance gradient, and hence improve the efficiency of neural network training
procedure. This idea of ‘smart sampling’ for neural network training is not particularly
new, and our method is potentially compatible with other performance-enhancing
techniques in the literature on neural networks [49/50].

Sourcecode for all the experiments in this paper are available at:
https://github.com/Markopolo141/Stratified_Empirical Bernstein_Sampling
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Appendix A. Parabola Fitting

Theorem A.1. For b > 0 and a < b and z > 0, there exists an «, 3, such that:
ax? + Bx + v > exp(z) for all a < x < b, and where:

zeb + b2e#/b

S ——

Proof. An example parabola ax? 4+ Sz + « which that satisfies these requirements
tangentially touches the exponential curve at one point (at © = f < b) and intersects
it at another (at x = b), as illustrated in Figure Thus the parabola’s intersection
at x = b and its tangential intersection at x = f can be written in matrix algebra:

« B2 b 1] exp(b)
Bl=1|r f1 exp(f)
g 2f 1 0]  |exp(f)

This gives our parabola parameters «, 3,7, in terms of f and b, hence:
zat+y=(((z+ fo=b)(f =b—1) =b)e) + (f* +2)e") (b~ f)
Minimizing with respect to f occurs at f = 5= and gives the result. O

ax? + Br 4+~

T
c

d T

Figure Al.: A parabola parametarized by touching and intercepting points f, b above
an exponential curve for all a < x <b
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g(x)

Figure A2.: Parabola g(x) = (exp(—qd?)—1)d 22241 over function f(z) = exp(—qz?)
for all a < x < b where d = max(b, —a); in the case a = —1,b=1.3,¢ =1
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