Using an algebraic method for solving the wave equation in quantum mechanics, we encountered a new class of orthogonal polynomials on the real line. One of these is a four-parameter polynomial with a discrete spectrum. Another that appeared while solving a Heun-type equation has a mix of continuous and discrete spectra. Based on these results and on our recent study of the solution space of an ordinary differential equation of the second kind with four singular points, we introduce a modification of the hypergeometric polynomials in the Askey scheme. Up to now, all of these polynomials are defined only by their three-term recursion relations and initial values. However, their other properties like the weight function, generating function, orthogonality, Rodrigues-type formula, etc. are yet to be derived analytically. This is an open problem in orthogonal polynomials.
Keywords:
Subject: Computer Science and Mathematics - Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.