Preprint
Article

Insurer Resilience in an Era of Climate Change and Extreme Weather: An Econometric Analysis

Altmetrics

Downloads

334

Views

481

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

29 January 2019

Posted:

30 January 2019

You are already at the latest version

Alerts
Abstract
Having sustained, over the course of more than two decades, record-breaking natural catastrophe losses, American insurers and reinsurers are justifiably questioning the potential linkage between anthropogenic climate change and extreme weather. Here, we explore issues pertaining to this linkage, looking at both the likely short-term implications for the insurance industry, as well as potential longer-term impacts on financial performance and corporate resilience. We begin our discussion with an overview of the implications that climate change is likely to have on the industry, especially as it relates to how catastrophic risks are construed, assessed, and managed. We then present the rudiments of an econometric analysis that explores the financial resilience of the property/casualty (P/C) industry in the face of both natural and man-made catastrophes. In this analysis, we explore the profitability consequences of several illustrative scenarios involving large-scale losses from extreme weather—specifically, a sequence of storms like those striking the U.S. in 2004—and a scenario that explores the prospect of a Katrina-scale storm in combination with a mass terror attack on the scale of 9/11. At systemic levels of aggregation, our analysis suggests a high degree of macro-resilience for the insurance industry. Moreover, we find that insurer resilience is higher for larger impacts, considering both the speed of recovery, as well as the inverse of the area under the unaffected system profile. We conclude with a summary of our findings and a closing commentary that explores the potential implications of these results for P/C insurers moving forward.
Keywords: 
Subject: Business, Economics and Management  -   Econometrics and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated